We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Paromomyidae are one of several families of plesiadapiforms that flourished during the Paleocene in North America soon after the extinction of non-avian dinosaurs some 66 million years ago. Although they are often among the best-represented plesiadapiforms in mammalian faunas in both North America and Europe, the early history of paromomyids is poorly understood, and their fossil record at higher latitudes is comparatively depauperate. We report here on the discovery of two new species of paromomyids from Paleocene deposits in southwestern Alberta: Edworthia greggi new species is the second known species of the basal paromomyid Edworthia Fox, Scott, and Rankin, 2010 whereas Ignacius glenbowensis new species is among the most abundantly represented species of Ignacius Matthew and Granger, 1921. These new discoveries document, for the first time, parts of the upper dentition of Edworthia, and the new species of Ignacius represents the first new, pre-Clarkforkian species of the genus to be described in nearly 100 years. A comprehensive phylogenetic analysis of nearly all known paromomyid taxa (including the new species described herein) recovered both species of Edworthia near the base of the paromomyid tree in a polytomy with Paromomys depressidens Gidley, 1923 and a paraphyletic Ignacius. The new paromomyids from Alberta not only increase the known taxonomic diversity of Edworthia and Ignacius but also add significantly to knowledge of the dental anatomy of these poorly known genera and further add to a uniquely Canadian complement of Paleocene plesiadapiforms.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and
$S/N$
in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
Good quality parenting in early childhood is reliably associated with positive mental and physical health over the lifespan.
Objectives
The hypothesis that early parenting quality has significant long-term financial benefits has not been previously tested.
Methods
Design: Longitudinal study with follow-up from 2012 to 2016; UK multicentre study cohort. Participants: 174 young people drawn from 2 samples, one at moderate risk of poor outcomes and one at high risk, assessed aged 4–6 years then followed up in early adolescence (mean age 12.1 years). Measures: The primary outcome was total costs: health, social care, extra school support, out-of-home placements and family-born expenditure, determined through semistructured economic interviews. Early parenting quality was independently assessed through direct observation of parent–child interaction.
Results
Costs were lower for youths exposed to more sensitive parenting (most sensitive quartile mean £1,619, least sensitive quartile mean £21,763; p < .001). Costs were spread across personal family expenditure and education, health, social and justice services. The cost difference remained significant after controlling for several potential confounders. These included demographic variables (family poverty, parental education); exposure to child abuse; and child/young person variables including level of antisocial behaviour in both childhood and adolescence, IQ and attachment security.
Conclusions
This study is the first showing that more sensitive early parental care predicts lower costs to society many years later, independent of poverty, child and youth antisocial behaviour levels and IQ. The findings provide novel evidence for the public health impact of early caregiving quality and likely financial benefits of improving it.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
Increasing interest in three-dimensional nanostructures adds impetus to electron microscopy techniques capable of imaging at or below the nanoscale in three dimensions. We present a reconstruction algorithm that takes as input a focal series of four-dimensional scanning transmission electron microscopy (4D-STEM) data. We apply the approach to a lead iridate, Pb$_2$Ir$_2$O$_7$, and yttrium-stabilized zirconia, Y$_{0.095}$Zr$_{0.905}$O$_2$, heterostructure from data acquired with the specimen in a single plan-view orientation, with the epitaxial layers stacked along the beam direction. We demonstrate that Pb–Ir atomic columns are visible in the uppermost layers of the reconstructed volume. We compare this approach to the alternative techniques of depth sectioning using differential phase contrast scanning transmission electron microscopy (DPC-STEM) and multislice ptychographic reconstruction.
To determine the incidence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare personnel (HCP) and to assess occupational risks for SARS-CoV-2 infection.
Design:
Prospective cohort of healthcare personnel (HCP) followed for 6 months from May through December 2020.
Setting:
Large academic healthcare system including 4 hospitals and affiliated clinics in Atlanta, Georgia.
Participants:
HCP, including those with and without direct patient-care activities, working during the coronavirus disease 2019 (COVID-19) pandemic.
