Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T05:12:13.288Z Has data issue: false hasContentIssue false

Combined Theodorsen and Sears theory: experimental validation and modification

Published online by Cambridge University Press:  30 April 2024

Li-Hao Feng*
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
Tong Wang
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
*
Email address for correspondence: lhfeng@buaa.edu.cn

Abstract

The response of airfoils to unsteady disturbances is a classic problem in the aerodynamics field. Many theoretical models have been proposed in the past to predict the unsteady aerodynamic forces of airfoils. However, these theories focused on individual airfoil motions or incoming flow disturbances, while the theoretical models for multiple disturbances still need to be developed. In this study, a theoretical model to predict the aerodynamic force of an oscillating airfoil encountering vertical gust is derived from a linear combination of Theodorsen's and Sears’ theories. Experimental investigations involving a two-dimensional pitching airfoil encountering a sinusoidal vertical gust are carried out to examine the proposed theory. It is found that the theory effectively captures the trends in the unsteady lift of airfoils subjected to dual disturbances. However, it tends to overestimate the lift amplitude. Notably, when a quasi-steady correction is applied to the theory, the prediction accuracy is greatly improved. The theory correction agrees well with experiment at small pitching frequencies, while deviations exist at higher pitching frequencies. The temporal evolution of the flow velocity reveals that the velocity disturbance induced by the coupled disturbance around the airfoil conforms to the linear superposition of the velocities induced by each individual disturbance, consistent with the prediction of the vortex sheet model. As the pitching frequency increases, significant nonlinear effects appear near the trailing edge of the airfoil, which may be one key factor for the disparities between the theoretical predictions and the experimental lift at higher pitching frequencies.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atassi, H.M. 1984 The Sears problem for a lifting airfoil revisited - new results. J. Fluid Mech. 141, 109122.CrossRefGoogle Scholar
Biler, H., Badrya, C. & Jones, A.R. 2019 Experimental and computational investigation of transverse gust encounters. AIAA J. 57 (11), 46084622.CrossRefGoogle Scholar
Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S. & Le Sant, Y. 2011 Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp. Fluids 50 (4), 11691182.CrossRefGoogle Scholar
Chiereghin, N., Cleaver, D.J. & Gursul, I. 2019 Unsteady lift and moment of a periodically plunging airfoil. AIAA J. 57 (1), 208222.CrossRefGoogle Scholar
Commerford, G.L. & Carta, F.O. 1974 Unsteady aerodynamic response of a two-dimensional airfoil at high reduced frequency. AIAA J. 12 (1), 4348.CrossRefGoogle Scholar
Cordes, U., Kampers, G., Meiner, T., Tropea, C., Peinke, J. & Hölling, M. 2017 Note on the limitations of the Theodorsen and Sears functions. J. Fluid Mech. 811, R1.CrossRefGoogle Scholar
Dowell, E.H. 2014 A Modern Course in Aeroelasticity, 5th edn. Springer.Google Scholar
Goldstein, M.E. & Atassi, H. 1976 A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust. J. Fluid Mech. 74 (4), 741765.CrossRefGoogle Scholar
Greenberg, J.M. 1947 Airfoil in sinusoidal motion in a pulsating stream. NACA Tech. Note 1326.Google Scholar
Hakkinen, R.J. & Richardson, A.S. 1957 Theoretical and experimental investigation of random gust loads part I: aerodynamic transfer function of a simple wing configuration in incompressible flow. NACA Tech. Note 3878.Google Scholar
He, X., Guo, Q., Xu, Y., Feng, L. & Wang, J.J. 2023 Aerodynamics and fluid–structure interaction of an airfoil with actively controlled flexible leeward surface. J. Fluid Mech. 954, A34.CrossRefGoogle Scholar
Jancauskas, E.D. & Melbourne, W.H. 1986 The aerodynamic admittance of two-dimensional rectangular section cylinders in smooth flow. J. Wind Engng Ind. Aerodyn. 23, 395408.CrossRefGoogle Scholar
