We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The pandemic caused by severe acute respiratory syndrome coronavirus 2 is sweeping the world, threatening millions of lives and drastically altering our ways of living. According to current studies, failure to either activate or eliminate inflammatory responses timely and properly at certain stages could result in the progression of the disease. In other words, robust immune responses to coronavirus disease 2019 (COVID-19) are critical. However, they do not theoretically present in some special groups of people, including the young, the aged, patients with autoimmunity or cancer. Differences also do occur between men and women. Our immune system evolves to ensure delicate coordination at different stages of life. The innate immune cells mainly consisted of myeloid lineage cells, including neutrophils, basophils, eosinophils, dendritic cells and mast cells; they possess phagocytic capacity to different degrees at different stages of life. They are firstly recruited upon infection and may activate the adaptive immunity when needed. The adaptive immune cells, on the other way, are comprised mainly of lymphoid lineages. As one grows up, the adaptive immunity matures and expands its memory repertoire, accompanied by an adjustment in quantity and quality. In this review, we would summarise and analyse the immunological characteristics of these groups from the perspective of the immune system ‘evolution’ as well as ‘revolution’ that has been studied and speculated so far, which would aid the comprehensive understanding of COVID-19 and personalised-treatment strategy.
The aim of this study was to evaluate the association between prenatal and neonatal period exposures and the risk of childhood and adolescent nasopharyngeal carcinoma (NPC). From January 2009 to January 2016, a total of 46 patients with childhood and adolescent NPC (i.e., less than 18 years of age) who were treated at Sun Yat-sen University Cancer Center were screened as cases, and a total of 45 cancer-free patients who were treated at Sun Yat-sen University Zhongshan Ophthalmic Center were selected as controls. The association between maternal exposures during pregnancy and obstetric variables and the risk of childhood and adolescent NPC was evaluated using logistic regression analysis. Univariate analysis revealed that compared to children and adolescents without a family history of cancer, those with a family history of cancer had a significantly higher risk of childhood and adolescent NPC [odds ratios (OR) = 3.15, 95% confidence interval (CI) = 1.02–9.75, P = 0.046], and the maternal use of folic acid and/or multivitamins during pregnancy was associated with a reduced risk of childhood and adolescent NPC in the offspring (OR = 0.07, 95% CI = 0.02–0.25, P < 0.001). After multivariate analysis, only the maternal use of folic acid and/or multivitamins during pregnancy remained statistically significant. These findings suggest that maternal consumption of folic acid and/or multivitamins during pregnancy is associated with a decreased risk of childhood and adolescent NPC in the offspring.
In this paper we study a normalized anisotropic Gauss curvature flow of strictly convex, closed hypersurfaces in the Euclidean space. We prove that the flow exists for all time and converges smoothly to the unique, strictly convex solution of a Monge-Ampère type equation and we obtain a new existence result of solutions to the Dual Orlicz-Minkowski problem for smooth measures, especially for even smooth measures.
Geopolymers can be transformed into zeolites under certain synthesis conditions. However, zeolite formation is not frequently reported in KOH-activated geopolymers. This study attempted to explore zeolite synthesis through geopolymerization for a curing time of 24 h using mixed NaOH/KOH alkaline solution as an activator, and then applying the geopolymer-supported zeolites to immobilize Cd(II) in paddy soil. The K2O/M2O–H2O/SiO2 and K2O/M2O–OH–/SiO2 binary zeolite crystallization phase diagrams were obtained. Zeolite A, faujasite and sodalite formed at lower K2O/M2O molar ratios (0–0.2), ferrierite formation was favoured at a K2O/M2O molar ratio of 0.2–0.4 and zeolite K-I and zeolite F-K (both K-zeolites) were observed at a K2O/M2O molar ratio of 0.6. The geopolymer-supported zeolites had micropores and mesopores and specific surface area values of 44.2–74.8 m2 g–1. The material displayed a considerable Cd(II) immobilization efficiency (55.6–58.7% at 4–6 wt.% addition of zeolite).