Methods:
Incident SARS-CoV-2 infections were determined through serologic testing for SARS-CoV-2 IgG at enrollment, at 3 months, and at 6 months. HCP completed monthly surveys regarding occupational activities. Multivariable logistic regression was used to identify occupational factors that increased the risk of SARS-CoV-2 infection.
Results:
Of the 304 evaluable HCP that were seronegative at enrollment, 26 (9%) seroconverted for SARS-CoV-2 IgG by 6 months. Overall, 219 participants (73%) self-identified as White race, 119 (40%) were nurses, and 121 (40%) worked on inpatient medical-surgical floors. In a multivariable analysis, HCP who identified as Black race were more likely to seroconvert than HCP who identified as White (odds ratio, 4.5; 95% confidence interval, 1.3–14.2). Increased risk for SARS-CoV-2 infection was not identified for any occupational activity, including spending >50% of a typical shift at a patient’s bedside, working in a COVID-19 unit, or performing or being present for aerosol-generating procedures (AGPs).
Conclusions:
In our study cohort of HCP working in an academic healthcare system, <10% had evidence of SARS-CoV-2 infection over 6 months. No specific occupational activities were identified as increasing risk for SARS-CoV-2 infection.
To describe the cumulative seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies during the coronavirus disease 2019 (COVID-19) pandemic among employees of a large pediatric healthcare system.
Design, setting, and participants:
Prospective observational cohort study open to adult employees at the Children’s Hospital of Philadelphia, conducted April 20–December 17, 2020.
Methods:
Employees were recruited starting with high-risk exposure groups, utilizing e-mails, flyers, and announcements at virtual town hall meetings. At baseline, 1 month, 2 months, and 6 months, participants reported occupational and community exposures and gave a blood sample for SARS-CoV-2 antibody measurement by enzyme-linked immunosorbent assays (ELISAs). A post hoc Cox proportional hazards regression model was performed to identify factors associated with increased risk for seropositivity.
Results:
In total, 1,740 employees were enrolled. At 6 months, the cumulative seroprevalence was 5.3%, which was below estimated community point seroprevalence. Seroprevalence was 5.8% among employees who provided direct care and was 3.4% among employees who did not perform direct patient care. Most participants who were seropositive at baseline remained positive at follow-up assessments. In a post hoc analysis, direct patient care (hazard ratio [HR], 1.95; 95% confidence interval [CI], 1.03–3.68), Black race (HR, 2.70; 95% CI, 1.24–5.87), and exposure to a confirmed case in a nonhealthcare setting (HR, 4.32; 95% CI, 2.71–6.88) were associated with statistically significant increased risk for seropositivity.
Conclusions:
Employee SARS-CoV-2 seroprevalence rates remained below the point-prevalence rates of the surrounding community. Provision of direct patient care, Black race, and exposure to a confirmed case in a nonhealthcare setting conferred increased risk. These data can inform occupational protection measures to maximize protection of employees within the workplace during future COVID-19 waves or other epidemics.
To estimate prior severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among skilled nursing facility (SNF) staff in the state of Georgia and to identify risk factors for seropositivity as of fall 2020.
Design:
Baseline survey and seroprevalence of the ongoing longitudinal Coronavirus 2019 (COVID-19) Prevention in Nursing Homes study.
Setting:
The study included 14 SNFs in the state of Georgia.
Participants:
In total, 792 SNF staff employed or contracted with participating SNFs were included in this study. The analysis included 749 participants with SARS-CoV-2 serostatus results who provided age, sex, and complete survey information.
Methods:
We estimated unadjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for potential risk factors and SARS-CoV-2 serostatus. We estimated adjusted ORs using a logistic regression model including age, sex, community case rate, SNF resident infection rate, working at other facilities, and job role.
Results:
Staff working in high-infection SNFs were twice as likely (unadjusted OR, 2.08; 95% CI, 1.45–3.00) to be seropositive as those in low-infection SNFs. Certified nursing assistants and nurses were 3 times more likely to be seropositive than administrative, pharmacy, or nonresident care staff: unadjusted OR, 2.93 (95% CI, 1.58–5.78) and unadjusted OR, 3.08 (95% CI, 1.66–6.07). Logistic regression yielded similar adjusted ORs.
