We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
A compact coplanar waveguide-fed monopole antenna is presented in this paper. The proposed antenna is composed of three monopole branches. In order to achieve the miniaturization, the longest branch was bent. The antenna is printed on an FR4 dielectric substrate, having a compact size of 0.144λ0 × 0.105λ0 × 0.003λ0 at its lowest resonant frequency of 900 MHz. The multiband antenna covers five frequency bands: 820–990 MHz, 1.87–2.08 GHz, 2.37–2.93 GHz, 3.98–4.27 GHz, and 5.47–8.9 GHz, which covers the entire radio frequency identification bands (860–960 MHz, 2.4–2.48 GHz, and 5.725–5.875 GHz), Global System for Mobile Communications (GSM) bands (890–960 MHz and 1.850–1.990 GHz), WLAN bands (2.4–2.484 GHz and 5.725–5.825 GHz), WiMAX band (2.5–2.69 GHz), X-band satellite communication systems (7.25–7.75 GHz and 7.9–8.4 GHz), and sub 6 GHz in 5G mobile communication system (3.3–4.2 GHz and 4.4–5.0 GHz). Also, the antenna has good radiation characteristics in the operating band, which is nearly omnidirectional. Both the simulated and experimental results are presented and compared and a good agreement is established. The proposed antenna operates in five frequency bands with high gain and good radiation characteristics, which make it a suitable candidate in terminal devices with multiple communication standards.
The coronavirus disease 2019 (COVID-19) pandemic is a major threat to the public. However, the comprehensive profile of suicidal ideation among the general population has not been systematically investigated in a large sample in the age of COVID-19.
Methods
A national online cross-sectional survey was conducted between February 28, 2020 and March 11, 2020 in a representative sample of Chinese adults aged 18 years and older. Suicidal ideation was assessed using item 9 of the Patient Health Questionnaire-9. The prevalence of suicidal ideation and its risk factors was evaluated.
Results
A total of 56,679 participants (27,149 males and 29,530 females) were included. The overall prevalence of suicidal ideation was 16.4%, including 10.9% seldom, 4.1% often, and 1.4% always suicidal ideation. The prevalence of suicidal ideation was higher in males (19.1%) and individuals aged 18–24 years (24.7%) than in females (14.0%) and those aged 45 years and older (11.9%). Suicidal ideation was more prevalent in individuals with suspected or confirmed infection (63.0%), frontline workers (19.2%), and people with pre-existing mental disorders (41.6%). Experience of quarantine, unemployed, and increased psychological stress during the pandemic were associated with an increased risk of suicidal ideation and its severity. However, paying more attention to and gaining a better understanding of COVID-19-related knowledge, especially information about psychological interventions, could reduce the risk.
Conclusions
The estimated prevalence of suicidal ideation among the general population in China during COVID-19 was significant. The findings will be important for improving suicide prevention strategies during COVID-19.
The upsurge in the number of people affected by the COVID-19 is likely to lead to increased rates of emotional trauma and mental illnesses. This article systematically reviewed the available data on the benefits of interventions to reduce adverse mental health sequelae of infectious disease outbreaks, and to offer guidance for mental health service responses to infectious disease pandemic. PubMed, Web of Science, Embase, PsycINFO, WHO Global Research Database on infectious disease, and the preprint server medRxiv were searched. Of 4278 reports identified, 32 were included in this review. Most articles of psychological interventions were implemented to address the impact of COVID-19 pandemic, followed by Ebola, SARS, and MERS for multiple vulnerable populations. Increasing mental health literacy of the public is vital to prevent the mental health crisis under the COVID-19 pandemic. Group-based cognitive behavioral therapy, psychological first aid, community-based psychosocial arts program, and other culturally adapted interventions were reported as being effective against the mental health impacts of COVID-19, Ebola, and SARS. Culturally-adapted, cost-effective, and accessible strategies integrated into the public health emergency response and established medical systems at the local and national levels are likely to be an effective option to enhance mental health response capacity for the current and for future infectious disease outbreaks. Tele-mental healthcare services were key central components of stepped care for both infectious disease outbreak management and routine support; however, the usefulness and limitations of remote health delivery should also be recognized.
To evaluate the effects of gestational weight gain (GWG) in the first trimester (GWG-F) and the rate of gestational weight gain in the second trimester (RGWG-S) on gestational diabetes mellitus (GDM), exploring the optimal GWG ranges for the avoidance of GDM in Chinese women.
Design:
A population-based prospective study was conducted. Gestational weight was measured regularly in every antenatal visit and assessed by the Institute of Medicine (IOM) criteria (2009). GDM was assessed with the 75-g, 2-h oral glucose tolerance test at 24–28 weeks of gestation. Multivariable logistic regression was performed to assess the effects of GWG-F and RGWG-S on GDM, stratified by pre-pregnancy BMI. In each BMI category, the GWG values corresponding to the lowest prevalence of GDM were defined as the optimal GWG range.
