We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During late Carboniferous time, the residual ocean basin gradually closed in West Junggar and only a small amount of seawater remained in the Hala’alat Mountain area, where discussions of provenance and tectonics are limited. In this study, LA-ICP-MS U–Pb dating and heavy mineral identification are conducted on the upper Carboniferous tuffaceous sandstones from the Hala’alat and Aladeyikesai formations in the Hala’alat Mountain area. The results reveal the low maturity of the clastic sediments, indicating proximal deposition. The Hala’alat Formation detrital zircons present a single peak (c. 330 Ma). Speculatively, the primary provenance is the Boshchekul–Chingiz Arc, and the secondary sources are the Darbut Tectono-Magmatic Belt and island arcs in the basin. The main peak and provenance of the Aladeyikesai Formation are similar to those of the Hala’alat Formation. Moreover, several age groups, namely, 370–344 Ma, 427–404 Ma and 478–476 Ma, potentially correspond to provenances of the Darbut Tectono-Magmatic Belt, the Boshchekul–Chingiz Arc and the Kujibai–Hongguleleng Ophiolitic Mélange Belt. In addition, the maximum depositional ages of the Hala’alat and Aladeyikesai formations calculated are 314.6 ± 1.54 Ma and 330.8 ± 0.61 Ma, respectively. Comprehensive analysis shows a relatively singular provenance of the Hala’alat Formation. While the provenance of the Aladeyikesai Formation shows inheritance, the provenance area extends northwards to the Kujibai–Hongguleleng Ophiolitic Mélange Belt. Furthermore, the closure of the Junggar Ocean during Carboniferous time caused the potential source region of the Hala’alat Mountain area to migrate northeastwards from Barleik Mountain to Xiemisitai Mountain. This study provides a basis for the analysis of regional geological evolution.
Toxoplasma gondii is an obligate intracellular protozoan parasite, which can infect almost all warm-blooded animals, including humans, leading to toxoplasmosis. Currently, the effective treatment for human toxoplasmosis is the combination of sulphadiazine and pyrimethamine. However, both drugs have serious side-effects and toxicity in the host. Therefore, there is an urgent need for the discovery of new anti-T. gondii drugs with high potency and less or no side-effects. Our findings suggest that lumefantrine exerts activity against T. gondii by inhibiting its proliferation in Vero cells in vitro without being toxic to Vero cells (P ≤ 0.01). Lumefantrine prolonged mice infected with T. gondii from death for 3 days at the concentration of 50 μg L−1 than negative control (phosphate-buffered saline treated only), and reduced the parasite burden in mouse tissues in vivo (P ≤ 0.01; P ≤ 0.05). In addition, a significant increase in interferon gamma (IFN-γ) production was observed in high-dose lumefantrine-treated mice (P ≤ 0.01), whereas interleukin 10 (IL-10) and IL-4 levels increased in low-dose lumefantrine-treated mice (P ≤ 0.01). The results demonstrated that lumefantrine may be a promising agent to treat toxoplasmosis, and more experiments on the protective mechanism of lumefantrine should be undertaken in further studies.
Excessive intake of high-energy diets is an important cause of most obesity. The intervention of rats with high-fat diet can replicate the ideal animal model for studying the occurrence of human nutritional obesity. Proteomics and bioinformatics analyses can help us to systematically and comprehensively study the effect of high-fat diet on rat liver. In the present study, 4056 proteins were identified in rat liver by using tandem mass tag. A total of 198 proteins were significantly changed, of which 103 were significantly up-regulated and ninety-five were significantly down-regulated. These significant differentially expressed proteins are primarily involved in lipid metabolism and glucose metabolism processes. The intake of a high-fat diet forces the body to maintain physiological balance by regulating these key protein spots to inhibit fatty acid synthesis, promote fatty acid oxidation and accelerate fatty acid degradation. The present study enriches our understanding of metabolic disorders induced by high-fat diets at the protein level.
We introduce the notion of a perfect path for a monomial algebra. We classify indecomposable non-projective Gorenstein-projective modules over the given monomial algebra via perfect paths. We apply the classification to a quadratic monomial algebra and describe explicitly the stable category of its Gorenstein-projective modules.
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.
