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Abstract   

A new species of Moniliformis, M. tupaia n. sp. is described  using integrated morphological 

methods (light and scanning electron microscopy) and molecular techniques (sequencing and 

analyzing the nuclear 18S, ITS, 28S regions and mitochondrial cox1 and cox2 genes), based 

on specimens collected from the intestine of the northern tree shrew Tupaia belangeri 

chinensis Anderson (Scandentia: Tupaiidae) in China. Phylogenetic analyses show that M. 

tupaia n. sp. is a sister to M. moniliformis in the genus Moniliformis, and also challenges the 

systematic status of Nephridiacanthus major. Moniliformis tupaia n. sp. represents the third 

Moniliformis species reported from China. 
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Introduction 

The northern tree shrew Tupaia belangeri chinensis Anderson (Mammalia: Scandentia: 

Tupaiidae) is a novel ideal animal model for human disease, due to its small size, easy 

breeding, rapid reproduction and close genetic relationship to primates (Xu et al., 2012; Xiao 

et al., 2017; Tang et al., 2018; Xu et al., 2013; Wang et al., 2021). Tupaia belangeri 

chinensis is omnivorous, eating fruits, seeds, insects and small vertebrates, which is mainly 

distributed in southwest China (including Yunnan and Sichuan Provinces) (Xiang & Yang, 

2014) and can act as the intermediate and definitive host for some helminth parasites and 

protozoa (Brack et al., 1987; Tian et al., 1989; Xiang et al., 2010; Xiang & Yang, 2014). 

However, our present knowledge of the species composition of the acanthocephalans of the 

northern tree shrew is very limited. To date, only Prosthenorchis sp. (Archiacanthocephala: 

Oligacanthorhynchidae) has been reported from T. belangeri chinensis (Tian et al., 1989).  

In the present study, some acanthocephalan specimens were collected from T. belangeri 

chinensis in China. In order to accurately identify these acanthocephalan specimens to 

species level, the detailed morphology of these specimens was studied using light and 

scanning electron microscopy. Moreover, the nuclear small subunit ribosomal DNA (18S), 

internal transcribed spacer (ITS) and large subunit ribosomal DNA (28S), and mitochondrial 

cytochrome c oxidase subunit 1 (cox1) and subunit 2 (cox2) genes were sequenced and 

analyzed. Phylogenetic analyses were also performed based on the 18S + cox1 sequence data 

using maximum likelihood (ML) and Bayesian inference (BI) methods, in order to clarify the 

phylogenetic relationships between this species and its congeners. 
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Materials and methods  

Morphological observation 

Acanthocephalans were isolated from the intestine of the northern tree shrew T. belangeri 

chinensis in Kunming, Yunnan Province, China. Specimens were washed and kept in cold 

water for several hours until the proboscis everted, and then stored in 80% ethanol until 

studied. For light microscopical studies, specimens were made in impermanent mount slide 

and cleared in lactophenol. Photomicrographs were recorded using a Nikon® digital camera 

coupled to a Nikon® optical microscopy. For scanning electron microscopy (SEM), 

specimens were post-fixed in 1% OsO4, dehydrated via an ethanol series and acetone, and 

then critical point dried. The specimens were coated with gold and examined using a Hitachi 

S-4800 scanning electron microscope at an accelerating voltage of 20 Kv. Measurements 

(range, followed by the mean in parentheses) are given in micrometres unless otherwise 

stated. 

 

Molecular procedures 

Genomic DNA from the mid-body of one male and one female was extracted using a Column 

Genomic DNA Isolation Kit (Shanghai Sangon, China) according to the manufacturer's 

instructions. The partial 18S region was amplified by polymerase chain reaction (PCR) using 

the forward primer (5′-AGATTAAGCCATGCATGCGTAAG-3′) and the reverse primer 

(5′-TGATCCTTCTGCAGGTTCACCTAC-3′) (Garey et al., 1996). The partial 28S region 

was amplified by PCR using four overlapping PCR fragments of 700–800 bp. Primers for 
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28S amplicon 1 were forward 5′-CAAGTACCGTGAGGGAAAGTTGC-3′ and reverse 

5′-CAGCTATCCTGAGGGAAAC-3′; amplicon 2, forward  

5′-ACCCGAAAGATGGTGAACTATG-3′ and reverse 

5′-CTTCTCCAAC(T/G)TCAGTCTTCAA-3′; amplicon 3, forward 

5′-CTAAGGAGTGTGTAACAACTCACC-3′ and reverse 

5′-AATGACGAGGCATTTGGCTACCTT-3′; amplicon 4, forward 

5′-GATCCGTAACTTCGGGAAAAGGAT-3′ and reverse 

5′-CTTCGCAATGATAGGAAGAGCC-3′ (García-Varela & Nadler, 2005). The partial ITS 

region was amplified by PCR using the forward primer 

(5'-GTCGTAACAAGGTTTCCGTA-3') and the reverse primer 

(5'-TATGCTTAAATTCAGCGGGT-3') (Král’ová-Hromadová et al., 2003). The partial cox1 

region was amplified by PCR using the forward primer 

(5'-GGTCAACAAATCATAAAGATATTGG-3') and the reverse primer 

(5'-TAAACTTCAGGGTGACCAAAAAATCA-3') (Gómez et al., 2002). The partial cox2 

region was amplified by PCR using the forward primer 

(5'-AATGTTTGATGGGTTTAGAG-3') and the reverse primer 

(5'-AACACTGACCATATATAACC-3') (designed by the present study). The cycling 

conditions were as described previously (Li et al., 2019). PCR products were checked on 

GoldView-stained 1.5% agarose gels and purified with Column PCR Product Purification Kit 

(Shanghai Sangon, China). Sequencing for each amplification product was carried out from 

both directions. Sequences were aligned using ClustalW2 and adjusted manually. The DNA 

sequences obtained herein were compared (using the algorithm BLASTn) with that available 
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in the National Center for Biotechnology Information (NCBI) database (http: //www.ncbi.nlm. 

nih.gov).  

 

Phylogenetic analyses 

Phylogenetic analyses were performed based on the 18S + cox1 sequence data using 

maximum likelihood (ML) inference with IQ-TREE and Bayesian inference (BI) with 

Mrbayes 3.2 (Ronquist et al., 2012; Nguyen et al., 2015), respectively. Polyacanthorhynchus 

caballeroi Diaz-Ungria & Rodrigo, 1960 (Polyacanthocephala: Polyacanthorhynchida) was 

treated as the out-group. The in-group included 15 species of the class Archiacanthocephala 

representing six different genera belonging to three orders Gigantorhynchida, Moniliformida 

and Oligacanthorhynchida. The detailed information of acanthocephalan species included in 

the present phylogenetic analyses was provided in Table 1.  

We used a built-in function in IQTREE to select a best-fitting substitution model for the 

sequences according to the Bayesian information criterion (Posada & Crandall, 2001). The 

GTR+F+I+G4 model was identified as optimal nucleotide substitution model. Reliabilities 

for ML tree were tested using 1000 bootstrap replications and BI tree was tested using 10 

million generations. In the ML tree, bootstrap support (BS) values ≥90 were considered as 

fully supported; whereas BS values ≥70 and <90 were considered as generally supported. In 

the BI tree, Bayesian posterior probabilities (BPP) ≥0.90 were considered as fully supported, 

whereas BPP values ≥0.70 and <0.90 were considered as generally supported.  
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Results 

Description of Moniliformis tupaia n. sp. (Figs. 1–3) 

General. Medium-sized worms with small proboscis (Figs. 1A; 3A, D). Trunk aspinose, 

nearly cylindrical, slender, showing pseudosegmentation characteristic of the genus 

Moniliformis (Fig. 3A). Anterior trunk tapering to gourd-shaped. Proboscis small compared 

to the trunk, cylindrical, with two apical sensory pores and 14 spiral longitudinal rows of 7–8 

hooks each (Figs. 1A, B, E; 2A, C; 3B). Proboscis hooks small, with simple roots (Figs. 1E, F; 

2A–C). Proboscis receptacle double-walled, cerebral ganglion at base of proboscis receptacle 

(Figs. 1A, B; 3D). Neck short. Lemnisci very long, unequal, distinctly longer than proboscis 

receptacle (Figs. 1A; 3D). Gonopore terminal in both sexes (Figs. 1C, D; 2D). 