Setting:
Southwest China.
Participants:
Pregnant women (n 1910) in 2017.
Results:
After adjusting for confounders, GWG-F above IOM recommendations increased the risk of GDM (OR; 95 % CI) among underweight (2·500; 1·106, 5·655), normal-weight (1·396; 1·023, 1·906) and overweight/obese women (3·017; 1·118, 8·138) compared with women within IOM recommendations. No significant difference was observed between RGWG-S and GDM (P > 0·05) after adjusting for GWG-F based on the previous model. The optimal GWG-F ranges for the avoidance of GDM were 0·8–1·2, 0·8–1·2 and 0·35–0·70 kg for underweight, normal-weight and overweight/obese women, respectively.
Conclusions:
Excessive GWG in the first trimester, rather than the second trimester, is associated with increased risk of GDM regardless of pre-pregnancy BMI. Obstetricians should provide more pre-emptive guidance in achieving adequate GWG-F.
The Ordovician–Silurian (O–S) transition was a critical interval in geological history. Multiple geochemical methods are used to explore the changes in oceanic environment. The Nd isotopic compositions in the Yangtze Sea are controlled by two sources: the continental erosion and the Panthalassa Ocean. High εNd(t) values during the Katian, late Hirnantian and Rhuddanian intervals are associated with the high sea level, which resulted in less terrestrial input based on the low Ti/Al and Zr/Al ratios. In contrast, low εNd(t) values during the early Hirnantian interval are related to the sea-level fall; in this case, the exposure of submarine highs and the growth of Yangtze Oldlands could lead to more continental materials being transported into the Yangtze Sea based on high Ti/Al and Zr/Al ratios. In addition, the negative εNd(t) excursion can also be attributed to the weak circulation between the Yangtze Sea and Panthalassa Ocean when sea level was low. Furthermore, the sea-level eustacy plays a significant role in the changes in redox water conditions. The redox indices, mainly UEF, Ce/Ce* and Corg/PT, across the O–S transition show a predominance of anoxic ocean over the Yangtze Sea during the Katian, late Hirnantian and Rhuddanian intervals, and an oxygenated episode was briefly introduced during the early Hirnantian period because of the fall in sea level. The Late Ordovician biotic crisis was marked by two-phase extinction events, and the change in sea level and redox chemistry may be the important kill mechanisms.
Since the late 1990s, hand, foot and mouth disease (HFMD) has become a common health problem that mostly affects children and infants in Southeast and East Asia. Global climate change is considered to be one of the major risk factors for HFMD. This study aimed to assess the correlation between meteorological factors and HFMD in the Asia-Pacific region. PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang Data and Weipu Database were searched to identify relevant articles published before May 2018. Data were collected and analysed using R software. We searched 2397 articles and identified 51 eligible papers in this study. The present study included eight meteorological factors; mean temperature, mean highest temperature, mean lowest temperature, rainfall, relative humidity and hours of sunshine were positively correlated with HFMD, with correlation coefficients (CORs) of 0.52 (95% confidence interval (CI) 0.42–0.60), 0.43 (95% CI 0.23–0.59), 0.43 (95% CI 0.23–0.60), 0.27 (95% CI 0.19–0.35), 0.19 (95% CI 0.02–0.35) and 0.19 (95% CI 0.11–0.27), respectively. There were sufficient data to support a negative correlation between mean pressure and HFMD (COR = −0.51, 95% CI −0.63 to −0.36). There was no notable correlation with wind speed (COR = 0.10, 95% CI −0.03 to 0.23). Our findings suggest that meteorological factors affect the incidence of HFMD to a certain extent.
The number of elderly individuals living in China is increasing rapidly. The aim of this study was to examine the potential risk factors of geriatric depression in rural areas.
Methods:
A repeated cross-sectional study was conducted between January 2015 and October 2016 in rural China. Nine hundred forty-five elderly individuals were included in both investigations. A generalized estimating equation (GEE) was used to examine the relationships between geriatric depression and socio-demographics, the number of chronic diseases, ADL (Activity of Daily Living) disability, cognitive impairment, and anxiety.
Results:
Among the participants, the majority was female (61.4%) and illiterate (81.5%) and had a general economic status (63.0%) and more than two kinds of chronic diseases (62.9%). The bivariate analysis indicated that geriatric depression was associated with social support, education level, economic status, ADL disability, anxiety disorders, and cognitive impairment at both survey time points. The GEE results showed that poor economic status (OR = 8.294, p < 0.001), the presence of more than two chronic diseases (OR = 1.681, p = 0.048), ADL disability (OR = 2.184, p < 0.001), cognitive impairment (OR = 1.921, p < 0.001), and anxiety (OR = 5.434, p < 0.001) were risk factors for geriatric depression in rural China; better social support (OR = 0.924, 95% CI = 0.899–0.949, p < 0.001) was found to be a protective factor.