Familial monozygotic (MZ) twinning reports are rare around the world, and we report a four-generation pedigree with seven recorded pairs of female MZ twins. Whole-genome sequencing of seven family members was performed to explore the featured genetic factors in MZ twins. For variations specific to MZ twins, five novel variants were observed in the X chromosome. These candidates were used to explain the seemingly X-linked dominant inheritance pattern, and only one variant was exonic, located at the 5′UTR region of ZCCHC12 (chrX: 117958597, G > A). Besides, consistent mitochondrial DNA composition in the maternal linage precluded roles of mitochondria for this trait. In this pedigree, autosomes also contain diverse variations specific to MZ twins. Pathway analysis revealed a significant enrichment of genes carrying novel SNVs in the epithelial adherens junction-signaling pathway (p = .011), contributed by FGFR1, TUBB6, and MYH7B. Meanwhile, TBC1D22A, TRIOBP, and TUBB6, also carrying similar SNVs, were involved in the GTPase family-mediated signal pathway. Furthermore, gene-set enrichment analysis for 533 genes covered by copy number variations specific to MZ twins illustrated that the tight junction-signaling pathway was significantly enriched (p < .001). Therefore, the novel changes in the X chromosome and the provided candidate variants across autosomes may be responsible for MZ twinning, giving clues to increase our understanding about the underlying mechanism.
As a promising new way to generate a controllable strong magnetic field, laser-driven magnetic coils have attracted interest in many research fields. In 2013, a kilotesla level magnetic field was achieved at the Gekko XII laser facility with a capacitor–coil target. A similar approach has been adopted in a number of laboratories, with a variety of targets of different shapes. The peak strength of the magnetic field varies from a few tesla to kilotesla, with different spatio-temporal ranges. The differences are determined by the target geometry and the parameters of the incident laser. Here we present a review of the results of recent experimental studies of laser-driven magnetic field generation, as well as a discussion of the diagnostic techniques required for such rapidly changing magnetic fields. As an extension of the magnetic field generation, some applications are discussed.
We present laboratory measurement and theoretical analysis of silicon K-shell lines in plasmas produced by Shenguang II laser facility, and discuss the application of line ratios to diagnose the electron density and temperature of laser plasmas. Two types of shots were carried out to interpret silicon plasma spectra under two conditions, and the spectra from 6.6 Å to 6.85 Å were measured. The radiative-collisional code based on the flexible atomic code (RCF) is used to identify the lines, and it also well simulates the experimental spectra. Satellite lines, which are populated by dielectron capture and large radiative decay rate, influence the spectrum profile significantly. Because of the blending of lines, the traditional $G$ value and $R$ value are not applicable in diagnosing electron temperature and density of plasma. We take the contribution of satellite lines into the calculation of line ratios of He-$\unicode[STIX]{x1D6FC}$ lines, and discuss their relations with the electron temperature and density.
Affine varieties among all algebraic varieties have simple structures. For example, an affine variety does not contain any complete algebraic curve. In this paper, we study affine-related properties of strata of $k$-differentials on smooth curves which parameterize sections of the $k$th power of the canonical line bundle with prescribed orders of zeros and poles. We show that if there is a prescribed pole of order at least $k$, then the corresponding stratum does not contain any complete curve. Moreover, we explore the amusing question whether affine invariant manifolds arising from Teichmüller dynamics are affine varieties, and confirm the answer for Teichmüller curves, Hurwitz spaces of torus coverings, hyperelliptic strata as well as some low genus strata.
Numerical investigation of the underexpanded sonic coaxial jets is carried out using large eddy simulation for three typical inner nozzle lip-thicknesses. Various fundamental mechanisms dictating the flow phenomena including shock structure, shear layer evolution and sound production are investigated. It is found that the inner nozzle lip induces a recirculation zone between inner and outer jets, which significantly influences the behaviors of shock structures and shear layers. The sound properties of the coaxial jets are further analyzed in detail. As the inner lip-thickness increases, the helical screech mode switches to an axisymmetric one and high-frequency screech also occurs with an oscillation frequency of recirculation zone. Based on the temporal Fourier transform and correlation analysis, the primary sources of low- and high-frequency screeches are associated with the downstream shock cells in the jet column and the secondary shock structures in the outer annular jet, respectively. The proper orthogonal decomposition analysis reveals that the dominant structures constructed by the most energetic modes shift from the downstream shock cells region to the upstream secondary shock region as the lip-thickness increases. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to the coherent structures and sound properties in sonic coaxial jets.
