Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T11:51:57.937Z Has data issue: false hasContentIssue false

19 - Aminergic influences in the regulation of basic REM sleep processes

from Section IV - Neuroanatomy and neurochemistry

Published online by Cambridge University Press:  07 September 2011

Claude Gottesmann
Affiliation:
Université de Nice-Sophia Antipolis, France
Birendra N. Mallick
Affiliation:
Jawaharlal Nehru University
S. R. Pandi-Perumal
Affiliation:
Somnogen Canada Inc, Toronto
Robert W. McCarley
Affiliation:
Harvard University, Massachusetts
Adrian R. Morrison
Affiliation:
University of Pennsylvania
Get access

Summary

Summary

Research into the influence of monoamines on REM sleep-generating processes began as early as 1964, 11 years after the discovery of REM sleep. Various studies have now established that noradrenergic neurons of the locus coeruleus must be silent for REM sleep to occur. However, the maintenance of a low level of noradrenaline is still necessary. This phenomenon is linked to the persistence of noradrenaline in the brain resulting from its diffuse release at the varicosity level and the absence of rapid noradrenaline elimination by reuptake and enzymatic destruction. The role of dopamine in the regulation of REM sleep was discovered more recently. The infusion of dopamine agonists into the REM sleep-inducing structure called the peri-locus coeruleus-α inhibits REM sleep. However, this effect can be blocked by the concurrent administration of dopamine antagonists, indicating a basic noradrenergic function. In the same way, lesions of the dopaminergic ventral periaqueductal gray matter increase REM sleep. Serotonergic neurons become silent during REM sleep, and serotonin, which is involved in processes that support waking, also has REM sleep-off influences. Finally, histamine appears to have indirect influences on REM sleep, as histaminergic neurons become silent as soon as sleep onset occurs. This monoamine acts in connection with orexin, a deficit of which favors REM sleep and narcolepsy. The narcoleptic attacks seen in knock-out mice lacking orexin can be prevented by antagonists of the H3 histamine autoreceptor.

Type
Chapter
Information
Rapid Eye Movement Sleep
Regulation and Function
, pp. 183 - 193
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrien, J. (2005) REM sleep and the serotonergic system:What we learn from mutant mice. Sleep Biol Rhyt 3: suppl. .17.Google Scholar
Aghajanian, G. K., Cedarbaum, J. M. & Wang, R. Y. (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res 136: –7.CrossRefGoogle ScholarPubMed
Arnulf, I., Leu, S. & Oudiette, D. (2008) Abnormal sleep and sleepiness in Parkinson’s disease. Curr Opin Neurol 21: –7.Google ScholarPubMed
Astier, B., Kitahama, K., Denoroy, L., Berod, A. & Jouvet, M. (1986) Biochemical evidence for an interation bertween adrenaline and noradrenaline neurons in the rat brainstem. Brain Res 397: –40.CrossRefGoogle Scholar
Aston-Jones, G. & Bloom, F. E. (1981) Activity of norepinephrine-containing neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: –86.CrossRefGoogle ScholarPubMed
Autret, A., Minz, M., Beillevaire, T., Cathala, H. P. & Schmitt, H. (1977) Effect of clonidine on sleep patterns in man. Eur J Clin Pharmacol 12: –22.CrossRefGoogle ScholarPubMed
Betts, T. A. & Alford, C. (1985) Beta-blockers and sleep: a controlled trial. Eur J Clin Pharmacol 28 suppl: –8.CrossRefGoogle ScholarPubMed
Bier, M. J. & McCarley, R. W. (1994) REM-enhancing effects of the adrenergic antagonist idazoxan infused into the medial pontine reticular formation of the freely moving cat. Brain Res 634: –8.CrossRefGoogle ScholarPubMed
Caballero, A. & De Andres, I. (1986) Unilateral lesions in locus coeruleus area enhance paradoxical sleep. Electroenceph Clin Neurophysiol 64: –46.CrossRefGoogle ScholarPubMed
Cespuglio, R., Gomez, M. E., Faradji, H. & Jouvet, M. (1982) Alterations in the sleep-waking cycle induced by cooling of the locus coeruleus area. Electroenceph Clin Neurophysiol 54: –8.CrossRefGoogle ScholarPubMed
Chergui, K., Suaud-Chagny, M. F. & Gonon, F. (1994) Non-linear relationship between impulse flow. Dopamine release and dopamine elimination in the rat in vivo. Neuroscience 62: –5.CrossRefGoogle Scholar
Cirelli, C., Tononi, G. M., Pompeiano, O. & Genneri, A. (1992) Modulation of desynchronized sleep through microinjection of alpha1-adrenergic agonists and antagonists in the dorsal pontine tegmentum of the cat. Pflügers Arch 422: –9.CrossRefGoogle Scholar
Crochet, S. & Sakai, K. (1999a) Alpha-2 adrenoceptor mediated paradoxical (REM) sleep inhibition in the cat. NeuroReport 10: –204.CrossRefGoogle ScholarPubMed
Crochet, S. & Sakai, K. (1999b) Effects of microdialysis application in monoamines on the EEG and behavioral states in the cat mesopontine tegmentum. Eur J Neurosci 11: –52.CrossRefGoogle ScholarPubMed
Crochet, S. & Sakai, K. (2003) Dopaminergic modulation of behavioral states in mesopontine tegmentum: a reverse microdialysis study in freely moving cats. Sleep 26: –6.CrossRefGoogle ScholarPubMed
Crochet, S., Onoe, H. & Sakai, K. (2006) A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study. Eur J Neurosci 24: –12.CrossRefGoogle ScholarPubMed
Dahan, L., Astier, B., Vautrelle, N. . (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32: –41.CrossRefGoogle ScholarPubMed
Delorme, F., Froment, J. L. & Jouvet, M. (1966) Suppression du sommeil par la p. chlorométhamphetamine et la p. chlorophénylalanine. C R Soc Biol 160: –460.Google Scholar
Descarries, L., Watkins, K.C. & Lapierre, Y. (1977) Noradrenergic axon terminals in the cerebral cortex of rats. III. Topometric ultrastructural analysis. Brain Res 133: –222.CrossRefGoogle ScholarPubMed
Dusan-Peyrethon, D., Peyrethon, J. & Jouvet, M. (1968) Suppression élective du sommeil paradoxal chez le Chat par α méthyl DOPA. C R Soc Biol 162: –18.Google Scholar
Ennis, M. & Aston-Jones, G. (1986) A potent excitatory input to the locus coeruleus from the ventrolateral medulla. Neurosci Lett 71: –305.CrossRefGoogle ScholarPubMed
Ennis, M. & Aston-Jones, G. (1988) Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. J Neurosci 8: –57.CrossRefGoogle ScholarPubMed
Ennis, M. & Aston-Jones, G. (1989a) Potent inhibitory input to the locus coeruleus from the nucleus prepositus hypoglossi. Brain Res Bull 22: –803.CrossRefGoogle ScholarPubMed
Ennis, M. & Aston-Jones, G. (1989b) GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci 9: –81.CrossRefGoogle ScholarPubMed
Fuxe, K., Hamberger, B. & Hökfelt, T. (1968) Distribution of noradrenaline nerve terminals in cortical areas in the rat. Brain Res 8: –31.CrossRefGoogle ScholarPubMed
Gagnon, J. F., Bédard, M. A., Fantinin, M. L. . (2002) REM sleep disorder and REM sleep without atonia in Parkinson’s disease. Neurology 59: –9.CrossRefGoogle ScholarPubMed
Gaillard, J. M. (1983) Biochemical pharmacology of paradoxical sleep. Br J Pharmacol 16: –30.Google ScholarPubMed
Gallopin, T., Luppi, P. H., Rambert, F. A., Fryman, A. & Fort, P. (2004) Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus an in vitro pharmacologic study. Sleep 27: –25.CrossRefGoogle ScholarPubMed
Gentili, A., Godschalk, M. F., Gheorghiu, D. . (1996) Effect of clonidine and yohimbine on sleep in healthy men: a double-blind, randomized, controlled trial. Eur J Clin Pharmacol 50: –5.CrossRefGoogle ScholarPubMed
Gervasoni, D., Darracq, L., Fort, P. . (1998) Electrophysiological evidence that noradrenergic neurons of the locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci 10: –70.CrossRefGoogle ScholarPubMed
Gottesmann, C. (1996) The transition from slow wave sleep to paradoxical sleep: evolving facts and concepts of the neurophysiological processes underlying the intermediate stage of sleep. Neurosci Biobehav Rev 20: –87.CrossRefGoogle ScholarPubMed
Gottesmann, C. (1999) Neurophysiological support of consciousness during waking and sleep. Prog Neurobiol 59: –508.CrossRefGoogle ScholarPubMed
Gottesmann, C. (2006) The dreaming sleep stage: a new neurobiological model of schizophrenia?Neuroscience 140: –15.CrossRefGoogle ScholarPubMed
Gottesmann, C. (2008) Noradrenaline involvement in basic and higher integrated REM sleep processes. Prog Neurobiol 82: –72.Google Scholar
Guo, R., Anaclet, C., Roberts, J. C. . (2009) Differential effects of acute and repeat dosing with the H3 antagonist GSK189254 on the sleep-wake cycle and narcoleptic episodes in Ox–/– mice. Br J Pharmacol 157: –17.CrossRefGoogle ScholarPubMed
Hilakivi, I. & Leppävuori, A. (1984) Effects of methoxamine, an alpha-1 adrenoceptor agonist, and prazosin, an alpha-1 antagonist, on the stages of the sleep-waking cycle in the cat. Acta Physiol Scand 120: –72.CrossRefGoogle ScholarPubMed
Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189: –8.CrossRefGoogle ScholarPubMed
Hou, Y. P., Manns, I. D. & Jones, B. E. (2002) Immunostaining of cholinergic pontomesencephalic neurons for alpha1 versus alpha2 adrenergic receptors suggests different sleep-wake state activities and roles. Neuroscience 114: –21.CrossRefGoogle Scholar
Huang, Z. L., Qu, W. M., Li, W.D. . (2002) Arousal effect of orexin-A depends on activation of the histaminergic system. Proc Nat Acad Sci (USA) 99: .Google Scholar
Hunsley, M. S. & Palmiter, R. D. (2003) Norepinephrine-deficient mice exhibit normal sleep-wake states but have shorter sleep latency after mild stress and low doses of amphetamine. Sleep 26: –6.Google ScholarPubMed
Jouvet, M. (1962) Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol 100: –206.Google Scholar
Jouvet, M. & Michel, F. (1960) Nouvelles recherches sur les structures responsables de la “phase paradoxale” du sommeil. J Physiol Paris 52: –1.Google Scholar
Jouvet, M., Cier, A., Mounier, D. & Valatx, J. L. (1961) Effets du 4-butyrolactone et du 4-hydroxybutyrate de sodium sur l’E.E.G et le comportement du Chat. C R Soc Biol 155: –16.Google Scholar
Kaur, S., Saxena, R. N. & Mallick, B. N. (2001) GABAergic neurons in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats. Synapse 42: –50.CrossRefGoogle ScholarPubMed
Khazan, N. & Sulman, F. G. (1966) Effect of imipramine on paradoxical sleep in animals with reference to dreaming and enuresis. Psychopharmacologia 10: –95.CrossRefGoogle ScholarPubMed
Kleinlogel, H., Scholtysik, G. & Sayers, A. C. (1975) Effects of clonidine and BS 100–141 on the EEG sleep pattern in rats. Eur J Pharmacol 33: –63.CrossRefGoogle ScholarPubMed
Laguzzi, R., Petitjean, F., Pujol, J. F. & Jouvet, M. (1972) Effets de l’injection intraventriculaire de 6-hydroxydopamine. II. Sur le cycle veille-sommeil du Chat. Brain Res 48: –310.CrossRefGoogle Scholar
Lai, Y.Y. & Siegel, J. M. (2003) Physiological and anatomical link between Parkinson-like disease and REM sleep behavior disorder. Mol Neurobiol 27: –51.CrossRefGoogle ScholarPubMed
Lanfumey, L., Dugovic, C. & Adrien, J. (1985) β1 and β2 adrenergic receptors: their role in the regulation of paradoxical sleep in the rat. Electroenceph Clin Neurophysiol 60: –67.CrossRefGoogle Scholar
Langer, S. Z. (2008) Presynaptic autoreceptors regulating transmitter release. Neurochemistry International 52: –30.CrossRefGoogle ScholarPubMed
Léna, I., Parrot, S., Deschaux, O. . (2005) Variations in the extracellular levels of dopamine, noradrenaline, glutamate and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:–9.CrossRefGoogle ScholarPubMed
Lin, J. S., Sakai, K. & Jouvet, M. (1994) Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Pharmacol 6: –25.Google ScholarPubMed
Liu, M., Thankachan, S., Kaur, S. . (2008) Orexin (hypocretin) gene transfer improves narcoleptic symptoms in orexin null mice. J Sleep Res 17(Suppl. 1): –7.Google Scholar
Lu, J., Bjorkum, A. A., Xu, M. . (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22: –76.CrossRefGoogle ScholarPubMed
Lu, J., Jhou, T. C. & Saper, C. B. (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueducal grey matter. J Neurosci 26: –202.CrossRefGoogle Scholar
Luppi, P. H., Gervasoni, D., Verret, L. . (2006) Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 100: –83.CrossRefGoogle ScholarPubMed
Ma, J., Ye, N., Lange, N. & Cohen, B. M. (2003) Dynorphynergic GABA neurons are a target of both typical and atypical antipsychotic drugs in the nucleus accumbens shell, central amygdaloid nucleus and thalamic central medial nucleus. Neuroscience 121: –8.CrossRefGoogle ScholarPubMed
Mallick, B. N., Singh, S. & Pal, D. (2005) Role of alpha and beta adrenoceptors in locus coeruleus stimulation-induced reduction in rapid eye movement sleep in freely moving rats. Behav Brain Res 158: –21.CrossRefGoogle ScholarPubMed
Maloney, K. J., Mainville, L. & Jones, B. E. (2002) c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 15: –8.CrossRefGoogle ScholarPubMed
Marks, G. A., Sachs, O. W. & Birabil, C. G. (2008) Blockade of GABA, typeA, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system. Neuroscience 156: –10.CrossRefGoogle Scholar
Masserano, J. M. & King, C. (1982) Effects on sleep of phentolamine and epinephrine infused into the locus coeruleus of cats. Eur J Pharmacol 84: –204.CrossRefGoogle ScholarPubMed
Matsumoto, J. & Jouvet, M. (1964) Effets de la réserpine, DOPA et 5 HTP sur les deux états de sommeil. C R Soc Biol 158: –40.Google Scholar
McCarley, R. W., Brown, R. M. & Thakkar, M. (2005) GABA: inhibition and/or disinhibition in REM sleep control?Sleep Biol Rhyt 3(Suppl. 1): .Google Scholar
McGinty, D. J. & Harper, R. M. (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: –75.CrossRefGoogle ScholarPubMed
Monti, J. M. & Jantos, H. (2009) The role of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res 172: –46.Google Scholar
Monti, J. M. & Monti, D. (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11: –33.CrossRefGoogle ScholarPubMed
Mouret, J. (1975) Differences in sleep with Parkinson’s disease. Elecroenceph Clin Neurophysiol 38: –7.Google ScholarPubMed
Nitz, D. & Siegel, J. (1997) GABA release in the locus coeruleus as a function of sleep–wake state. Neuroscience 78: –801.CrossRefGoogle ScholarPubMed
Ouyang, M., Hellman, K., Abel, T. & Thomas, S. A. (2004) Adrenergic signaling plays a critical role in the maintenance of waking and in the regulation of REM sleep. J Neurophysiol 92: –82.CrossRefGoogle Scholar
Pal, D., Madan, V. & Mallick, B. N. (2005) Neural mechanism of rapid eye movement sleep generation: cessation of locus coeruleus neurons is a necessity. Acta Physiol Sinica 57: –13.Google ScholarPubMed
Portas, C., Bjorvatn, B., Fagerland, S. . (1998) On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83: –14.CrossRefGoogle ScholarPubMed
Putkonen, P. T. S., Leppävuori, A. & Stenberg, D. (1977) Paradoxical sleep inhibition by central alpha-adrenoceptor stimulant clonidine antagonized by alpha-receptor blocker yohimbine. Life Sci 21: –66.CrossRefGoogle ScholarPubMed
Python, A. Y., Charnay, R., Mikolajewski, H. . (1997) Effects of nisoxetine, a selective noradrenaline transporter blocker, on sleep in rats. Pharm Bioch Behav 58: –72.CrossRefGoogle ScholarPubMed
Rasmussen, K., Heym, J. & Jacobs, B. L. (1984) Activity of serotonin-containing neurons in nucleus centralis superior of freely moving cats. Exp Neurol 83: –17.CrossRefGoogle ScholarPubMed
Rasmussen, K., Morilak, D. A. & Jacobs, B. L. (1986) Single unit activity of locus coeruleus neurons in the freely moving cat. I. Naturalistic behaviors and in response to simple and complex stimuli. Brain Res 371: –34.CrossRefGoogle ScholarPubMed
Rye, D. B. (2004) The two faces of Eve: dopamine’s modulation of wakefulness and sleep. Neurology 63: –7.CrossRefGoogle ScholarPubMed
Sakai, K. (1985) Anatomical and physiological basis of paradoxical sleep. In , eds. Drucker-Colin, R., Morrison, A. R. & Parmeggiani, P. L.. pp. 111–37.
Sakai, K. (1988) Executive mechanisms of paradoxical sleep. Arch Ital Biol 126: –57.Google ScholarPubMed
Sakai, K. & Crochet, S. (2001a) Role of dorsal raphe neurons in paradoxical sleep generation in the cat: no evidence for serotonergic mechanisms. Eur J Neurosci 13: –12.Google Scholar
Sakai, K. & Crochet, S. (2001b) Increase in antidromic excitability in presumed serotonergic dorsal raphe neurons during paradoxical sleep in the cat. Brain Res 98: –41.Google Scholar
Sakai, K. & Crochet, S. (2003) A neural mechanism of sleep and wakefulness. Sleep Biol Rhyt 1: –42.Google Scholar
Sakai, K. & Crochet, S. (2004) Role of the locus coeruleus in the control of paradoxical sleep generation in the cat. Arch Ital Biol 142: –7.Google Scholar
Sander, K., Kottke, T. & Stark, H. (2008) Histamine H3 receptor antagonists go to clinics. Biol Pharm Bull 31: –81.CrossRefGoogle ScholarPubMed
Sanford, L. D., Tang, X., Xiao, J., Ross, R. J. & Morrison, A. R. (2003) GABAergic regulation of REM sleep in reticularis pontis oralis and caudalis in rats. J Neurophysiol 90: –45.CrossRefGoogle ScholarPubMed
Satoh, T. & Tanaka, R. (1973) Selective suppression of rapid eye movement sleep (REM) by fusaric acid, an inhibitor of dopamine-β-oxydase. Experientia 29: –8.CrossRefGoogle Scholar
Schenck, C. H. & Mahowald, M. W. (2002) REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in sleep. Sleep 25: –30.CrossRefGoogle ScholarPubMed
Shelton, J., Sutton, S., Yun, S. . (2008) Sleep-inducing effects mediated by a selective orexin-2 receptor antagonist during the light phase in the rat. J Sleep Res 17 (Suppl. 1): .Google Scholar
Shouse, M. N., Staba, R. J., Saquib, S. F. & Farber, P. R. (2000) Monoamines and sleep: microdialysis findings in pons and amygdala. Brain Res 860: –9.Google ScholarPubMed
Spiegel, R. & Devos, J. E. (1980) Central effects of guanfacine and clonidine during wakefulness and sleep in healthy subjects. Brit J Clin Pharmacol 10: –8.CrossRefGoogle ScholarPubMed
Stevens, D. R., McCarley, R. W. & Greene, (1994) The mechanism of noradrenergic alpha1 excitatory modulation of pontine reticular formation neurons. J Neurosci 14: –7.CrossRefGoogle Scholar
Taepavarapruk, N., Taepavarapruk, P., John, J. . (2008) State-dependent changes in glutamate, glycine, GABA, and dopamine levels in cat lumbar spinal cord. J Neurophysiol 100: –608.CrossRefGoogle ScholarPubMed
Thannickal, T. C., Moore, R. Y., Nienhuis, R. . (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27: –74.CrossRefGoogle ScholarPubMed
Tononi, G., Pompeiano, M. & Pompeiano, O. (1989) Modulation of desynchronized sleep through microinjection of beta-adrenergic agonists and antagonists in the dorsal pontine tegmentum of the cat. Pflügers Arch 415:–9.CrossRefGoogle ScholarPubMed
Tononi, G., Pompeiano, M. & Cirelli, C. (1991) Suppression of desynchronized sleep through microinjection of alpha2-adrenergic agonist clonidine in the dorsal pontine tegmentum of the cat. Pflügers Arch 418: –18.CrossRefGoogle Scholar
Toyoda, J. (1964) The effects of chlorpromazine and imipramine on the human nocturnal sleep electroencephalogram. Folia Psychiat Neurol 18: –221.Google Scholar
Trampus, M., Ferri, N., Monopoli, A. & Ongini, E. (1991) The dopamine D1 receptor is involved in the regulation of REM sleep in the rat. Eur J Pharmacol 194: –94.CrossRefGoogle ScholarPubMed
Trulson, M. E., Jacobs, B. L. & Morrison, A. R. (1981) Raphe unit activity during REM sleep in normal cats and in pontine lesioned cats displaying REM sleep without atonia. Brain Res 226: –91.CrossRefGoogle ScholarPubMed
Tulen, J. H., Man in ‘t Veld, A. J., Mechelse, K. & Boomsma, F. (1990) Sleep patterns in congenital dopamine beta-hydroxylase deficiency. J Neurol 237: –102.CrossRefGoogle ScholarPubMed
Vanni-Mercier, G., Sakai, K. & Jouvet, M. (1984) Neurones spécifiques de l’éveil dans l’hypothalamus postérieur. C R Acad Sci 298: –200.Google Scholar
Verret, L., Fort, P., Gervasoni, D., Léger, L. & Luppi, P. H. (2006) Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol 495: –86.CrossRefGoogle ScholarPubMed
Weitzman, E., McGregor, P., Moore, C. & Jacoby, J. (1969) The effect of alpha-methyl-para-tyrosine on sleep patterns of the monkey. Life Sciences 8: –7.CrossRefGoogle ScholarPubMed
Wyatt, R. J., Chase, T. N., Kupfer, D. J., Scott, J. & Snyder, F. (1971) Brain catecholamines and human sleep. Nature 133: –5.Google Scholar
Wyatt, R. S., Chase, T. N., Scott, J., Snyder, F. & Engelman, K. (1970) Effect of L-dopa on the sleep of Man. Nature 228: –1001.CrossRefGoogle Scholar
Xi, M. C., Morales, F. R. & