We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To address the shortcomings of existing methods for rotorcraft searching, positioning, tracking and landing on a ship at sea, a dual-channel LIDAR searching, positioning, tracking and landing system (DCLSPTLS) is proposed in this paper, which utilises the multi-pulse laser echoes accumulation method and the physical phenomenon that the laser reflectivity of the ship deck in the near-infrared band is four orders of magnitude higher than that of the sea surface. The DCLSPTLS searching and positioning model, tracking model and landing model are established, respectively. The searching and positioning model can provide estimates of the azimuth angle, the distance of the ship relative to the rotorcraft and the ship's course. With the above parameters as inputs, the total tracking time and the direction of the rotorcraft tracking speed can be obtained by using the tracking model. The landing model can calculate the pitch and the roll angles of the ship's deck relative to the rotorcraft by using the least squares method and the laser irradiation coordinates. The simulation shows that the DCLSPTLS can realise the functions of rotorcraft searching, positioning, tracking and landing by using the above parameters. To verify the effectiveness of the DCLSPTLS, a functional test is performed using a rotorcraft and a model ship on a lake. The test results are consistent with the results of the simulation.
The fish-eye star sensor with a field of view (FOV) of 180° is an important piece of equipment for attitude determination, which improves the visibility of stars significantly. However, it also brings the star identification (star-ID) difficulties because of imprecise calibrations. Thus, a fish-eye star-ID algorithm supported by the integration of the precise point positioning/inertial navigation system (PPP/INS) is proposed. At first, a reference star map is generated in combination with the distortion model of the fish-eye camera based on the position and attitude information from the PPP/INS. Then the star points are extracted in a specific neighbourhood of the reference star points. Subsequently, the extracted star points are individually tested and identified according to angular distance error. Finally, the real-time precise attitude is determined based on the star-ID results. Experimental results show that, 270–310 stars can be identified in a fish-eye star map with an average time of 0.03 s if the initial attitude error is smaller than 1.5° and an attitude determination accuracy better than 10″ can be achieved by support from PPP/INS.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
Resistant starch (RS) has received increased attention due to its potential health benefits. This study was aimed to investigate the effects of dietary corn RS on immunological characteristics of broilers. A total of 320 broiler chicks were randomly allocated to five dietary treatments: normal corn–soyabean (NC) diet group, corn starch diet group, 4 %, 8 % and 12 % RS diet groups. This trial lasted for 42 d. The relative weights of spleen, thymus and bursa, the concentrations of nitric oxide (NO) and IL-4 in plasma at 21 d of age, as well as the activities of total nitric oxide synthase (TNOS) and inducible nitric oxide synthase (iNOS) in plasma at 21 and 42 d of age showed positive linear responses (P < 0·05) to the increasing dietary RS level. Meanwhile, compared with the birds from the NC group at 21 d of age, birds fed 4 % RS, 8 % RS and 12 % RS diets exhibited higher (P < 0·05) relative weight of bursa and concentrations of NO and interferon-γ in plasma. Birds fed 4 % RS and 8 % RS diets showed higher (P < 0·05) number of IgA-producing cells in the jejunum. While compared with birds from the NC group at 42 d of age, birds fed 12 % RS diet showed higher (P < 0·05) relative weight of spleen and activities of TNOS and iNOS in plasma. These findings suggested that dietary corn RS supplementation can improve immune function in broilers.
Celestial navigation is an important means of maritime navigation; it can automatically achieve inertially referenced positioning and orientation after a long period of development. However, the impact of different accuracy of observations and the influence of nonstationary states, such as ship speed change and steering, are not taken into account in existing algorithms. To solve this problem, this paper proposes an adaptively robust maritime celestial navigation algorithm, in which each observation value is given an equivalent weight according to the robust estimation theory, and the dynamic balance between astronomical observation and prediction values of vessel motion is adjusted by applying the adaptive factor. With this system, compared with the frequently used least square method and extended Kalman filter algorithm, not only are the real-time and high-precision navigation parameters, such as position, course, and speed for the vessel, calculated simultaneously, but also the influence of abnormal observation and vessel motion status change could be well suppressed.
A new enantiornithine bird is described on the basis of a well preserved partial skeleton from the Upper Cretaceous Qiupa Formation of Henan Province (central China). It provides new evidence about the osteology of Late Cretaceous enantiornithines, which are mainly known from isolated bones; in contrast, Early Cretaceous forms are often represented by complete skeletons. While the postcranial skeleton shows the usual distinctive characters of enantiornithines, the skull displays several features, including confluence of the antorbital fenestra and the orbit and loss of the postorbital, evolved convergently with modern birds. Although some enantiornithines retained primitive cranial morphologies into the latest Cretaceous Period, at least one lineage evolved cranial modifications that parallel those in modern birds.
