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Recently, the collisionless pitch-angle scattering for relativistic runaway electrons (REs)
in toroidal geometries such as tokamaks was discovered through a full orbit simulation
approach (Liu et al., Nucl. Fusion, vol. 56, 2016, p. 064002), and it was then theoretically
investigated that a new expression for the magnetic moment, including the second-order
corrections, could essentially reproduce the so-called collisionless pitch-angle scattering
process (Liu et al., Nucl. Fusion, vol. 58, 2018, p. 106018). In this paper, with synchrotron
radiation, extensive numerical verification of the validity of the high-order guiding-centre
theory is given for simulations involving REs by incorporating such an expression
for the magnetic moment into our particle tracing code. A high-order guiding-centre
simulation approach with synchrotron radiation (HGSA) is applied. Synchrotron radiation
plays an essential role in the life cycle of REs. The energy of REs first increases and
then becomes saturated until the electric field acceleration is balanced by the radiation
dissipation. Unfortunately, the process cannot be simulated accurately with the standard
guiding-centre model, i.e. the first-order guiding-centre model. Remarkably, it is found
that the HGSA can effectively produce the fundamental process of REs. Since the time
scale of the energy saturation of REs is close to seconds, the computational cost becomes
significant. In order to save costs, it is necessary to estimate the time of energy saturation.
An analytical estimate is derived for the time it takes for synchrotron drag to balance
an accelerating electric field and the provided formula has been numerically verified. Test
calculations reveal that HGSA is favourable for exploiting the dynamics of REs in tokamak
plasmas.
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1. Introduction

Plasma disruption (Lehnen, Aleynikova & Aleynikov 2015; Tang, Zeng & Chen 2021)
is almost inevitable in the operation of the tokamak. One of the most dangerous hazards
of plasma disruption is the generation of large amounts of runaway electrons (REs)
(Paz-Soldan, Cooper & Aleynikov 2017; Breizman et al. 2019; Tinguely, Izzo & Garnier
2021). The underlying reason is that the friction force decreases with increasing speed
for fast electrons (Dreicer 1959). The electrons can then be accelerated by an electric
field without limitation (Aleynikov & Breizman 2015; Stahl et al. 2015), which is now
known as the runaway phenomenon. Thus, it is possible that a small population of REs
becomes a large current carrier (Chen, Huang & Luo 2016; Cai et al. 2021). In recent
years, both experiments and simulations have illustrated that REs have an impact on
plasma instability (Cai & Fu 2015; Liu, Hirvijoki & Fu 2018a; Spong, Heidbrink &
Paz-Soldan 2018; Liu, Zhao & Jardin 2021). The energy of the RE is close to several tens to
hundreds of MeV. Attention should be paid to the following points: the relativistic effect is
significant; the radiation reaction (Finken, Watkins & Rusbüldt 2011; del Castillo-Negrete
et al. 2018; Hoppe et al. 2018; Zhang, Zhou & Hu 2018, 2021) is important; when the
inductive electric field becomes strong enough, the runaway avalanche (Nilsson et al.
2015; Svensson et al. 2021) develops after the thermal quench. Without proper control,
these energetic REs will eventually hit the first wall of the device in a localized manner,
posing a serious threat to the safe operation of the device.

In a recent investigation (Liu, Wang & Qin 2016), collisionless pitch-angle scattering
was found to be much stronger than collisional scattering and invalidates the first-order
guiding-centre model for REs. Taking synchrotron radiation, the loop electric field and the
magnetic field into account, the phase space of REs has been studied by using the full orbit
model. The energy increases until the synchrotron drag balances the electric field. When
the parallel momentum becomes dozens of times m0c (m0 is the rest mass of an electron,
and c is the speed of light), the absolute magnitude of the perpendicular momentum
changes a lot during one gyro-period, i.e. fast oscillations. The term ‘fast’ relates to the
large change of the perpendicular momentum in one gyro-period of approximately 10−12 ∼
10−10 s, compared with the bounce period of REs, which is close to 10−7 ∼ 10−6 s. With
fast oscillations, the perpendicular momentum grows with increasing parallel momentum.
This phenomenon is called ‘collisionless pitch-angle scattering’. It is a way in which the
parallel momentum is converted to perpendicular momentum in the absence of collisions.
However, for the long-term simulation of REs, the computing costs of the full orbit model
are nearly unacceptable.

According to the results in Liu, Qin & Hirvijoki (2018b), a new expression for the
magnetic moment is introduced, where the magnetic moment μ can still be considered as a
good adiabatic invariant. The magnetic moment μ is decided not only by the perpendicular
momentum but also by the parallel momentum and the magnetic-field-line curvature
vector κ , thus providing the aforementioned collisionless momentum transfer. Based on
the adiabatic invariant, the Hamiltonian high-order equations of motion were derived.
However, for more realistic simulation of REs, the radiation term needs to be considered.

In this paper, focusing on synchrotron radiation, we investigate the dynamics of
relativistic REs by utilizing different models in the Chinese Fusion Engineering
Testing Reactor (CFETR) steady-state scenario via a particle tracing code (PTC)
(Wang et al. 2021), which was developed recently. The code includes both the full
orbit and guiding-centre orbit models to track charged particles in a tokamak with a
three-dimensional field. In PTC, the computational domain is divided into two regions:
the core region and the scrape-off-layer region. The meshes are generated by a constrained
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Delaunay triangulation method. On each flux surface, the vertices are placed at equidistant
arc lengths in the poloidal section. With the unstructured triangle mesh, the geometry
of the tokamak poloidal section can be described precisely, and the flux coordinate can
be interpolated conveniently. From the g-eqdsk file, bicubic interpolation on a uniform
grid is used to obtain the first derivative of the magnetic field of the vertices of the
triangular meshes. Bilinear finite element methods are used to calculate the second
derivative of the magnetic field at any point. It now also includes a relativistic (Wimmel
1983) and high-order modification. Extensive numerical verifications of the validity of the
high-order guiding-centre theory are given for simulations involving REs. The simulation
results prove that the high-order guiding-centre approach (HGSA) is more appropriate
than the first-order guiding-centre approach for REs. HGSA reproduces the ‘collisionless
pitch-angle scattering’, but the first-order approach cannot. The perpendicular momentum
is the dominant factor of the synchrotron radiation. Synchrotron radiation plays an
essential role in the life cycle of REs. The energy of REs first increases and then becomes
saturated until the electric field acceleration is balanced by the radiation dissipation.
HGSA has reproduced the basic physical process of energy saturation. Since the time
scale of the energy saturation of REs is close to seconds, the computational cost becomes
significant. Avoiding unnecessary waste of calculation costs, an analytical formula is
derived to calculate the balance time. In certain test cases, the provided formula has
been numerically verified. Test calculations reveal that HGSA is admittedly favourable
for exploiting the dynamics of REs in tokamak plasmas.

In § 2.1, we use the relativistic full orbit model to advance the test particle in the
six-dimensional phase space. We give some physical explanations for the details of
the development of the perpendicular momentum. In § 2.2, we carry out the work by
using the high-order guiding-centre model, calculate the radiation effect and derive the
analytical formula to estimate the energy balance time. In § 2.3, we analyse the relationship
between the conservation of the magnetic moment and the change of magnetic field in one
gyro-period and then discuss the applicability of the high-order guiding-centre equations.
Finally, in § 3, we conclude our work.

2. Methods and results
2.1. Relativistic full orbit model

To analyse the phase-space characteristics of energetic particles, the test particle method
is an effective numerical method. Based on this method, many important physical
results have been produced (Sommariva et al. 2017; Hao, Chen & Cai 2020; Zhao,
Wang & Wang 2020). The method advances the particle motion through time-dependent
orbital equations, while the electromagnetic fields are not solved self-consistently. Two
kinds of particle motion equation are used currently, one is the standard guiding-centre
equations, i.e. the first-order guiding-centre equations, and the other is to use the Lorentz
orbital equations, i.e. the full orbit equations. Considering computational efficiency,
the guiding-centre model could be made more applicable by averaging out the fast
gyro-motion. However, the first-order guiding-centre model may not be suitable for the
simulation of REs (Liu et al. 2016).

For the relativistic full orbit calculation, the equations of motion can be written as

dx
dt

= v,

dp
dt

= q (E + v × B) ,

⎫⎪⎪⎬⎪⎪⎭ (1)
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where x, v, p = γ m0v represent the physical location, velocity and mechanical
momentum of the particle respectively, E and B denote the electric and magnetic fields
and the Lorentz factor γ is given as

γ =
√

1 + p2

m2
0c2

= 1√
1 − (v/c)2

. (2.2)

Here, c is the speed of light in a vacuum, v is the velocity of the particle. The toroidal
electric field is given as E = ElR0/Reφ . The major radius of CFETR is R0 = 7.2 m, the
central magnetic field is B0 = 6.5 T and El is given as El = 10.0 V m−1. Now we include
a test energetic electron. The initial physical location is R = 8.0 m, φ = 0, Z = 0 m, and
the initial momentum is p‖0 = 5m0c, p⊥0 = m0c. The time step of the simulation is set to
be δT = 0.01Tce, 1 % of the gyro-period Tce.