Conclusions:
Geriatric depression in rural China was associated with several socio-demographic, physical, and mental factors. Targeted interventions are essential to improve the psychological health of aged individuals in rural China.
Erection planning in shipbuilding is a highly complex process. When a process change happens for some reason, it is often difficult to identify how many factors are affected and estimate how sensitive these factors can be. To optimize the planning and replanning of the shipbuilding plan for the best production performance, a data-driven approach for shipbuilding erection planning is proposed, which is composed of an erection plan model, identification of major factors related to the erection plan, and a data-driven algorithm to apply shipbuilding operation data for creating plans and forecasting, for plan adjustment, future availabilities of shipyard resources including machines, equipment, and man power. Through data clustering, the relevant factors are identified as a result of plan change, and critical equipment health management is carried out through data-driven anomaly detection. A case study is implemented, and the result shows that the proposed data-driven method is able to reschedule the shipbuilding plans smoothly.
The Nihewan Basin is a key region for studying the Palaeolithic archaeology of East Asia. However, because of the lack of suitable dating methods and representative lithic technologies in this region, the ‘Middle Palaeolithic’ sites in this basin have been designated based mainly on stratigraphic correlation, which may be unreliable. In this study, three Palaeolithic sites, Motianling, Queergou and Banjingzi, which have been assigned previously to the ‘Middle Palaeolithic’, are dated based on luminescence dating of K-feldspar grains. Our results show that the cultural layers at Motianling, Queergou and Banjingzi have ages of 315 ± 13, 268 ± 13 and 86 ± 4 ka (corresponding to Marine Isotope Stages 9, 8 and 5), respectively, suggesting that Motianling and Queergou should be assigned to the Lower Palaeolithic, while the age of Banjingzi is consistent with a Middle Palaeolithic attribution. Our results suggest that reassessing the age of ‘Middle Palaeolithic’ sites in the Nihewan Basin, and elsewhere in North China, is crucial for understanding the presence or absence of the Middle Palaeolithic phase in China. Our dating results also indicate that the Sanggan River developed sometime between about 270 and 86 ka ago.
Ordered mesoporous carbons (OMCs) are appealing alternatives to conventional porous activated carbon applied to electronic energy storage and conversion devices. Nitrogen-doped OMC (NOMC) was prepared with a soft-template strategy directly using task-specific ionic liquid with dicyanamide anion as the nitrogen dopant, and utilized as supercapacitors for the first time. Compared with pristine OMC, NOMC showed excellent electrochemical capacitive behavior in 6 M KOH electrolyte. NOMC possessed a high specific capacitance of 427 F/g at a current density of 1 A/g and exhibited a stable cycle life (almost 98% retained at a current density of 5 A/g after 2000 cycles). The outstanding capacitive performance of NOMC was ascribed to the synergetic effects of its bimodal mesoporous structure, large specific surface area (1919 m2/g), and nitrogen doping (3.52 wt%), which help to accelerate the ion diffusion, increase the surface charge storage, and intensify pseudo-capacitive reactions.
In this paper, the recent studies of laboratory astrophysics with strong magnetic fields in China have been reviewed. On the Shenguang-II laser facility of the National Laboratory on High-Power Lasers and Physics, a laser-driven strong magnetic field up to 200 T has been achieved. The experiment was performed to model the interaction of solar wind with dayside magnetosphere. Also the low beta plasma magnetic reconnection (MR) has been studied. Theoretically, the model has been developed to deal with the atomic structures and processes in strong magnetic field. Also the study of shock wave generation in the magnetized counter-streaming plasmas is introduced.
In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.
A novel path planner is presented for the local path planning of a single robot (represented with R) in a complicated dynamic environment. Here a series of attractive points are computed based on attractive segments for guiding R to move along a shorter path. Each attractive segment is obtained by using the full environmental knowledge and will be used for several sampling times in general. A motion controller, which is designed based on artificial moments and a robot model that has a principal motion direction line(PMDline), makes R move closely to attractive points while away from obstacles. Attractive and repulsive moments are designed, which only make R's PMDline face toward attractive points and opposite to obstacles in general, as in most cases, R will move along its PMDline with its full speed. Because of the guidance of attractive points and R's full-speed motion, the global convergence is guaranteed. Simulations indicate that the proposed path planner meets the requirements of real-time property while can optimize R's traveling path.