Three-scalar subgrid-scale (SGS) mixing in turbulent coaxial jets is investigated experimentally. The flow consists of a centre jet, an annulus and a co-flow. The SGS mixing process and its dependence on the velocity and length scale ratios of the annulus flow to the centre jet are investigated. For small SGS scalar variance the scalars are well mixed and the initial three-scalar mixing configuration is lost. For large SGS variance, the scalars are highly segregated with a bimodal scalar filtered joint density function (f.j.d.f.) at a range of radial locations. Two competing factors, the SGS variance and the scalar length scale, play an important role for the bimodal f.j.d.f. For the higher velocity ratio cases, the peak value of the SGS variance is higher, thereby resulting in stronger bimodality. For the lower velocity ratio cases, the wider mean SGS variance profiles and the smaller scalar length scale cause bimodal f.j.d.f.s over a wider range of physical locations. The scalar dissipation rate structures have similarities to those of mixture fraction and temperature in turbulent non-premixed/partially premixed flames. The observed SGS mixing characteristics present a challenging test for SGS mixing models as well as provides an understanding of the physics for developing improved models. The results also provide a basis for investigating multiscalar SGS mixing in turbulent reactive flows.
This paper is concerned with the asymptotic propagations for a nonlocal dispersal population model with shifting habitats. In particular, we verify that the invading speed of the species is determined by the speed c of the shifting habitat edge and the behaviours near infinity of the species’ growth rate which is nondecreasing along the positive spatial direction. In the case where the species declines near the negative infinity, we conclude that extinction occurs if c > c*(∞), while c < c*(∞), spreading happens with a leftward speed min{−c, c*(∞)} and a rightward speed c*(∞), where c*(∞) is the minimum KPP travelling wave speed associated with the species’ growth rate at the positive infinity. The same scenario will play out for the case where the species’ growth rate is zero at negative infinity. In the case where the species still grows near negative infinity, we show that the species always survives ‘by moving’ with the rightward spreading speed being either c*(∞) or c*(−∞) and the leftward spreading speed being one of c*(∞), c*(−∞) and −c, where c*(−∞) is the minimum KPP travelling wave speed corresponding to the growth rate at the negative infinity. Finally, we give some numeric simulations and discussions to present and explain the theoretical results. Our results indicate that there may exists a solution like a two-layer wave with the propagation speeds analytically determined for such type of nonlocal dispersal equations.
Brucellosis is one of the most serious and widespread zoonotic diseases, which seriously threatens human health and the national economy. This study was based on the T/B dominant epitopes of Brucella outer membrane protein 22 (Omp22), outer membrane protein 19 (Omp19) and outer membrane protein 28 (Omp28), with bioinformatics methods to design a safe and effective multi-epitope vaccine. The amino acid sequences of the proteins were found in the National Center for Biotechnology Information (NCBI) database, and the signal peptides were predicted by the SignaIP-5.0 server. The surface accessibility and hydrophilic regions of proteins were analysed with the ProtScale software and the tertiary structure model of the proteins predicted by I-TASSER software and labelled with the UCSF Chimera software. The software COBEpro, SVMTriP and BepiPred were used to predict B cell epitopes of the proteins. SYFPEITHI, RANKpep and IEDB were employed to predict T cell epitopes of the proteins. The T/B dominant epitopes of three proteins were combined with HEYGAALEREAG and GGGS linkers, and carriers sequences linked to the N- and C-terminus of the vaccine construct with the help of EAAAK linkers. Finally, the tertiary structure and physical and chemical properties of the multi-epitope vaccine construct were analysed. The allergenicity, antigenicity and solubility of the multi-epitope vaccine construct were 7.37–11.30, 0.788 and 0.866, respectively. The Ramachandran diagram of the mock vaccine construct showed 96.0% residues within the favoured and allowed range. Collectively, our results showed that this multi-epitope vaccine construct has a high-quality structure and suitable characteristics, which may provide a theoretical basis for future laboratory experiments.
To unveil the adaptation of Litopenaeus vannamei to elevated ambient ammonia-N, crustacean hyperglycaemic hormone (CHH) was knocked down to investigate its function in glucose metabolism pathway under ammonia-N exposure. When CHH was silenced, haemolymph glucose increased significantly during 3–6 h, decreased significantly during 12–48 h and recovered to the control groups’ level at 72 h. After CHH knock-down, dopamine (DA) contents reduced significantly during 3–24 h, which recovered after 48 h. Besides, the expressions of guanylyl cyclase (GC) and DA1R in the hepatopancreas decreased significantly, while DA4R increased significantly. Correspondingly, the contents of cyclic AMP (cAMP), cyclic GMP (cGMP) and diacylglycerol (DAG) and the expressions of protein kinase A (PKA), protein kinase G (PKG), AMP active protein kinase α (AMPKα) and AMPKγ were significantly down-regulated, while the levels of protein kinase C (PKC) and AMPKβ were significantly up-regulated. The expressions of cyclic AMP response element-binding protein (CREB) and GLUT2 decreased significantly, while GLUT1 increased significantly. Moreover, glycogen content, glycogen synthase and glycogen phosphorylase activities in hepatopancreas and muscle were significantly increased. Furthermore, the levels of key enzymes hexokinase, pyruvate kinase and phosphofructokinase in glycolysis (GLY), rate-limiting enzymes citrate synthase in tricarboxylic acid and critical enzymes phosphoenolpyruvate carboxykinase, fructose diphosphate and glucose-6-phosphatase in gluconeogenesis (GNG) were significantly decreased in hepatopancreas. These results suggest that CHH affects DA and then they affect their receptors to transmit glucose metabolism signals into the hepatopancreas of L. vannamei under ammonia-N stress. CHH acts on the cGMP-PKG-AMPKα-CREB pathway through GC, and CHH affects DA to influence cAMP-PKA-AMPKγ-CREB and DAG-PKC-AMPKβ-CREB pathways, thereby regulating GLUT, inhibiting glycogen metabolism and promoting GLY and GNG. This study contributes to further understand glucose metabolism mechanism of crustacean in response to environmental stress.