Figure 1 shows the phase space of the RE. In a real tokamak, the evolution trend is
consistent with the results in an ideal magnetic geometry in Liu et al. (2016). Without
radiation, figure 1(a) depicts the increase of the parallel momentum due to the electric
field. Figure 1(b) demonstrates the evolution trend of the perpendicular momentum.
Zooming in, we see that the time scale is approximately 10−8 s, and it is clear that
the interval between the two maximum values of p⊥ is approximately 10−9 s. Hence,
the oscillation of p⊥ can be regarded as a fast oscillation. The amplitude increases until
the minimum of the perpendicular momentum reaches a zero point. As time goes by,
the perpendicular momentum becomes greater than zero and oscillates at an almost fixed
amplitude. When considering the magnetic fluctuations or the ripple fields in a real
tokamak, this changes the radiation effects of REs (Martín-Solís, Sánchez & Esposito
1999; Liu et al. 2016). Figure 1(c) depicts that the lowest magnetic moment μ0 increases
and oscillates, which is against the assumptions of the first-order guiding-centre model.
The lowest-order magnetic moment is no longer conservative for REs.

The asymptotic expansion is μ = μ0 + εμ1 + · · · , where μ1 represents the first-order
correction that explicitly involves the non-uniformity of the magnetic field (Burby, Squire
& Qin 2013). In Liu et al. (2018b), keeping to the second order, a new expression was
derived under the limit p‖ � p⊥. The expression consists of three terms

μ = |p⊥ + p2
‖κ × b/ (qB) |2
(2m0B)

= μ0 + μ1 + μ2, (2.3)

μ0 = p2
⊥

2m0B
, μ1 = p2

‖p⊥ · κ × b

qm0B2
, μ2 = p4

‖
q2B2

|κ × b|2
2m0B

, (2.4a–c)

where κ is the curvature vector defined by κ = b · ∇b, and the unit vector b = B/B.
Furthermore, an approximate value p̃⊥ is given by solving (2.3) and ignoring the
cross-product,

p̃⊥ =
√(

p2
‖κ × b

qB

)2

+ 2μm0B. (2.5)

Figure 2(a) shows that μ0 is no longer conservative, but μ still holds as an adiabatic
invariant; figure 2(b) depicts the advancement of p2

⊥ and p̃⊥2, which demonstrates that the
evolution trend is consistent with ‘collisionless pitch-angle scattering’.
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(a)

(b)

(c)

FIGURE 1. Evolution of (a) the parallel momentum, (b) the perpendicular momentum and
(c) the lowest magnetic moment of the electron.

In (2.3), the fraction includes the vectors p⊥ and pC = −p2
‖κ × b/qB. The latter is

the curvature drift. To better understand the collisionless pitch-angle scattering, we can
consider an ideal and simple physical model. We can treat the complete perpendicular
momentum vector p⊥ as the sum of p⊥0 and pC, where p⊥0 spans a symmetric circle
around b. (While the value of the parallel momentum is not so large, p⊥0 is almost
the initial perpendicular momentum.) The conservative magnetic moment becomes
μ = |p⊥ − pC|2/(2m0B) = |p⊥0|2/(2m0B). With the increase of the parallel momentum,
pC grows and becomes comparable to p⊥0, so we cannot merely regard pC as the result of
drift precession; it greatly changes the perpendicular momentum all the time and breaks
the conservation of the lowest magnetic moment.

In CFETR, κ × b mainly tilts towards the Z-direction. The perpendicular momentum is
almost in the R–Z plane. In the beginning, the minimum is decided by |p⊥|min = |(p⊥0 +
pC)|min = |p⊥0| − |pC| and the maximum is |p⊥|max = |(p⊥0 + pC)|max = |p⊥0| + |pC|. The
minimum and the maximum of the perpendicular momentum also mainly tilt towards
the Z-direction. The amplitude Amp is decided by Amp = |p⊥|max − |p⊥|min = 2|pC|. With
the increase of the parallel momentum, |p⊥|min decreases, |p⊥|max and Amp continues to
grow until |p⊥|min reaches zero and |pC| equals |p⊥0|. As time goes by, |p⊥|min increases
and becomes greater than zero. |p⊥|min becomes |pC| − |p⊥0| and then |p⊥|min and |p⊥|max
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(a)

(b)

FIGURE 2. Evolution of (a) the lowest magnetic moment μ0 and the new magnetic moment μ,
and (b) p2

⊥ and p̃⊥2.

increase and the amplitude Amp becomes almost a constant, i.e. Amp = 2|p⊥0|. In Wang,
Qin & Liu (2016), when the pitch angle is in the range [−0.5, 0.5], Amp is almost a
constant, this is because Amp is nearly proportional to p⊥0, which changes a little,varying
in the range around [0.87, 1] p0. In figure 3 we reveal the diagram for the rotations of the
momentum when the parallel momentum of the particle is 200m0c. The red solid line is
the motion of the cyclotron centre of the electron, and it moves from point A to point B.
The coloured line denotes the endpoint of the vector of the momentum, which starts from
the red line. The distance of the corresponding points between the two lines represents the
relative value of the momentum. Figure 3(a,b) plots p⊥ and panels (c,d) plot (p⊥ − pC).
Clearly, the amplitude is approximately Amp = 2p⊥0 = 2m0c. In figure 3(c,d), the track of
the vector (p⊥ − pC) spans a symmetric circle around b, which is the same as the rotation
of p⊥0. In figure 4(a), outputting data every 109 steps shows that the Z-component of
the perpendicular momentum keeps growing, which is the result of the increase of p‖. In
figure 4(b), comparing the absolute value with the Z-component value of the perpendicular
momentum, we demonstrate that the ranges of the perpendicular momentum and the
Z-component are almost the same, which means the extremum appears while p⊥ mainly
slants towards the Z-direction.

2.2. High-order guiding-centre orbit model with synchrotron radiation
Synchrotron radiation plays a key part in REs during their entire life cycles. More than that,
in the generation of REs, experiments (Martín-Solís, Sánchez & Esposito 2010) show that
the synchrotron radiation increases the threshold electric field. For a relativistic particle,
the radiation-reaction force (RR-force) (Pauli 1958) is

K = q2γ 2

6πε0c3

[
v̈ + 3γ 2

c2
(v · v̇)v̇ + γ 2

c2

(
v · v̈ + 3γ 2

c2
(v · v̇)2

)
v

]
, (2.6)
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(a) (b)

(c) (d)

FIGURE 3. Diagram for the rotations of the momentum vector. The red solid line is the motion
of the cyclotron centre, and it moves from point A to point B. The coloured line denotes the
endpoint of the vector, which starts from the red line. The distance of the corresponding points
between the two lines represents the relative value of the momentum.

(a)

(b)

FIGURE 4. Evolution of (a) the Z-component of the perpendicular momentum, and (b) the
perpendicular momentum and the absolute value of the Z-component of the perpendicular
momentum.
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and for the relativistic full equation, the RR-force can be simplified to (Hirvijoki et al.
2015)

K = −νr

(
p⊥ + p2

⊥
(m0c)2

p
)

− νr
Ḃ × p
ΩB

, (2.7)

where the Larmor frequency is Ω = eB/γ m0. The characteristic time for the RR-force is

ν−1
r = 6πε0γ (m0c)3

q4B2
, (2.8)

where ε0 is the permittivity of a vacuum. After a series of algebraic treatments of the
formula, the components for the guiding-centre radiation reaction force in magnetic-field
non-uniformity are derived (Hirvijoki et al. 2015).

Based on the non-canonical Hamiltonian mechanics approach using the Lie perturbation
method, the high-order relativistic guiding-centre equations (Liu et al. 2018b) are derived.
Besides, in Appendix A, by separating the perpendicular momentum, the equations are
derived from some other physical perspectives. The high-order relativistic guiding-centre
equations with synchrotron radiation are

Ẋ = p∗
‖

γrm0

B∗

B∗
‖

+ b∗

eB∗
‖

×
(

∇H + ∂A∗

∂t

)
+ KX ,

ṗ‖ = −B∗

B∗
‖

·
(

∇H + ∂A∗

∂t

)
+ Kp‖,

μ̇ = Kμ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.9)

where

A∗ = A + p‖
q

b − p2
‖κ × b

q2B
,

B∗ = ∇ × A∗,

b∗ = b − 2p‖κ × b
qB

,

B∗
‖ = B∗ · b∗,

∇H = μ

γr
∇B +

(
1
γr

p4
‖

2m0q2
∇ κ2

B2

)
+ q∇Φ,

p∗
‖ = p‖ + 2p3

‖
κ2

q2B2 ,

γr =
√

1 + p2
‖
[
1 + p2

‖κ2/(qB)2 + 2μm0B
]

(m0c)2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)
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and the components for the guiding-centre RR-force are

KX = − νr

Ω∗
‖

p2
⊥

(m0c)2
(b × Ẋ + 3v‖ρ‖κ),

Kp‖ = −νrp‖
p2

⊥
2(m0c)2

(2 + ρ‖τB) − νr
p⊥γ 2

2
ρ⊥τB,

Kμ = −νrμ

(
1 + p2

⊥
(m0c)2

)
(2 + ρ‖τB).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.11)

The magnetic field-line twist parameter τB is τB = b · ∇ × b. The parallel and
perpendicular gyro-radii and the modified gyro-frequency are separately defined as

ρ‖ = p‖
qB

, ρ⊥ = p⊥
qB

, Ω∗
‖ = qB∗

‖
m0γ

. (2.12a–c)

We perform the simulation of the test particle under three models without radiation. The
initial values are the same as section § 2.1. The energy of the electron in the snapshot of
figure 5 is approximately 70 MeV after the acceleration. This signifies the comparison
of the orbital trajectory of an electron with different models in one bounce period.
The high-order guiding-centre model is consistent with the full orbit. Figure 6 depicts
the comparison of the momentum evolution. It demonstrates that HGSA reproduces the
‘collisionless pitch-angle scattering’ phenomenon. The results confirm the applicability of
the high-order guiding-centre model in a real magnetic configuration of the tokamak. Note
that the evolution of the perpendicular momentum has a great influence on the process of
the energy balance because of the radiation, and the modification of the perpendicular
momentum is significant. Thus, for the simulation of REs, the high-order guiding-centre
model is more appropriate.