 

Male [Based on 5 mature specimens]. Trunk 34.0–47.5 (40.0) mm long, maximum width 

1.83–2.07 (1.93) mm. Proboscis 366–439 (395) long, 146–171 (162) wide. Proboscis hooks 

similar in shape, 27–31 (30), 28–31 (29), 26–29 (28), 24–27 (26), 21–25 (24), 18–23 (21), 

18–22 (20), 17–22 (19) in length from anteriorly to posteriorly. Neck 49–100 (68) long, 

180–244 (204) wide. Proboscis receptacle 854–1195 (1000) long, 341–390 (368) wide. 

Shorter lemniscus 5.00–6.10 (5.72) mm long, longer lemniscus 7.68–9.32 (8.61) mm long.  

Testes two, oval, nearly equal in size; anterior testis 2.44–3.49 (3.05) mm long, 732–1024 

(888) wide; posterior testis 2.44–3.54 (2.99) mm long, 585–1000 (849) wide (Fig. 1D). 

Cement glands eight, ovoid, clustered together; a short distance from posterior testis, 

854–1829 (1256) long, 659–854 (761) wide (Figs. 1D, G; 3E). Saefftigen’s pouch 927–1512 

(1317) long, 293–463 (378) wide. Copulatory bursa evaginabled or not everted, 780–1171 
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(971) long, 366–854 (644) wide (Figs. 1G, 2E; 3F, G). Gonopore nearly terminal (Fig. 1D, 

G).  

 

Female [Based on 1 mature specimen]. Trunk 41.0 mm long, maximum width 2.15 mm. 

Proboscis 390 long, 171 wide. Proboscis hooks similar in shape, 28–33 (31), 29–33 (32), 

27–31 (29), 26–29 (27), 25–29 (27), 23–26 (24), 22–26 (24), 20–25 (22) in length from 

anteriorly to posteriorly. Neck 73 long, 195 wide. Proboscis receptacle 927 long, 439 wide. 

Shorter lemniscus 4.63 mm long, longer lemniscus 8.54 mm long. Uterine bell 350 long, 300 

wide. Uterus 680 long, vagina 270 long (Fig. 1C). Eggs ellipsoid, 58–68 (65) × 24–32 (30) in 

size (n=20) (Figs. 1H; 3C). Gonopore nearly terminal (Figs. 1C, 2D).  

 

Type-host: Northern tree shrew Tupaia belangeri chinensis Anderson (Scandentia: 

Tupaiidae).  

Type-locality: Kunming, Yunnan Province, China. 

Site in host: Intestine.  

Type specimens: Holotype, male (HBNU-A-M20231201CL); allotype, female 

(HBNU-A-M20231202CL); paratypes: 4 males (HBNU-A-M20231203CL); deposited in the 

College of Life Sciences, Hebei Normal University, Hebei Province, China. 

Etymology: The species name refers to the generic name of the type host. 

 

Molecular characterization 

Partial 18S region 
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Two 18S sequences of M. tupaia n. sp. obtained herein are both 1188 bp in length, with no 

nucleotide divergence detected. In the genus Moniliformis, there are six species with their 

18S sequences available in GenBank, including M. cryptosaudi Amin, Heckmann, Sharifdini 

& Albayati, 2019 (MH401043), M. ibunami Lynggaard, García-Prieto, Guzmán-Cornejo & 

García-Varela, 2021 (MW136271, MW136272), M. kalahariensis Meyer, 1931 (MH401042), 

M. moniliformis (Bremser, 1811) (HQ536017, Z19562), M. saudi Amin, Heckmann, 

Mohammed & Evans, 2016 (KU206782) and Moniliformis sp. XH-2020 (OM388438). 