Echinococcus granulosus sensu lato has complex defence mechanisms that protect it from the anti-parasitic immune response for long periods. Echinococcus granulosus cyst fluid (EgCF) is involved in the immune escape. Nevertheless, whether and how EgCF modulates the inflammatory response in macrophages remains poorly understood. Here, real-time polymerase chain reaction and enzyme-linked immunosorbent assay revealed that EgCF could markedly attenuate the lipopolysaccharide (LPS)-induced production of pro-inflammatory factors including tumour necrosis factor-α, interleukin (IL)-12 and IL-6 but increase the expression of IL-10 at mRNA and protein levels in mouse peritoneal macrophages and RAW 264.7 cells. Mechanically, western blotting and immunofluorescence assay showed that EgCF abolished the activation of nuclear factor (NF)-κB p65, p38 mitogen-activated protein kinase (MAPK) and ERK1/2 signalling pathways by LPS stimulation in mouse macrophages. EgCF's anti-inflammatory role was at least partly contributed by promoting proteasomal degradation of the critical adaptor TRAF6. Moreover, the EgCF-promoted anti-inflammatory response and TRAF6 proteasomal degradation were conserved in human THP-1 macrophages. These findings collectively reveal a novel mechanism by which EgCF suppresses inflammatory responses by inhibiting TRAF6 and the downstream activation of NF-κB and MAPK signalling in both human and mouse macrophages, providing new insights into the molecular mechanisms underlying the E. granulosus-induced immune evasion.
We investigated the effects of botulinum toxin on gait in Parkinson’s disease (PD) patients with foot dystonia. Six patients underwent onabotulinum toxin A injection and were assessed by Burke–Fahn–Marsden Dystonia Rating Scale (BFMDRS), visual analog scale (VAS) of pain, Timed Up and Go (TUG), Berg Balance Test (BBT), and 3D gait analysis at baseline, 1 month, and 3 months. BFMDRS (p = 0.002), VAS (p = 0.024), TUG (p = 0.028), and BBT (p = 0.034) were improved. Foot pressures at Toe 1 (p = 0.028) and Midfoot (p = 0.018) were reduced, indicating botulinum toxin’s effects in alleviating the dystonia severity and pain and improving foot pressures during walking in PD.
The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.
A novel g-C3N4 nanoparticle@porous g-C3N4 (CNNP@PCN) composite has been successfully fabricated by loading g-C3N4 nanoparticles on the porous g-C3N4 matrix via a simply electrostatic self-assembly method. The composition, morphological structure, optical property, and photocatalytic performance of the composite were evaluated by various measurements, including XRD, SEM, TEM, Zeta potential, DRS, PL, FTIR, and XPS. The results prove that the nanolization of g-C3N4 leads to an apparent blueshift of the absorption edge, and the energy band gap is increased from 2.84 eV of porous g-C3N4 to 3.40 eV of g-C3N4 nanoparticle (Fig. 6). Moreover, the valence band position of the g-C3N4 nanoparticle is about 0.7 eV lower than that of porous g-C3N4. Therefore, the photo-generated holes and electrons in porous g-C3N4 can transfer to the conduction band of g-C3N4 nanoparticle, thereby obtaining higher separation efficiency of photo-generated carriers as well as longer carrier lifetime. Under visible-light irradiation, 6CNNP@PCN exhibits the highest photocatalytic performance (Fig. 8) on MB, which is approximately 3.4 times as that of bulk g-C3N4.
The experimental study on thermocapillary convection in liquid bridges of large Prandtl number has been carried out on Tiangong-2 in space. The purpose of these experiments is to study the oscillation instability of thermocapillary convection, and to discover and recognize the mechanism of destabilization of thermocapillary convection in the microgravity environment in space. In this paper, the geometry of a half-floating-zone liquid bridge is featured by the aspect ratio Ar and volume ratio Vr, and its influence on critical conditions of oscillatory thermocapillary convection is studied. More than 700 sets of space experiments have been finished. The critical conditions and oscillation characteristics of thermocapillary convection instability in the Ar–Vr parameter space have been fully obtained under microgravity conditions for the first time. It is found that the Ar–Vr parameter space can be divided into two regions of different critical conditions and oscillation characteristics: the region of low frequency oscillation, and the region of high frequency oscillation. More importantly, we obtain the complete configuration of these two stability neutral curves, and find that the low frequency mode is a ‘’ type curve. Based on this, we discuss the influence of heating rate on the oscillation mode. It is found that the heating rate affects the selection of critical mode, which results in a jump change of critical temperature difference. The findings of this study are helpful to better understand the critical modes and transition processes of thermocapillary convection in liquid bridges with different configurations.
