Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T15:36:47.924Z Has data issue: false hasContentIssue false

25 - Neuropeptides and REM sleep

from Section IV - Neuroanatomy and neurochemistry

Published online by Cambridge University Press:  07 September 2011

Oscar Prospéro-García
Affiliation:
Universidad Nacional Autónoma de México
Mónica Méndez-Díaz
Affiliation:
Universidad Nacional Autónoma de México
Alejandra E. Ruiz-Contreras
Affiliation:
Universidad Nacional Autónoma de México
Marcel Pérez-Morales
Affiliation:
Universidad Nacional Autónoma de México
Birendra N. Mallick
Affiliation:
Jawaharlal Nehru University
S. R. Pandi-Perumal
Affiliation:
Somnogen Canada Inc, Toronto
Robert W. McCarley
Affiliation:
Harvard University, Massachusetts
Adrian R. Morrison
Affiliation:
University of Pennsylvania
Get access

Summary

Summary

Sleep is a process occurring in all living animals. Although it is still controversial whether insects and other animals sleep alike; there is no doubt that they rest, as many studies in Drosophila melanogaster have shown. In this context, several seminal studies have documented species-dependent variations in sleep patterns. These findings along with obvious non-learned characteristics of sleep in general, such as the total time of sleep, the alternating NREM–REM sleep pattern, among many others, suggest strong regulation by genes. Clearly, the way genes may influence sleep physiology is via proteins. Hence, the importance of proteins in the regulation of sleep is observed in every minute event occurring to trigger or to maintain sleep. In this chapter we discuss families of proteins that are grouped by their effect on food ingestion, immunological response, trophic activity, and intracellular signaling, all of them affecting the sleep–waking cycle. Although we do not fully discuss the mechanisms of action, we put our effort in highlighting their effects on sleep. Along with the proteins and their effects we have listed those genes encoding them. We also show examples of proteins and the way they affect sleep. Hence, we hope that the overall message that readers will gather from this chapter is the importance of several proteins in the regulation of sleep. Also, by observing the effects of each family of proteins we can infer at least some functions of sleep and, finally, that sleep is a multigenic trait.