Pairwise comparison of the 18S sequences of M. tupaia n. sp. obtained herein with that of 

other Moniliformis species showed no nucleotide divergence (Moniliformis sp. XH-2020) to 

0.66% (M. ibunami) nucleotide divergence. The 18S sequences of M. tupaia n. sp. obtained 

herein were deposited in GenBank database (http://www.ncbi.nlm.nih.gov) (under accession 

numbers PP002170, PP002171). 

 

Partial 28S region 

Two 28S sequences of M. tupaia n. sp. obtained herein are both 2692 bp in length, with no 

nucleotide divergence detected. In the genus Moniliformis, there are M. ibunami (MW136276, 

MW136277) and M. moniliformis (AY829086) with 28S sequences available in GenBank. 

Pairwise comparison of the 28S sequences of M. tupaia n. sp. obtained herein with that of 

other Moniliformis species showed 1.49% (M. ibunami) to 2.04% (M. moniliformis) 

nucleotide divergence. The 28S sequences of M. tupaia n. sp. obtained herein were deposited 

in GenBank database (http://www.ncbi.nlm.nih.gov) (under accession numbers PP002172, 

PP002173). 
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Partial ITS region 

Two ITS sequences of M. tupaia n. sp. obtained herein are both 671 bp in length, with no 

nucleotide divergence detected. In the genus Moniliformis, only M. moniliformis (AF416415) 

has an ITS sequence available in GenBank. Pairwise comparison of the ITS sequences of M. 

tupaia n. sp. obtained herein with that of M. moniliformis showed 17.2% nucleotide 

divergence. The ITS sequences of M. tupaia n. sp. obtained herein were deposited in 

GenBank database (http://www.ncbi.nlm.nih.gov) (under accession numbers PP002174, 

PP002175). 

 

Partial cox1 region 

Two cox1 sequences of M. tupaia n. sp. obtained herein are both 658 bp in length, with no 

nucleotide divergence detected. In the genus Moniliformis, seven species have their cox1 

sequences available in GenBank, namely M. cryptosaudi (MH401041), M. ibunami 

(MW115575, MW115576), M. kalahariensis (MH401040), M. moniliformis (AF416998), M. 

necromysi Gomes, Costa, Gentile, Vilela & Maldonado, 2020 (MT803593), M. saudi 

(KU206783, OQ078755) and Moniliformis sp. XH-2020 (OK415026). Pairwise comparison 

of the cox1 sequences of M. tupaia n. sp. obtained herein with that of other Moniliformis 

species showed 24.9% (M. ibunami) to 27.3% (M. moniliformis) nucleotide divergence. The 

cox1 sequences of M. tupaia n. sp. obtained herein were deposited in GenBank database 

(http://www.ncbi.nlm.nih.gov) (under accession numbers OR997666, OR997667). 
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Partial cox2 region 

Two cox2 sequences of M. tupaia n. sp. obtained herein are both 514 bp in length, with no 

nucleotide divergence detected. In the genus Moniliformis, only Moniliformis sp. XH-2020 

(OK415026) has a cox2 sequence available in GenBank. Pairwise comparison of the cox2 

sequences of M. tupaia n. sp. obtained herein with that of Moniliformis sp. XH-2020 showed 

23.6% nucleotide divergence. The cox2 sequences of M. tupaia n. sp. obtained herein were 

deposited in GenBank database (http://www.ncbi.nlm.nih.gov) (under accession numbers 

PP002935, PP002936). 