The perpendicular momentum is dominant for the radiation effect at a finite pitch angle
(Martín-Solís et al. 1998). To see a clearer radiation effect, we perform a test particle
simulation in which the initial momentum is set to be p⊥0 = 1.7m0c and p‖ = 200m0c in
the high-order guiding-centremodel, while |p⊥| = |p⊥0 + pC| = 2.4m0c and p‖ = 200m0c
in the full orbit model. The parallel radiation could be considered as an effective electric
field. Figure 7 indicates the comparison of the advancement of (a) the perpendicular
momentum, (b) the equivalent electric field of parallel radiation and (c) the kinetic
energy loss of an electron in the equilibrium magnetic field of the CFETR without the
electric field, where the kinetic energy is T = (γ − 1)m0c2. In figure 7(b), in detail, the
real radiation of the electron motion has zero points, but the high-order guiding-centre
model aims to decouple the motion, such that it cannot accurately simulate the details.
Figure 7(c) demonstrates the kinetic energy loss separately through the full orbit model
and the high-order guiding-centre model. It is clear that, under the two models, the loss is
approximately equal.

Now we carry out the simulation work including the radiation effect and the accelerating
electric field. The parameter of the loop electric field is El = 10.0 V m−1. For a RE in
CFETR, the initial momentum of the RE is p‖0 = 500m0c and p⊥0 = 7.5m0c. The initial
physical location is R = 8.0 m, φ = 0, Z = 0 m. Figure 8 reveals the evolution of (a) the
parallel momentum, (b) the equivalent electric field of parallel radiation and (c) the kinetic
energy of an electron in the equilibrium magnetic field of the CFETR and the loop electric
field. It shows that the basic physical process of the energy balance is consistent under the
two models.
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FIGURE 5. Comparison of the orbital trajectory of an electron. The light blue solid line plots
the relativistic full orbit, the dark blue dashed line plots the high-order guiding-centre orbit and
the red solid line plots the first-order guiding-centre orbit.

(a)

(b)

FIGURE 6. Comparison of the evolution of the momentum of an electron. The light blue
line plots the relativistic full orbit, the dark blue circle (hollow) points plot the high-order
guiding-centre orbit and the red solid points plot the first-order guiding-centre orbit.
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(a)

(b)

(c)

FIGURE 7. Comparison of the evolution of (a) the perpendicular momentum, (b) the equivalent
electric field of parallel radiation, (c) the kinetic energy loss of an electron in the equilibrium
magnetic field of the CFETR without an electric field. The initial momentum is p⊥0 =
1.7m0c, p⊥ = 2.4m0c and p‖ = 200m0c.

In the simulation work, generally, we need to set up a simulation stop time first, and
this greatly affects the calculation cost. It is meaningful if the energy balance time of the
electron can be calculated. For REs, we set p⊥/p‖ = ε. We keep to the zero order in the
following calculation work.

In (2.9) and (2.11), only considering energy gain and radiation dissipation, we can obtain

ṗ‖ = E‖q + Kp‖ . (2.13)

For the radiation dissipation term, we divide it into three parts,

Kp‖ = Kp‖
a + Kp‖

b + Kp‖
c ,

Kp‖
a = −νrp‖

p2
⊥

(m0c)2
, Kp‖

b = −νrp‖
p2

⊥
2(m0c)2

ρ‖τB, Kp‖
c = −νr

p⊥γ 2

2
ρ⊥τB.

⎫⎪⎬⎪⎭ (2.14)
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(a)

(b)

(c)

FIGURE 8. Comparison of the evolution of (a) the parallel momentum, (b) the equivalent
electric field of parallel radiation, (c) the kinetic energy of an electron in the equilibrium
magnetic field of the CFETR with an electric field. The initial momentum of the RE is
p‖0 = 500m0c and p⊥0 = 7.5m0c.