This mini review summarizes recent advances in experimental thermodynamics of metal–organic frameworks (MOFs). Taking advantage of the development in mechanochemistry, near-room temperature solution calorimetry, and low-temperature heat capacity measurements, the energetic landscape, entropy trends, and Gibbs free energy evolutions of MOFs with true polymorphism [Zn(MeIm)2, Zn(EtIm)2, and Zn(CF3Im)2] as framework topology varies were thoroughly explored by integrated calorimetric and computational methodologies. In addition, the formation enthalpies of MOFs with ultrahigh porosity (MOF-177 and UMCM-1) and the simplest structure (metal formates) have been determined. The studies summarized below highlight the complex interplays among interrelated compositional, chemical, and topological (structural) factors in the determination of the thermodynamic parameters of MOFs.
Using ethanol adsorption calorimetry, the surface energetics of two carbon substrates and two products in microwave-assisted carbon nanotube (CNT) growth was studied. In this study, the ethanol adsorption enthalpies of the two graphene-based samples at 25 °C were measured successfully. Specifically, the near-zero differential enthalpies of ethanol adsorption are −75.7 kJ/mol for graphene and −63.4 kJ/mol for CNT-grafted graphene. Subsequently, the differential enthalpy curve of each sample becomes less exothermic until reaching a plateau, −55.8 kJ/mol for graphene and −49.7 kJ/mol for CNT-grafted graphene, suggesting favorable adsorbate–adsorbent binding. Moreover, the authors interpreted and discussed the partial molar entropy and chemical potential of adsorption as the ethanol surface coverage (loading) increases. Due to the low surface areas of carbon black–based samples, adsorption calorimetry could not be performed. This model study demonstrates that using adsorption calorimetry as a fundamental tool and ethanol as the molecular probe, the overall surface energetics of high–surface area carbon materials can be estimated.
A reliable quantitative analysis in electron tomography, which depends on the segmentation of the three-dimensional reconstruction, is challenging because of constraints during tilt-series acquisition (missing wedge) and reconstruction artifacts introduced by reconstruction algorithms such as the Simultaneous Iterative Reconstruction Technique (SIRT) and Discrete Algebraic Reconstruction Technique (DART). We have carefully evaluated the fidelity of segmented reconstructions analyzing a disordered mesoporous carbon used as support in catalysis. Using experimental scanning transmission electron microscopy (STEM) tomography data as well as realistic phantoms, we have quantitatively analyzed the effect on the morphological description as well as on diffusion properties (based on a random-walk particle-tracking simulation) to understand the role of porosity in catalysis. The morphological description of the pore structure can be obtained reliably both using SIRT and DART reconstructions even in the presence of a limited missing wedge. However, the measured pore volume is sensitive to the threshold settings, which are difficult to define globally for SIRT reconstructions. This leads to noticeable variations of the diffusion coefficients in the case of SIRT reconstructions, whereas DART reconstructions resulted in more reliable data. In addition, the anisotropy of the determined diffusion properties was evaluated, which was significant in the presence of a limited missing wedge for SIRT and strongly reduced for DART.
Enthalpies of water adsorption on amorphous and crystalline oxides and peroxides of uranium are reported. Despite substantial structural and computational research on reactions between actinides and water, understanding their surface interactions from the energetic perspective remains incomplete. Direct calorimetric measurements of hydration energetics of nano-sized, bulk-sized UO2, U3O8, anhydrous γ-UO3, amorphous UO3, and U2O7 were carried out, and their integral adsorption enthalpies were determined to be −67.0, −70.2, −73.0, −84.1, −61.6, and −83.6 kJ/mol water, with corresponding water coverages of 4.6, 4.5, 4.1, 5.2, 4.4, and 4.1 H2O per nm2, respectively. These energetic constraints are important for understanding the interfacial phenomena between water and U-containing phases. Additionally, this set of data also helps predict the absorption and desorption behavior of water from nuclear waste forms or used nuclear fuels under repository conditions. There are also underlying relations for water coverage among different U compounds. These experimentally determined data can be used as benchmark values for future computational investigations.