Conclusions:
Working at high-infection SNFs was a risk factor for SARS-CoV-2 seropositivity. Even after accounting for resident infections, certified nursing assistants and nurses had a 3-fold higher risk of SARS-CoV-2 seropositivity than nonclinical staff. This knowledge can guide prioritized implementation of safer ways for caregivers to provide necessary care to SNF residents.
The discovery of wake bistability has generated an upsurge in experimental investigations into the wakes of simplified vehicle geometries. Particular focus has centred on the probabilistic switching between two asymmetrical bistable wake states of a square-back Ahmed body; however, the majority of this research has been undertaken in wind tunnels with turbulence intensities of less than $1\,\%$, considerably lower than typical atmospheric levels. To better simulate bistability under on-road conditions, in which turbulence intensities can easily reach levels of $10\,\%$ or more, this experimental study investigates the effects of free-stream turbulence on the bistability characteristics of the square-back Ahmed body. Through passive generation and quantification of the free-stream turbulent conditions, a monotonic correlation was found between the switching rate and free-stream turbulence intensity.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
Due to the important roles of resistance training and protein consumption in the prevention and treatment of sarcopenia, we assessed the efficacy of post-exercise Icelandic yogurt consumption on lean mass, strength and skeletal muscle regulatory factors in healthy untrained older males. Thirty healthy untrained older males (age = 68 ± 4 years) were randomly assigned to Icelandic yogurt (IR; n 15, 18 g of protein) or an iso-energetic placebo (PR; n 15, 0 g protein) immediately following resistance training (3×/week) for 8 weeks. Before and after training, lean mass, strength and skeletal muscle regulatory factors (insulin-like growth factor-1 (IGF-1), transforming growth factor-beta 1 (TGF-β1), growth differentiation factor 15 (GDF15), Activin A, myostatin (MST) and follistatin (FST)) were assessed. There were group × time interactions (P < 0·05) for body mass (IR: Δ 1, PR: Δ 0·7 kg), BMI (IR: Δ 0·3, PR: Δ 0·2 kg/m2), lean mass (IR: Δ 1·3, PR: Δ 0·6 kg), bench press (IR: Δ 4, PR: 2·3 kg), leg press (IR: Δ 4·2, PR: Δ 2·5 kg), IGF-1 (IR: Δ 0·5, Δ PR: 0·1 ng/ml), TGF-β (IR: Δ − 0·2, PR: Δ − 0·1 ng/ml), GDF15 (IR: Δ − 10·3, PR: Δ − 4·8 pg/ml), Activin A (IR: Δ − 9·8, PR: Δ − 2·9 pg/ml), MST (IR: Δ − 0·1, PR: Δ − 0·04 ng/ml) and FST (IR: Δ 0·09, PR: Δ 0·03 ng/ml), with Icelandic yogurt consumption resulting in greater changes compared with placebo. The addition of Icelandic yogurt consumption to a resistance training programme improved lean mass, strength and altered skeletal muscle regulatory factors in healthy untrained older males compared with placebo. Therefore, Icelandic yogurt as a nutrient-dense source and cost-effective supplement enhances muscular gains mediated by resistance training and consequently may be used as a strategy for the prevention of sarcopenia.
Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties. However, extracting this information requires complex analysis pipelines that include data wrangling, calibration, analysis, and visualization, all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written in the Python language and released with an open-source license. We describe the algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail and present results from several experimental datasets. We also implement a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open-source HDF5 standard. We hope this tool will benefit the research community and help improve the standards for data and computational methods in electron microscopy, and we invite the community to contribute to this ongoing project.