First of all, we have

Kp‖
b

Kp‖
a

= ρ‖τB

2
= ρ‖

2L
∼ O(ε),

Kp‖
c

Kp‖
b

= p⊥ρ⊥γ 2

p‖ρ‖p2
⊥/(m0c)2

=
(

γ

p‖/m0c

)2

∼ O(1),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.15)

where L is the magnetic-field non-uniformity length scale. When the radiation effect
becomes dominant, the parallel momentum is far more than m0c, giving the approximation
γ = √

1 + ( p/(m0c))2 ≈ p‖/(m0c). We keep to zero order, i.e. keeping part a of the
radiation term. The approximate perpendicular momentum is given in (2.5). The equation
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FIGURE 9. The comparison of the momentum (kinetic energy) balance process between the
simulation and analysis. The different colours show the electric fields. The points are the
simulation results, and the lines represent the analytical solutions.

(2.13) turns out to be

ṗ‖ = E‖q − q4B2

6πε0(m0c)4

(
p4

‖κ
2

q2B2
+ 2μm0B

)
. (2.16)

Assuming that E = El, B = B0 are constants, we can obtain the analytic solution in
mathematics

d( p‖/(m0c))
dt

= dp‖
dt

= c1 − c2p‖4,

c1 = E‖q
m0c

− q4B2

6πε0(m0c)5
2μm0B, c2 = q4B2

6πε0m0c
κ2

q2B2
.

⎫⎪⎪⎬⎪⎪⎭ (2.17)

The solution of (2.17) is(
1
2

ln
√

c1 − √
c2p2

‖
(c1/4

1 − c1/4
2 p‖)2

+ arctan

((
c2

c1

)1/4

p‖

))
1

2
√

c1(c1c2)1/4
= t − t0, (2.18)

where p‖ is a number that is a multiple of m0c, and t0 is the integration constant, with
t = 0, p‖ = p‖0. The parameters c1 and c2 include information on the electric and magnetic
fields, the geometric parameters of the device and so on. According to the asymptotic
theory, taking t → +∞, we can figure out that the limit of p‖max is approximately p‖ =
c1/4

1 /c1/4
2 . The energy saturation time can be solved by giving p‖ = fp‖max, where f is an

estimation factor based on computation needs, say f = 0.9 or f = 0.99. In figure 9, we
show the comparison of the analytical solutions and simulation results under two electric
fields, and they are consistent with each other. Hence, (2.18) can be used to calculate the
energy saturation time and other related physical quantities.

2.3. Applicability
This section separately focuses on the greatest variation of the following three
quantities: the magnetic field δB = |(Bt=t0 − Bt=0)|/|Bt=0|, the maximum amplitude of
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(a)

(b)

(c)

FIGURE 10. The greatest variation of magnetic field δB, the maximum amplitude of the lowest
magnetic moment δμ0 and the maximum amplitude of the magnetic moment δμ during one
gyro-period. The different colours stand for different energies. The light blue points represent
p0 = 400m0c or T = 168.4 MeV, the dark blue points represent p0 = 300m0c or T = 126.3 MeV
and the light coral points represent p0 = 100m0c or T = 41.8 MeV.

the lowest magnetic moment δμ0 = (μ0t=t0 − μ0t=0)/μ0t=0, i.e. the conservation of μ0,
and the maximum amplitude of the magnetic moment δμ = (μt=t0 − μt=0)/μt=0 in one
gyro-period. From the above, we know that the collisionless pitch-angle scattering is
greatly influenced by the curvature of the device. For a typical configuration for the
tokamak field, the smaller the major radius R0 is, the bigger the curvature is, and thus
the more obvious the phenomenon is. In this section, we carry out the simulation in
Experimental Advanced Superconducting Tokamak, in which the major radius is R0 =
1.85 m. The three sampling kinetic energy values are chosen as T = 168.4 MeV(γ =
400), T = 126.3 MeV(γ = 300) and T = 41.8 MeV(γ = 100). The pitch angle p‖/p0 is
in the range [0, 1]. In figure 10, δB and δμ0 increase as pitch angle grows. This means that,
when the parallel motion scale is close to the perpendicular motion scale (pitch ≈ 0 and
≈ 1), the change in the magnetic field caused by the former is more pronounced. The value
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FIGURE 11. Theoretical analysis of δB versus δμ0. The different colours stand for different
energies. The light blue points represent p0 = 400m0c or T = 168.4 MeV, the dark blue points
represent p0 = 300m0c or T = 126.3 MeV.

of δμ increases with energy, but has little to do with pitch angles. For the highly energetic
particles (γ = 400 and 300), the δB values are all above 30 %, and in our perception, this
breaks the condition of conservation of the lowest magnetic moment. However, the results
turn out to not quite fit with the theoretical analysis in figure 11. For the two points 0 and 1
in which the δB values are both almost 40 %, the value of δμ0 is just a few per cent when
the pitch approaches zero (point 0), i.e. μ0 is still an adiabatic invariant; the value of δμ0
reaches 20 % when the pitch is around 0.5 (point 1), breaking the conservation of μ0. In
fact, although the perpendicular motion has a great influence on the change of magnetic
field (point 0), it has little impact on the conservation of the lowest magnetic moment.
From the above, it is clear that the curvature drift leads to the fact that the parallel motion
has an obvious effect on μ0. To sum up, in a small size tokamak, for REs, in the general
energy range (probably 100 MeV), it is appropriate to use the high-order guiding-centre
equations; for the very highly energetic electrons (150 MeV or more), if the pitch angle is
nearly zero, the first-order guiding-centre equations are still applicable; for the case where
the parallel and perpendicular momenta are both so large that the conservation of μ0 is
broken and the condition of the high-order guiding-centre equations cannot be met, the
full model is more accurate.