Thermocapillary convection has always been one of the most important research topics in microgravity fluid physics. A space experimental study on the thermocapillary convection in an open annular liquid pool – a typical thermocapillary flow system – has been conducted on the SJ-10 satellite of China. This space experiment has observed the spatial temperature distribution of the liquid free surface using an infrared thermal imager, obtained the flow pattern transition process, analysed the oscillation characteristics and revealed the instability mechanism of themocapillary convection. The shape effects on the flow instability are researched by changing the volume ratio, Vr, which denotes the ratio of the liquid volume to the volume of the cylindrical gap between the walls. The volume ratio effect has been focused on for the first time. For a certain volume ratio, the flow pattern would transform from the steady state to the oscillation state accompanied by directional propagating hydrothermal waves with increasing temperature difference. In addition, the significant influences of the volume ratio on the critical conditions and wavenumber selection have been analysed in detail.
The present epidemiological study aimed to evaluate the association of serum electrolyte levels with hypertension in a population with a high-salt diet.
Design
Secondary analysis of epidemiology data from the Northeast China Rural Cardiovascular Health Study conducted in 2012–2013. Blood pressure and hypertension status were analysed for association with serum sodium, potassium, chloride, total calcium, phosphate and magnesium levels using regression models.
Setting
High-salt diet, rural China.
Participants
Adult residents in Liaoning, China.
Results
In total 10 555 participants were included, of whom 3287 had incident hypertension (IH) and 1655 had previously diagnosed hypertension (PDH). Fifty-six per cent of participants had electrolyte disturbance. Sixty-two per cent of hypercalcaemic participants had hypertension, followed by hypokalaemia (56 %) and hypernatraemia (54 %). Only hypercalcaemia showed significant associations with both IH (OR=1·70) and PDH (OR=2·25). Highest serum calcium quartile had higher odds of IH (OR=1·58) and PDH (OR=1·64) than the lowest quartile. Serum sodium had no significant correlation with hypertension. Serum potassium had a U-shaped trend with PDH. Highest chloride quartile had lower odds of PDH than the lowest chloride quartile (OR=0·65). Highest phosphate quartile was only associated with lower odds of IH (OR=0·75), and the higher magnesium group had significantly lower odds of IH (OR=0·86) and PDH (OR=0·77).
Conclusions
We have shown the association of serum calcium, magnesium and chloride levels with IH and/or PDH. In the clinical setting, patients with IH may have concurrent electrolyte disturbances, such as hypercalcaemia, that may indicate other underlying aetiologies.
Predictive analytics in health is a complex, transdisciplinary field requiring collaboration across diverse scientific and stakeholder groups. Pilot implementation of participatory research to foster team science in predictive analytics through a partnered-symposium and funding competition. In total, 85 stakeholders were engaged across diverse translational domains, with a significant increase in perceived importance of early inclusion of patients and communities in research. Participatory research approaches may be an effective model for engaging broad stakeholders in predictive analytics.
In the past few years, we have performed a 22 GHz H2O maser survey towards hundreds of BGPS sources using the 25-meter Nanshan Radio Telescope (NSRT) of the Xinjiang Astronomical Observatory, and detected more than one hundred masers. Our aim is to study star formation activities associated with these sources, as well as search for any correlations that may exist between 22 GHz H2O masers and the evolutionary stage of high-mass star formation regions. The NSRT has been upgraded and have now an effective diameter of 26 meter. Besides, cryogenically cooled dual-beam receiver systems covering seven millimeter-wave observing bands have been installed on the NSRT. For the next step of maser observation, we will continue to do H2O and SiO masers survey of massive dust clumps and monitor some maser sources.