Jones, A.R., Cetiner, O. & Smith, M.J. 2022 Physics and modeling of large flow disturbances: discrete gust encounters for modern air vehicles. Annu. Rev. Fluid Mech. 54 (1), 469493.CrossRefGoogle Scholar
Küssner, H.G. 1936 Zusammenfassender Bericht über den instationären Auftrieb von Flügeln. Luftfahrtforschung 13, 410424.Google Scholar
Lee, T. & Su, Y.Y. 2012 Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry. Exp. Fluids 53 (5), 11771190.CrossRefGoogle Scholar
Leishman, G.J. 2006 Principles of Helicopter Aerodynamics, 2nd edn. Cambridge University Press.Google Scholar
Li, Z.Y., Feng, L.H., Kissing, J., Tropea, C. & Wang, J.J. 2020 Experimental investigation on the leading-edge vortex formation and detachment mechanism of a pitching and plunging plate. J. Fluid Mech. 901, A17.CrossRefGoogle Scholar
Liu, L., He, G., He, X., Wang, Q. & Chen, L. 2021 Numerical study on the effects of a semi-free and non-uniform flexible filament in different vortex streets. Acta Mechanica Sin. 37, 929937.CrossRefGoogle Scholar
Lysak, P.D., Capone, D.E. & Jonson, M.L. 2013 Prediction of high frequency gust response with airfoil thickness effects. J. Fluids Struct. 39, 258274.CrossRefGoogle Scholar
Ma, R., Yang, Y., Li, M. & Li, Q. 2021 The unsteady lift of an oscillating airfoil encountering a sinusoidal streamwise gust. J. Fluid Mech. 908, A22.CrossRefGoogle Scholar
Mccroskey, W.J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14 (1), 285311.CrossRefGoogle Scholar
Mueller, T.J. 2001 Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. AIAA.CrossRefGoogle Scholar
Mulleners, K. & Raffel, M. 2013 Dynamic stall development. Exp. Fluids 54 (2), 1469.CrossRefGoogle Scholar
Ol, M.V., Bernal, L., Kang, C.K. & Shyy, W. 2009 Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp. Fluids 46 (5), 883901.CrossRefGoogle Scholar
Pan, C., Xue, D., Xu, Y., Wang, J.J. & Wei, R.J. 2015 Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci. China Phys. Mech. Astron. 58 (10), 104704.CrossRefGoogle Scholar
Platzer, M.F., Jones, K.D., Young, J. & Lai, J.C.S. 2008 Flapping wing aerodynamics: progress and challenges. AIAA J. 46 (9), 21362149.CrossRefGoogle Scholar
Quinn, D., Kress, D., Chang, E., Stein, A., Wegrzynski, M. & Lentink, D. 2019 How lovebirds maneuver through lateral gusts with minimal visual information. Proc. Natl Acad. Sci. 116 (30), 1503315041.CrossRefGoogle ScholarPubMed
Sears, W.R. 1938 A systematic presentation of the theory of thin airfoils in non-uniform motion. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
Sears, W.R. 1941 Some aspects of non-stationary airfoil theory and its practical application. J. Aeronaut. Sci. 8 (3), 104108.CrossRefGoogle Scholar
Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496.Google Scholar
Wagner, H. 1925 Über die Entstehung des dynamischen Auftriebes von Tragflügeln. Z. Angew. Math. Mech. 5 (1), 1735.CrossRefGoogle Scholar
Wang, T. & Feng, L.H. 2022 Characterization of vertical and longitudinal gusts generated by twin pitching airfoils. Phys. Fluids 34 (9), 097116.CrossRefGoogle Scholar
Wang, T., Feng, L.H. & Li, Z.Y. 2021 Effect of leading-edge protuberances on unsteady airfoil performance at low Reynolds number. Exp. Fluids 62 (10), 217.CrossRefGoogle Scholar
Wang, Y., He, X., He, G., Wang, Q., Chen, L. & Liu, X. 2022 Aerodynamic performance of the flexibility of corrugated dragonfly wings in flapping flight. Acta Mechanica Sin. 38 (11), 322038.CrossRefGoogle Scholar
Wang, S., Zhou, Y., Alam, M.M. & Yang, H. 2014 Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers. Phys. Fluids 26 (11), 115107.CrossRefGoogle Scholar
Watkins, S., Milbank, J., Loxton, B.J. & Melbourne, W.H. 2006 Atmospheric winds and their implications for microair vehicles. AIAA J. 44 (11), 25912600.CrossRefGoogle Scholar
Wei, N.J., Kissing, J., Wester, T.T.B., Wegt, S., Schiffmann, K., Jakirlic, S., Hölling, M., Peinke, J. & Tropea, C. 2019 Insights into the periodic gust response of airfoils. J. Fluid Mech. 876, 237263.CrossRefGoogle Scholar