Anomalous origin of the left coronary artery from the pulmonary artery is associated with high mortality if not timely surgery. We reviewed our experience with anomalous origin of the left coronary artery from the pulmonary artery to assess the preoperative variables predictive of outcome and post-operative recovery of left ventricular function.
Methods:
A retrospective review was conducted and collected data from patients who underwent anomalous origin of the left coronary artery from the pulmonary artery repair at our institute from April 2005 to December 2019. Left ventricular function was assessed by ejection fraction and the left ventricular end-diastolic dimension index. The outcomes of reimplantation repair were analysed.
Results:
A total of 30 consecutive patients underwent anomalous origin of the left coronary artery from the pulmonary artery repair, with a median age of 14.7 months (range, 1.5–59.6 months), including 14 females (46.67%). Surgery was performed with direct coronary reimplantation in 12 patients (40%) and the coronary lengthening technique in 18 (60%). Twelve patients had concomitant mitral annuloplasty. There were two in-hospital deaths (6.67%), no patients required mechanical support, and no late deaths occurred. Follow-up echocardiograms demonstrated significant improvement between the post-operative time point and the last follow-up in ejection fraction (49.43%±19.92% vs 60.21%±8.27%, p < 0.01) and in moderate or more severe mitral regurgitation (19/30 vs 5/28, p < 0.01). The left ventricular end-diastolic dimension index decreased from 101.91 ± 23.07 to 65.06 ± 12.82 (p < 0.01).
Conclusions:
Surgical repair of anomalous origin of the left coronary artery from the pulmonary artery has good mid-term results with low mortality and reintervention rates. The coronary lengthening technique has good operability and leads to excellent cardiac recovery. The decision to concomitantly correct mitral regurgitation should be flexible and be based on the pathological changes of the mitral valve and the degree of mitral regurgitation.
Poor utilisation efficiency of carbohydrate always leads to metabolic phenotypes in fish. The intestinal microbiota plays an important role in carbohydrate degradation. Whether the intestinal bacteria could alleviate high-carbohydrate diet (HCD)-induced metabolic phenotypes in fish remains unknown. Here, a strain affiliated to Bacillus amyloliquefaciens was isolated from the intestine of Nile tilapia. A basal diet (CON), HCD or HCD supplemented with B. amy SS1 (HCB) was used to feed fish for 10 weeks. The beneficial effects of B. amy SS1 on weight gain and protein accumulation were observed. Fasting glucose and lipid deposition were decreased in the HCB group compared with the HCD group. High-throughput sequencing showed that the abundance of acetate-producing bacteria was increased in the HCB group relative to the HCD group. Gas chromatographic analysis indicated that the concentration of intestinal acetate was increased dramatically in the HCB group compared with that in the HCD group. Glucagon-like peptide-1 was also increased in the intestine and serum of the HCB group. Thus, fish were fed with HCD, HCD supplemented with sodium acetate at 900 mg/kg (HLA), 1800 mg/kg (HMA) or 3600 mg/kg (HHA) diet for 8 weeks, and the HMA and HHA groups mirrored the effects of B. amy SS1. This study revealed that B. amy SS1 could alleviate the metabolic phenotypes caused by HCD by enriching acetate-producing bacteria in fish intestines. Regulating the intestinal microbiota and their metabolites might represent a powerful strategy for fish nutrition modulation and health maintenance in future.
A 71-year-old man was admitted for gradually difficult walking for 3 years along with memory impairment and urinary incontinence for 1 year. At first, this patient just complained of weakness while walking and dizziness. He was treated for arterial hypertension; however, no relief was obtained. He experienced more difficulties in walking and initiating steps. Besides these symptoms, his memory and thinking ability declined. His wife found that he responded slowly with personality change from a talkative and considerative gentleman to a silent man with apathy. The patient often felt urinary urgency, sometimes with incontinence. It was considered as symptoms of prostate hypertrophy. He was referred to a neurologist and MRI reported some lacunar infarctions and brain atrophy (retrospectively, lateral ventricles enlargement already existed). His Mini-Mental State Examination (MMSE) score was 18 points. Lumbar puncture (LP) was performed and cerebrospinal fluid (CSF) results were normal. The patient was diagnosed as having vascular dementia, hypertension and treated with neuroprotective agents and antihypertensives. After hospitalization, his symptoms were temporarily and partially relieved. His MMSE score was improved to 24 points when he was discharged.