Protein tyrosine phosphatase 1B (PTP1B) is implicated in the negative regulation of the insulin signalling pathway by dephosphorylating the insulin receptor (IR) and IR substrates. Ganodermalucidum has traditionally been used for the treatment of diabetes in Chinese medicine; however, its anti-diabetic potency and mechanism in vivo is still unclear. Our previously published study reported a novel proteoglycan PTP1B inhibitor, named Fudan-Yueyang-Ganoderma lucidum (FYGL) from G. lucidum, with a half-maximal inhibitory concentration (IC50) value of 5·12 (sem 0·05) μg/ml, a protein:polyglycan ratio of 17:77 and 78 % glucose in polysaccharide, and dominant amino acid residues of aspartic acid, glycine, glutamic acid, alanine, serine and threonine in protein. FYGL is capable of decreasing plasma glucose in streptozotocin-induced diabetic mice with a high safety of median lethal dose (LD50) of 6 g/kg. In the present study, C57BL/6 db/db diabetic mice were trialed further using FYGL as well as metformin for comparison. Oral treatment with FYGL in db/db diabetic mice for 4 weeks significantly (P < 0·01 or 0·05) decreased the fasting plasma glucose level, serum insulin concentration and the homeostasis model assessment of insulin resistance. FYGL also controlled the biochemistry indices relative to type 2 diabetes-accompanied lipidaemic disorders. Pharmacology research suggests that FYGL decreases the plasma glucose level by the mechanism of inhibiting PTP1B expression and activity, consequently, regulating the tyrosine phosphorylation level of the IR β-subunit and the level of hepatic glycogen, thus resulting in the improvement of insulin sensitivity. Therefore, FYGL is promising as an insulin sensitiser for the therapy of type 2 diabetes and accompanied dyslipidaemia.
Vinpocetine has long been used for cerebrovascular disorders and cognitive impairment. Based on the evidence that the translocator protein (TSPO, 18 kDa) was expressed in activated microglia, while Vinpocetine was able to bind TSPO, we explored the role of Vinpocetine on microglia treated with lipopolysaccharide (LPS) and oxygen–glucose deprivation (OGD) in vitro. Our results show that both LPS and OGD induced the up-regulation of TSPO expression on BV-2 microglia by RT-PCR, western blot and immunocytochemistry. Vinpocetine inhibited the production of nitrite oxide and inflammatory factors such as interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-α (TNF-α) in BV-2 microglia, in which cells were treated with LPS or exposed to OGD, regardless of the time Vinpocetine was added. Next, we measured cell death-related molecules Akt, Junk and p38 as well as inflammation-related molecules nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). Vinpocetine did not change cell death-related molecules, but inhibited the expression of NF-κB and AP-1 in LPS-stimulated microglia, indicating that Vinpocetine has an anti-inflammatory effect by partly targeting NF-κB/AP-1. Next, conditioned medium from Vinpocetine-treated microglia protected from primary neurons. As compared with in vitro, the administration of Vinpocetine in hypoxic mice also inhibited inflammatory molecules, indicating that Vinpocetine as a unique anti-inflammatory agent may be beneficial for the treatment of neuroinflammatory diseases.
In this paper, the ion jet generation from the interaction of an ultraintense laser pulse and a rear-side concave target is investigated analytically using a simple fluid model. We find that the ion expanding surface at the rear-side is distorted due to a strong charge-separation field, and that this distortion becomes dramatic with a singular cusp shown on the central axis at a critical time. The variation of the transverse ion velocity and the relative ion density diverge on the cusp, signaling the emergence of an on-axis ion jet. We have obtained analytical expressions for the critical time and the maximum velocity of the ion jet, and suggested an optimum shape for generating a collimated energetic ion jet. The above theoretical analysis has been verified by particle-in-cell (PIC) numerical simulations.
In this paper, a new type of generalised convexity—semilocal E-convexity is introduced by combining the concepts of the semi-E-convexity in X.S. Chen [J. Math. Anal. Appl. 275(2002), 251–262] and semilocal convexity in G.M. Ewing [SIAM. Rev. 19(1977), 202–220], and some of its basic characters are discussed. By utilising the new concepts, we derive some optimality conditions and establish some duality results for the inequality constrained optimisation problem.
The ion-beam-sputtered polycrystalline SiGe film and its doping properties have been studied. Boron and phosphorus have been doped into the sputtered poly-SiGe film by ion implantation and diffusion. To activate the implanted impurities, both rapid thermal annealing and fiirnace annealing have been used. The electrical measurements show that boron and plhosphorus can be doped into sputtered SiGe films and effectively activated by both ion implantation with post-annealing and diffiision. Hall mobilities as high as 31 cm2/V-s and 20 cm2/V.s have been obtained in B-difflhsed and P-diffused SiGe films, respectively. The x-ray diffraction spectra of the sputtered Sifie filhn show its typical polycrystalline structure with (111), (220) and (311) as the preferential orientations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.