3. Conclusion

In this paper, focusing on synchrotron radiation, extensive numerical verifications of
the validity of the high-order guiding-centre theory are given for simulations involving
REs. The electron energy keeps growing until the radiation loss is balanced by the
electric field acceleration. First, we push a test particle by applying the full orbit model in
CFETR. The non-conservation of the lowest magnetic moment μ0 means the breakdown
of the first-order guiding-centre model, but this has been addressed by considering the
higher-order correction terms depending on p‖ and the magnetic-field curvature. Then,
we mainly study the magnetic moment and the perpendicular momentum. The results
show that the new expression μ is still a good adiabatic invariant. After the analysis
of the relation between the variation of the magnetic field δB and the conservation of
the magnetic moment, we show that the breakdown of the conservation of μ0 is not
merely the result of the large variation of δB, but is the combination of p‖ and the large
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variation of δB. We analyse the applicable conditions of the high-order guiding-centre
equations. By dividing the perpendicular momentum into p⊥ = p⊥0 + pC, where p⊥0
is the vector spanning a symmetric circle around b and pC is the curvature drift, we
explain the details of the advancement of the perpendicular momentum, especially
the extremum and the amplitude, and derive the high-order guiding-centre equations
in Appendix A.

The significant reason why we choose the high-order guiding-centre equations instead
of the first-order guiding-centre equations lies in the radiation of the gyro-motion. Taking
the synchrotron radiation into consideration, we simulate the energy saturation process
of an electron under the high-order guiding-centre model. It is found that the HGSA
can effectively produce the collisionless pitch-angle scattering, which dominantly affects
synchrotron radiation. Synchrotron radiation plays an essential role in the life cycle of
REs. The energy of REs first increases and then becomes saturated until the electric field
acceleration is balanced by the radiation dissipation, and HGSA can precisely represent
this process. Since the time scale of the energy saturation of REs is close to seconds,
the computational cost becomes significant. In order to save costs, an analytical estimate
is derived for the time it takes for synchrotron drag to balance an accelerating electric
field and the provided formula has been numerically verified. Test calculations reveal that
HGSA is favourable for exploiting the dynamics of REs in tokamak plasmas.
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Appendix A

For REs, we set p⊥/p‖ = v⊥/v‖ = ε. From the simulation above, we know that the
curvature drift vC due to the magnetic field-line curvature becomes comparable to the
initial perpendicular velocity, and in one gyro-period it needs to be considered, so we
treat the perpendicular velocity as the vector summation of v⊥0 and the vC. Besides,
the grad-B drift v∇B is also caused by the non-uniformity of the magnetic field, which
is decided by v∇B = 1/2qv⊥r⊥(B × ∇B)/B2 = −1/2v2

⊥(κ × b)/B. So, for v∇B/v⊥ = ε2,
the perpendicular momentum in one gyro-period is hardly affected by the grad-B drift.

For relativistic REs, in phase space (X , p‖;μ, ξ ; t), we begin with the Lagrangian of a
charged particle in an electromagnetic field,

L = [qA(x, t) + p] · ẋ − H, (A1)
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with B = ∇ × A, and the Hamiltonian is given as H = γ m0c2 + qΦ(x, t). Now we
explicitly separate the motion along the field from the cross-field motion through

p = p‖b + p⊥ = p‖b + wc + pCeC, pC = pCeC = −p2
‖κ × b

Bq
, (A2)

with b = B/B, c = − sin ξe1 − cos ξe2, in which the unit vectors e1 and e2 are orthogonal
to B and to each other, so that e1 × e2 = b, ξ is the gyro-phase corresponding to the wc
motion and w denotes the magnitude of p⊥0. Defining the particle gyro-centre through

x = X + wa
Bq

, ρ = wa
Bq

, (A3a,b)

with a = cos ξe1 − sin ξe2, all quantities on the right and the drift due to the
magnetic-field-line curvature are evaluated at the guiding centre X . The Lagrangian then
becomes

L = [qA(x, t) + p‖b + wc + pC] ·
[

Ẋ + d
dt

(
wa
Bq

)]
− H. (A4)

Taking an expansion in the small parameter ρ, we write

A(x, t) ≈ A(X , t) +
(

wa
Bq

)
· ∇A(X , t), (A5)

and substitute into the Lagrangian, giving

L = L1 + L2 − H, (A6)