 

Phylogenetic analyses  

Phylogenetic trees of the class Archiacanthocephala constructed from the 18S + cox1 

sequence data using ML and BI methods have almost identical topology (Fig. 4). The 

representatives of Archiacanthocephala were divided into three major clades. Clade I 

included species of Macracanthorhynchus, Nephridiacanthus, Oligacanthorhynchus and 

Oncicola, representing the order Oligacanthorhynchida. Among them, the phylogenetic 

results showed N. major (Bremser, 1811) clustered together with M. ingens (Von Linstow, 

1879). Clade Ⅱ contained species of Moniliformis, representing the order Moniliformida. 

Clade Ⅲ included species of Mediorhynchus, representing the order Gigantorhynchida. In the 

genus Moniliformis, M. tupaia n. sp. showed sister relationship with M. moniliformis.  

 

Discussion 

The present specimens collected from the northern tree shrew T. belangeri chinensis belong 
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to the genus Moniliformis (Moniliformida: Moniliformidae), due to the pseudosegmented 

trunk, the very small cylindrical proboscis, the double-walled proboscis receptacle, the very 

long lemnisci and the presence of eight spherical cement glands (Travassos, 1917; Van 

Cleave, 1923, 1953; Southwell & Macfie, 1925; Yamaguti, 1963; Schmidt, 1972; Amin, 

1987). The genus Moniliformis currently comprises 19 species mainly parasitic in mammals 

(Amin, 2013; Amin et al., 2016, 2019; Martins et al., 2017; Gomes et al., 2020; Lynggaard et 

al., 2021). Among them, only M. moniliformis and Moniliformis sp. XH-2020 have been 

reported in China (Chen, 1933; Chandler, 1941; Dai et al., 2022).   

The proboscis of the new species has 14 spiral longitudinal rows of 7–8 simple rooted 

hooks each, which is similar to the proboscis of following species M. acomysi Ward & 

Nelson, 1967, M. cryptosaudi, M. moniliformis, M. saudi and M. siciliensis Meyer, 1932. 

Moniliformis tupaia n. sp. can be easily distinguished from M. acomysi by its much longer 

proboscis and lemnisci (proboscis 0.37–0.44 mm and lemnisci 5.00–9.32 mm long in the 

male of new species vs proboscis 0.19–0.36 mm and lemnisci 2.73–4.42 mm long in the male 

of M. acomysi). Moniliformis tupaia n. sp. differs from M. cryptosaudi and M. saudi by 

having larger cement glands (854–1829 long in the new species vs 312–811 long in the latter 

two species). Moreover, M. cryptosaudi and M. saudi are both parasitic in hedgehogs 

(Erinaceomorpha: Erinaceidae) in Saudi Arabia and Iraq, but the new species parasitizes the 

northern tree shrew T. belangeri chinensis in China. Furthermore, molecular analysis 

revealed strong genetic divergence (25.9‒26.9% difference in nucleotides in the cox1 region) 

between the new species and M. cryptosaudi and M. saudi. Moniliformis siciliensis is a 

poorly known acanthocephalan species only reported from the garden dormouse Eliomys 
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quercinus Linnaeus (Mammalia: Rodentia) in the Italian island of Sicily (Meyer, 1932; 

Petrochenko, 1958). The new species differs from M. siciliensis in having shorter lemnisci 

(5.00–9.32 mm long in the former vs about 10.0 mm in the latter) and different localities and 

hosts. 

Moniliformis moniliformis is an important zoonotic acanthocephan species, parasitizing 

rodents, canines and felines worldwide, including China (Meyer, 1932; Petrotschenko, 1958; 

Yamaguti, 1963; Ward & Nelson, 1967; Bhattacharya, 2007; Naidu, 2012). This species has a 

proboscis with 11–14 (usually 12) rows of 9–14 (usually 10–11) hooks each and much larger 

trunk (over 50.0 mm long in male), which is different from the new species (vs proboscis 

with 14 rows of 7–8 hooks each, and male 34.0–47.5 mm long in M. tupaia n. sp.). 