We have fabricated Ag-decorated ZnO nanoplate arrays by combining water-bath heating toward ZnO hexagonal nanoplate arrays and subsequent decoration of Ag films or nanoparticles on the ZnO surfaces by magnetron sputtering or photoreduction. Experimental surface-enhanced Raman scattering (SERS) results show that Ag-film–ZnO hybrid substrates with different Ag sputtering times exhibit a large difference in enhanced SERS signals for Rhodamine 6G (10−7 M). Atomic force microscope analysis reveals that two kinds of positions create abundant “hot spots” in this SERS substrate: one is located at the gap between adjacent separate Ag-film–ZnO hybrid nanoplates, and the other is located at the V-grooves formed by two adjacent interlaced Ag-film–ZnO hybrid nanoplates. The effects of simultaneous changes in interplate spacing and groove wall angle are considered to be the key factors affecting the SERS of our prepared Ag-film–ZnO hybrid substrates, which have also been evaluated by finite-difference time-domain simulation.
The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings. In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense, and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.
To review the nutrition policies and efforts related to nutrition transition in China.
Design and setting: This paper reviews the nutrition policy and activities of China to prevent and control diet-related non-communicable diseases (DR-NCDs). Data came from the Ministry of Health, the Ministry of Agriculture, the State Council and some cross-sectional surveys.
Results:
China is undergoing a remarkable, but undesirable, rapid transition towards a stage of the nutrition transition characterised by high rates of DR-NCDs in a very short time. Some public sector Chinese organisations have combined their efforts to create the initial stages of systematic attempts to reduce these problems. These efforts, which focus on both under- and overnutrition, include the new Dietary Guidelines for Chinese Residents and the Chinese Pagoda and The National Plan of Action for Nutrition in China, issued by the highest body of the government, the State Council. There are selected agricultural sector activities that are laudable and few other systematic efforts that are impacting behaviour yet. In the health sector, efforts related to reducing hypertension and diabetes are becoming more widespread, but there is limited work in the nutrition sector. This paper points to some unique strengths from past Chinese efforts and to an agenda for the next several decades.
Conclusions:
China is trying in its efforts to prevent and control the development of DR-NCDs but effects are limited. Systematic multi-sector co-operation is needed to effectively prevent and control DR-NCDs inside and outside the health sector.
Water management issues at the scale of whole river basins are becoming significant public concerns in China. Adverse aspects of basin-wide mismanagement of water resources in China are reviewed and analysed with respect to watershed management organizations, systems and policies, legislation and implementation of law, public participation, and other pertinent fields. Several critical issues in watershed management should be addressed in the immediate future, including divided jurisdiction and overlapping responsibilities of water management agencies, water pricing, lack of attention to non-point sources, absence of legislation regarding both watershed organizations and public participation, and illegal implementation of existing environmental laws and national policies concerning agriculture and farmers. Based on those analyses and worldwide practices, conceptual frameworks for integrated watershed management in China, including organization, legislation and institutions, are put forward both for the short and the long term. As a national focus, the Three Gorges Project is expected to have potentially disastrous environmental impacts. Mismanagement in the Three Gorges watershed is indicated, including piecemeal approaches to management, absence of legislation and a watershed approach that is disintegrated by administrative boundaries.
Titanium oxide nanotubes were fabricated by anodic oxidation of a pure titanium sheet in an aqueous solution containing 0.5 to 3.5 wt% hydrofluoric acid. These tubes are well aligned and organized into high-density uniform arrays. While the tops of the tubes are open, the bottoms of the tubes are closed, forming a barrier layer structure similar to that of porous alumina. The average tube diameter, ranging in size from 25 to 65 nm, was found to increase with increasing anodizing voltage, while the length of the tube was found independent of anodization time. A possible growth mechanism is presented.
About 30-year time series of the length of day (LOD) and the Pacific sea level are analysed in the paper. The close correlation between Earth rotation and sea level is discussed. Dynamical analysis of the angular momentum of tropical Pacific Ocean and solid Earth shows that the sea level changes of eastern and western Pacific lead the LOD interannual change in phases of 1 and 2 months respectively. The tropical Pacific effect accounts for about 31% in LOD change and is even more evident during El Nino events. Changes of the Earth rotation also cause changes in the oceanic mass distribution.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.