L1 = [qA + p‖b + wc] · Ẋ + p‖b · d
dt

(
wa
Bq

)
+ wc · d

dt

(
wa
Bq

)
+
(

wa
Bq

· ∇
)

qA · d
dt

(
wa
Bq

)
+ qA · d

dt

(
wa
Bq

)
+
(

wa
Bq

· ∇
)

qA · Ẋ , (A7)

L2 = pC · Ẋ + pC · d
dt

(
wa
Bq

)
. (A8)

After similar treatment in White (2001), for L1, we can reduce it to

L1 = [qA + p‖b] · Ẋ + w2ξ̇

2Bq
. (A9)

For L2, with
d
dt

(
wa
Bq

)
= w

Bq
ξ̇c + ẇ

Bq
a, (A10)

and the direction of vC almost unchanged, averaging over the fast gyro-motion time scale,
the pC · d(wa/Bq)/dt term vanishes. Finally, we can obtain

L = (
qA + p‖b + pC

) · Ẋ + w2ξ̇

2Bq
− H, (A11)

from which we conclude that w2/2m0B = p2
⊥0/2m0B = |p⊥ − pC|2/(2m0B) ≡ μ is a

constant of the motion.
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The guiding-centre phase-space Lagrangian can be written as,

L = (
qA + p‖b + pC

) · Ẋ + m0

q
μξ̇ − H, (A12)

and the guiding-centre Hamiltonian is given by

H = γ m0c2 + qΦ = m0c2

√
1 + p2

‖
m2

0c2
+ p2

⊥
m2

0c2
+ qΦ. (A13)

where μ = p2
⊥0/2m0B is a constant of the motion. For p⊥/p‖ = ε, we take a Taylor

expansion in the small parameter ε, and the approximate perpendicular momentum is
given in (2.5)

H ≈ m0c2

√
1 + p2

‖
m2

0c2

(
1 + p2

⊥
2( p2

‖ + m2
0c2)

)
+ qΦ

= m0c2

√
1 + p2

‖
m2

0c2
+ μB√

1 + p2
‖/m2

0c2
+ p4

‖κ
2/(q2B2)

2m0

√
1 + p2

‖/m2
0c2

+ qΦ. (A14)

With γ approximately equalling
√

1 + p2
‖/m2

0c2, the gradient of the Hamiltonian is

∇H = μ∇B
γ

+ q∇Φ + p4
‖∇(κ2/(q2B2))

2m0γ
. (A15)

Following from the phase-space Euler–Lagrange equations (d/d t)(∂L/∂Ẋ ) − ∂L/∂X =
0, we obtain,

ṗ‖

(
b − 2p‖κ × b

qB

)
= qE − μ∇B

γ
− q

∂A
∂t

− p‖
∂b
∂t

+ ∂

∂t

(
p2

‖κ × b
qB

)
− p4

‖∇(κ2/(q2B2))

2m0γ
+ Ẋ × ∇ ×

(
qA + p‖b − p2

‖κ × b
qB

)
,

(A16)

ṗ‖b∗ ≡ q
(
E∗ + Ẋ × B∗) , (A17)

where the effective electromagnetic fields

E∗ ≡ −∇Φ∗−∂A∗

∂t
,

B∗ ≡ ∇ × A∗,

b∗ ≡ b − 2p‖κ × b
qB

,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A18)

are defined in terms of the effective electromagnetic potentials

qΦ∗ ≡ qΦ + μB
γ

+ p4
‖κ

2/(q2B2)

2m0γ
,

A∗ ≡ A + p‖
q

b − p2
‖

(
κ × b

q2B

)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A19)
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We obtain the rate of change of the variable p‖ by taking the scalar product of (A17) with
the effective magnetic field B∗,

ṗ‖ = −B∗

B∗
‖

·
(

∇H + q
∂A∗

∂t

)
≡ q

B∗

B∗
‖

· E∗, (A20)

where B∗
‖ ≡ b∗ · B∗. The guiding-centre velocity Ẋ comes from the vector product of

(A17) with b∗,

0 = E∗×b∗ + (
Ẋ × B∗)× b∗

= E∗×b∗ + (
Ẋ · b∗)B∗− (B∗ · b∗) Ẋ , (A21)

with

Ẋ · b∗ = Ẋ · b − 2p‖Ẋ ·
(

κ × b
qB

)
= v‖ + 2p3

‖κ
2

γ m0B2q2
, (A22)

and finally

Ẋ = p∗
‖

m0γ

B∗

B∗
‖

+ b∗

B∗
‖

× E∗, (A23)

where

p∗
‖ = p‖ + 2p3

‖κ
2

B2q2
. (A24)

The equations of motion are the same as (2.9) and (2.10).
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