The analysis presented here was motivated by an objective of describing the interactions between the physical and biological processes governing the responses of tidal wetlands to rising sea level and the ensuing equilibrium elevation. We define equilibrium here as meaning that the elevation of the vegetated surface relative to mean sea level (MSL) remains within the vertical range of tolerance of the vegetation on decadal time scales or longer. The equilibrium is dynamic, and constantly responding to short-term changes in hydrodynamics, sediment supply, and primary productivity. For equilibrium to occur, the magnitude of vertical accretion must be great enough to compensate for change in the rate of sea-level rise (SLR). SLR is defined here as meaning the local rate relative to a benchmark, typically a gauge. Equilibrium is not a given, and SLR can exceed the capacity of a wetland to accrete vertically.
Among 353 healthcare personnel in a longitudinal cohort in 4 hospitals in Atlanta, Georgia (May–June 2020), 23 (6.5%) had severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies. Spending >50% of a typical shift at the bedside (OR, 3.4; 95% CI, 1.2–10.5) and black race (OR, 8.4; 95% CI, 2.7–27.4) were associated with SARS-CoV-2 seropositivity.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
This is the first report on the association between trauma exposure and depression from the Advancing Understanding of RecOvery afteR traumA(AURORA) multisite longitudinal study of adverse post-traumatic neuropsychiatric sequelae (APNS) among participants seeking emergency department (ED) treatment in the aftermath of a traumatic life experience.
Methods
We focus on participants presenting at EDs after a motor vehicle collision (MVC), which characterizes most AURORA participants, and examine associations of participant socio-demographics and MVC characteristics with 8-week depression as mediated through peritraumatic symptoms and 2-week depression.
Results
Eight-week depression prevalence was relatively high (27.8%) and associated with several MVC characteristics (being passenger v. driver; injuries to other people). Peritraumatic distress was associated with 2-week but not 8-week depression. Most of these associations held when controlling for peritraumatic symptoms and, to a lesser degree, depressive symptoms at 2-weeks post-trauma.
Conclusions
These observations, coupled with substantial variation in the relative strength of the mediating pathways across predictors, raises the possibility of diverse and potentially complex underlying biological and psychological processes that remain to be elucidated in more in-depth analyses of the rich and evolving AURORA database to find new targets for intervention and new tools for risk-based stratification following trauma exposure.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$ T), compact ($R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of $H_{98,y2} = 1$, SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$ keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
Lack of judicious testing can result in the incorrect diagnosis of Clostridioides difficile infection (CDI), unnecessary CDI treatment, increased costs and falsely augmented hospital-acquired infection (HAI) rates. We evaluated facility-wide interventions used at the VA San Diego Healthcare System (VASDHS) to reduce healthcare-onset, healthcare-facility–associated CDI (HO-HCFA CDI), including the use of diagnostic stewardship with test ordering criteria.
Design:
We conducted a retrospective study to assess the effectiveness of measures implemented to reduce the rate of HO-HCFA CDI at the VASDHS from fiscal year (FY)2015 to FY2018.
Interventions:
Measures executed in a stepwise fashion included a hand hygiene initiative, prompt isolation of CDI patients, enhanced terminal room cleaning, reduction of fluoroquinolone and proton-pump inhibitor use, laboratory rejection of solid stool samples, and lastly diagnostic stewardship with C. difficile toxin B gene nucleic acid amplification testing (NAAT) criteria instituted in FY2018.
Results:
From FY2015 to FY2018, 127 cases of HO-HCFA CDI were identified. All rate-reducing initiatives resulted in decreased HO-HCFA cases (from 44 to 13; P ≤ .05). However, the number of HO-HCFA cases (34 to 13; P ≤ .05), potential false-positive testing associated with colonization and laxative use (from 11 to 4), hospital days (from 596 to 332), CDI-related hospitalization costs (from $2,780,681 to $1,534,190) and treatment cost (from $7,158 vs $1,476) decreased substantially following the introduction of diagnostic stewardship with test criteria from FY2017 to FY2018.
Conclusions:
Initiatives to decrease risk for CDI and diagnostic stewardship of C. difficile stool NAAT significantly reduced HO-HCFA CDI rates, detection of potential false-positives associated with laxative use, and lowered healthcare costs. Diagnostic stewardship itself had the most dramatic impact on outcomes observed and served as an effective tool in reducing HO-HCFA CDI rates.