Type
Chapter
Information
Rapid Eye Movement Sleep
Regulation and Function
, pp. 247 - 255
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnaou, A., Drinkenburg, W. H., Bouwknecht, J. A. . (2008) Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep–wake architecture. Eur J Pharmacol 579(1/3): –88.CrossRefGoogle ScholarPubMed
Bayer, L., Eggermann, E., Serafin, M. . (2005) Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience 130: –11.CrossRefGoogle ScholarPubMed
Beresford, I. J. M., Clarck, C. R. & Hughes, J. (1986) Measurement and characterization of neuronal cholecystokinin using a novel radioreceptor assay. Brain Res 398(2): –23.CrossRefGoogle ScholarPubMed
Bourgin, P., Lebrand, C., Escourrou, P. . (1997) Vasoactive intestinal polypeptide microinjections into the oral pontine tegmentum enhance rapid eye movement sleep in the rat. Neuroscience 77(2): –60.CrossRefGoogle ScholarPubMed
Chastrette, N. & Cespuglio, R. (1985) Influence of proopiomelanocortin-derived peptides on the sleep-waking cycle of the rat. Neurosci Lett 62(3): –70.CrossRefGoogle ScholarPubMed
Chastrette, N., Cespuglio, R. & Jouvet, M. (1990a) Proopiomelanocortin (POMC)-derived peptides and sleep in the rat. Part 1 – Hypnogenic properties of ACTH derivatives. Neuropeptides 15(2): –74.Google ScholarPubMed
Chastrette, N., Cepuglio, R., Lin, Y. L. & Jouvet, M. (1990b) Proopiomelanocortin (POMC)-derived peptides and sleep in the rat. Part 2 – aminergic regulatory processes. Neuropeptides 15(2): –88.Google ScholarPubMed
de Lecea, L., Criado, J. R., Prospéro-García, O. . (1996) A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381(6579): –5.CrossRefGoogle ScholarPubMed
de Lecea, L., Kilduff, T. S., Peyron, C. . (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natnl Acad Sci (USA) 95(1): –7.Google ScholarPubMed
del Giudice, E. M., Santoro, N., Cirillo, , . (2001) Mutational screening of the CART gene in obese children. Identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family. Diabetes 50(9): –60.CrossRefGoogle Scholar
Derkinderen, P., Ledent, C., Parmentier, M., Girault, J. A. (2001) Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptor in hippocampus. J Neurochem 77(3): –60.CrossRefGoogle ScholarPubMed
Díaz-Ruiz, O., Navarro, L., Méndez-Díaz, M. . (2001) Inhibition of the ERK pathway prevents HIVgp120-induced REM sleep increase. Brain Res 913(1): –81.CrossRefGoogle ScholarPubMed
Douglass, J., McKinzie, A. M. & Couceyro, P. (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J Neurosci 15(3/2): –81.CrossRefGoogle ScholarPubMed
Drucker-Colín, R., Spanis, C. W., Hunyadi, J. & McGaugh, J. L. (1975) Growth hormone effects on sleep and wakefulness in the rat. Neuroendocrinology 18(1): –8.CrossRefGoogle ScholarPubMed
Drucker-Colín, R., Bernal-Pedraza, J., Fernández- Cancino, F. & Oksenberg, A. (1984) Is vasoactive intestinal polypeptide (VIP) a sleep factor?Peptides 5(4): –40.CrossRefGoogle ScholarPubMed
Estabrooke, I. V., McCarthy, M. T., Ko, E. . (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21(5): –62.CrossRefGoogle ScholarPubMed
Hajdu, I., Obal, F. Jr., Fang, J., Krueger, J. M. & Rollo, C. D. (2002) Sleep of transgenic mice producing excess rat growth hormone. Am J Physiol-Reg I 282(1): –6.Google ScholarPubMed
Hanriot, L., Camargo, N., Courau, A. C. . (2007) Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Compar Neurol 505(2): –57.CrossRefGoogle ScholarPubMed
Hassani, O. K., Lee, M. G. & Jones, B. E. (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proc Natnl Acad Sci (USA) 106(7): –22.Google Scholar
Jiménez-Anguiano, A., Báez-Saldaña, A. & Drucker-Colín, R. (1993) Cerebrospinal fluid (CSF) extracted immediately after REM sleep deprivation prevents REM rebound and contains vasoactive intestinal peptide (VIP). Brain Res 631(2): –8.CrossRefGoogle Scholar
Kohlmeier, K. A. & Reiner, P. B. (1999) Vasoactive intestinal polypeptide excites medial pontine reticular formation neurons in the brainstem rapid eye movement sleep-induction zone. J Neurosci 19(10): –81.CrossRefGoogle ScholarPubMed
Kristensen, P., Judge, M. E., Thim, L. . (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393(6680): –6.CrossRefGoogle ScholarPubMed
Mansbach, R. S. & Lorenz, D. N. (1983) Cholecystokinin (CCK-8) elicits prandial sleep in rats. Physiol Behavi 30(2): –83.CrossRefGoogle ScholarPubMed
Méndez-Díaz, M., Irwin, L., Gómez-Chavarín, M. . (2005) Cortistatin modulates memory evocation in rats. Eur J Pharmacol 507(1/3): –8.CrossRefGoogle ScholarPubMed
Méndez-Díaz, M., Domínguez Martín, E., Sanchez Galvez, X., Pérez Pérez, L. & Prospéro-García, O. (2008) Cortistatin and CART modulates sleep and food intake. In 38 Annual Meeting. Society for Neuroscience. Washington, D.C.Google Scholar
Méndez-Díaz, M., Domínguez Martín, E., Pérez Morales, M. . (2009) The anorexigenic peptide cocaine-and-amphetamine-regulated transcript modulates REM-sleep in rats. Neuropeptides 43(6): –505.CrossRefGoogle ScholarPubMed
Mirmiran, M., Kruisbrink, J., Bos, N. P., Van der Werf, D. & Boer, G. J. (1988) Decrease of rapid-eye-movement sleep in the light by intraventricular application of a VIP-antagonist in the rat. Brain Res 458(1): –4.CrossRefGoogle ScholarPubMed
Molik, E., Zieba, D. A., Misztal, T. . (2008) The role of orexin A in the control of prolactin and growth hormone secretions in sheep: in vitro study. J Physiol Pharmacol 59(Suppl 9): –100.Google ScholarPubMed
Murillo-Rodríguez, E., Sánchez-Alavez, M., Navarro, L. . (1998) Anandamide modulates sleep and memory in rats. Brain Res 812(1/2): –4.CrossRefGoogle ScholarPubMed
Obál, F. Jr., Sáry, G., Alföldi, P., Rubicsek, G. & Obál, F. (1986) Vasoactive intestinal polypeptide promotes sleep without effects on brain temperature in rats at night. Neurosci Lett 64(2): –40.CrossRefGoogle ScholarPubMed
Obál, F. Jr., Payne, L., Kacsoh, B. . (1994) Involvement of prolactin in the REM sleep-promoting activity of systemic vasoactive intestinal peptide (VIP). Brain Res 645(1/2): –9.CrossRefGoogle Scholar
Obál, J., García-García, F., Kacsóh, B. . (2005) Rapid eye movement sleep is reduced in prolactin-deficient mice. J Neurosci 25(44): –9.CrossRefGoogle ScholarPubMed
Opp, M.R., Obal, F. Jr., Krueger, J.M. (1988) Effects of α-MSH on sleep, behavior, and brain temperature: interactions with IL-1. Am J Physiol 255 (6Pt 2): –22.Google ScholarPubMed
Pacheco-Cano, M. T., García-Hernández, F., Prospéro-García, O. & Drucker-Colín, R. (1990) Vasoactive intestinal polypeptide induces REM recovery in insomniac forebrain lesioned cats. Sleep 13(4): –303.CrossRefGoogle ScholarPubMed
Panskepp, J., Reilly, P., Bishop, P. . (1976) Effects of alpha-MSH on motivation, vigilance and brain respiration. Pharmacol Biochem Behav 5(Suppl 1): –64.Google ScholarPubMed
Prospéro-García, O., Morales, M., Arankowsky-Sandoval, G. & Drucker-Colin, R. (1986) Vasoactive intestinal polypeptide (VIP) and cerebrospinal fluid (CSF) of sleep-deprived cats restores REM sleep in insomniac recipients. Brain Res 385(1): –73.CrossRefGoogle ScholarPubMed
Prospéro-García, O., Ott, T. & Drucker-Colín, R. (1987) Cerebroventricular infusion of cholecystokinin (CCK-8) restores REM sleep in parachlorophenylalanine (PCPA)-pretreated cats. Neurosci Lett 78(2): –10.CrossRefGoogle ScholarPubMed
Rampin, C., Cespuglio, R., Chastrette, N. & Jouvet, M. (1991) Immobilization stress induces a paradoxical sleep rebound in rat. Neurosci Lett 126(2): –18.CrossRefGoogle ScholarPubMed
Riou, F., Cespuglio, R. & Jouvet, M. (1982) Endogenous peptides and sleep in the rat. III. The hypnogenic properties of vasoactive intestinal polypeptide (VIP). Neuropeptides 2(5): –77.CrossRefGoogle Scholar
Robas, N., Mead, E. & Fidock, M. (2003) MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J Biol Chem 278(45): –4.CrossRefGoogle ScholarPubMed
Rojas-Ramirez, J. A., Crawley, J. N. & Mendelson, W. B. (1982) Electroencephalographic analysis of the sleep-inducing actions of cholecystokinin. Neuropeptides 3(2): –38.CrossRefGoogle ScholarPubMed
Sakurai, T., Amemiya, A., Ishii, M. . (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4): –85.CrossRefGoogle Scholar
Sánchez-Alavez, M., Gómez-Chavarín, M., Navarro, L. . (2000) Cortistatin modulates memory processes in rats. Brain Res 858(1): –83.CrossRefGoogle ScholarPubMed
Shemyakin, A. & Kapás, L. (2001) L-364,718, a cholecystokinin-A receptor antagonist, suppresses feeding-induced sleep in rats. Am J Physiol- Reg I 280(5): –6.Google ScholarPubMed
Shingo, T., Gregg, C., Enwere, E. . (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299(5603): –20.CrossRefGoogle ScholarPubMed
Simón-Arceo, K., Ramírez-Salado, I. & Calvo, J. M. (2003) Long-lasting enhancement of rapid eye movement sleep and pontogeniculooccipital waves by vasoactive intestinal peptide microinjection into the amygdala temporal lobe. Sleep 26(3): –64.CrossRefGoogle ScholarPubMed
Stern, W. C., Jalowiec, J. E., Shabshelowitz, H. & Morgane, P. J. (1975) Effects of growth hormone on sleep–waking patterns in cats. Horm Behav 6(2): –96.CrossRefGoogle ScholarPubMed
Tan, C. P., Sano, H., Iwaasa, H. . (2002) Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics 79(6): –92.CrossRefGoogle ScholarPubMed
Torner, L., Karg, S., Blume, A., . (2009) Prolactin prevents chronic stress-induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci 29(6): –33.CrossRefGoogle ScholarPubMed
Verret, L., Goutagny, R., Fort, P. . (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. Bio Med Central Neuroscience [online] 4(19). Available at [Accessed May 19, 2006].Google ScholarPubMed
Yamuy, J., Morales, F. R. & Chase, M. H. (1995) Induction of rapid eye movement sleep by the microinjection of nerve growth factor into the pontine reticular formation of the cat. Neuroscience 66(1): –13.CrossRefGoogle ScholarPubMed
Yamuy, J., Sampogna, S. & Chase, M. H. (2000) Neurotrophin-receptor immunoreactive neurons in mesopontine regions involved in the control of behavioral states. Brain Res 866(1/2): –14.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×