Additionally, molecular analysis displayed 27.3% and 17.2% nucleotide divergence in the 

cox1 and ITS regions, between the new species and M. moniliformis, which strongly 

indicated that they represent two distinct species. Dai et al. (2022) reported Moniliformis sp. 

XH-2020 from the plateau zokor (Eospalax fontanierii baileyi) in China, but they only 

provided the mitochondrial genomic data of their specimens (they did not describe the 

morphology). Pairwise comparison between M. tupaia n. sp. and Moniliformis sp. XH-2020 

showed 27.3% and 23.6% nucleotide divergence in the cox1 and cox2 regions. Consequently, 

they belong to different species.  

The class Archiacanthocephala currently includes four orders, namely Gigantorhynchida, 

Moniliformida, Oligacanthorhynchida and Apororhynchida (Amin, 2013). However, the 

phylogenetic relationships of the four orders remain unclear, due to a lack of genetic data of 

some taxa, especially the order Apororhynchida. The previous phylogenetic study using 18S 
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or 18S + cox1 genetic data suggested a close affinity between Moniliformida and 

Gigantorhynchida (Amin et al., 2013, 2020). However, our phylogenetic results based on the 

18S + cox1 data suggested Moniliformida is a sister to Oligacanthorhynchida, rather than 

Gigantorhynchida, which are consistent with some previous studies based on cox1 or 18S 

data (Gomes et al., 2020; Rodríguez et al., 2021; Amin et al., 2021, 2022). In the order 

Oligacanthorhynchida, the present phylogeny displayed Nephridiacanthus major nested in 

representatives of Macracanthorhynchus (clustered together with M. ingens), which 

challenged the current systematic position of this species. The present results agreed well 

with the previous phylogenetic study based on cox1 data (Rodríguez et al., 2021). In the 

genus Moniliformis, our molecular phylogenetic analyses indicate that M. tupaia n. sp. is a 

sister to M. moniliformis.  

 

Data availability. The nuclear and mitochondrial DNA sequences of M. tupaia n. sp. 

obtained herein were deposited in the GenBank database [http://www.ncbi.nlm.nih.gov, 

accession numbers: PP002170, PP002171 (18S); PP002172, PP002173 (28S); PP002174, 

PP002175 (ITS); OR997666, OR997667 (cox1); PP002935, PP002936 (cox2)]. Type 

specimens of M. tupaia n. sp. (HBNU-A-M20231201-3CL) were deposited in the College of 

Life Sciences, Hebei Normal University, Hebei Province, China. 
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Figure 1. Moniliformis tupaia n. sp. collected from Tupaia belangeri chinensis (Scandentia: 

Tupaiidae) in China. (A) anterior part of male. (B) anterior end of male. (C) posterior end of 

female. (D) posterior part of male. (E) proboscis. (F) longitudinal row of hooks. (G) posterior 

end of male. (H) egg. Scale bars: A, D, G = 1000 μm; B, C = 500 μm; E, F = 100 μm; H = 30 

μm. 
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Figure 2. Scanning electron micrographs of Moniliformis tupaia n. sp. collected from Tupaia 

belangeri chinensis (Scandentia: Tupaiidae) in China. (A) proboscis of male, lateral view. (B) 

magnified image of proboscis hook. (C) proboscis of male (sensory pores arrowed), apical 

view. (D) posterior end of female (gonopore arrowed). (E) copulatory bursa. Abbreviations: 

sp, sensory pores; gp, gonopore.  
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Figure 3. Photomicrographs of Moniliformis tupaia n. sp. collected from Tupaia belangeri 

chinensis (Scandentia: Tupaiidae) in China. (A) mature female. (B) proboscis of female. (C) 

eggs. (D) anterior part of male. (E) posterior part of male. (F) posterior part of male 

(copulatory bursa not everted). (G) posterior part of male (copulatory bursa evaginabled). 

Abbreviations: bu, bursa; cg, cement glands; cr, cement reservoir; le, lemniscs; p, proboscis; 

pr, proboscis receptacle; sa, saeftigen's pouch; te, testis. 
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Figure 4. Maximum likelihood (ML) inference and Bayesian inference (BI) based on the 18S 

+ cox1 sequence data showing the phylogenetic relationships of representatives of 

Archiacanthocephala. Polyacanthorhynchus caballeroi (Polyacanthocephala: 

Polyacanthorhynchidae) was chose as the outgroup. Bootstrap support (BS) values ≥ 50 in 

ML tree and Bayesian posterior probabilities (BPP) ≥ 0.70 in BI tree are shown.  
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Table 1. Species of Archiacanthocephala with their detailed information of genetic data included in the phylogenetic analyses 

Species Host Locality 
GenBank ID for 

18S region 

GenBank ID for 

cox1 region 
References 

Ingroup      

Order Gigantorhynchida      

Family Gigantorhynchidae      

Mediorhynchus africanus Numida meliagris (Aves: Galliformes) Africa KC261353 KC261351 Amin et al., 2013 

Mediorhynchus gallinarum Chickens (Aves: Galliformes) Indonesia KC261354 KC261352 Amin et al., 2013 

Mediorhynchus sp. Cassidix mexicanus (Aves: Passeriformes) N/A AF064816 AF416996 
García-Varela et al., 

2000, 2002 

Order Moniliformida      

Family Moniliformidae      

Moniliformis cryptosaudi Hemiechinus auratus (Mammalia: Erinaceomorpha) Iraq MH401043 MH401041 Amin et al., 2019 

Moniliformis ibunami Peromyscus hylocetes (Mammalia: Rodentia) Mexico MW136271 MW115576 
Lynggaard et al., 

2021 

Moniliformis kalahariensis Atelerix frontalis (Mammalia: Erinaceomorpha) South Africa MH401042 MH401040 Amin et al., 2019 

Moniliformis moniliformis Rattus norvegicus (Mammalia: Rodentia); N/A England; N/A Z19562 AF416998 

Telford & Holland, 

1993; García-Varela 

et al., 2002 

Moniliformis saudi Paraechinus aethiopicus (Mammalia: Erinaceomorpha) Saudi Arabia KU206782 KU206783 Amin et al., 2016 

Moniliformis sp. XH-2020 Eospalax fontanierii baileyi (Mammalia: Rodentia) China OM388438 OK415026 Dai et al., 2022 

Moniliformis tupaia n. sp. Tupaia belangeri (Mammalia: Scandentia) China PP002170 OR997666 This study 

Order Oligacanthorhynchida      
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Family Oligacanthorhynchidae      

Macracanthorhynchus hirudinaceus 
Sus scrofa leucomystax (Mammalia: Artiodactyla); S. 

scrofa meridionalis (Mammalia: Artiodactyla) 
Japan; Italy LC350000 MZ683370 

Kamimura et al., 

2018; Dessì et al., 

2022 

Macracanthorhynchus ingens N/A; Procyon lotor (Mammalia: Carnivora) N/A; USA AF001844 KT881244 

Near et al., 1998; 

Richardson et al., 

2016 

Nephridiacanthus major Hemiechinus auratus (Mammalia: Erinaceomorpha) Iran MN612079 MN612080 Amin et al., 2020 

Oligacanthorhynchus tortuosa Didelphis virginiana (Mammalia: Didelphimorphia) N/A; Mexico AF064817 KM659378 

García-Varela et al., 

2000; 

López-Caballero et 

al., 2015 

Oncicola sp. Nasua narica (Mammalia: Carnivora); N/A N/A AF064818 AF417000 
García-Varela et al., 

2000, 2002 

Outgroup      

Class Polyacanthocephala      

Order Polyacanthorhynchida      

Family Polyacanthorhynchidae      

Polyacanthorhynchus caballeroi Caiman yacare (Reptilia: Crocodylia) Bolivia AF388660 DQ089724 

García-Varela et al., 

2002; García-Varela 

& Nadler, 2006 
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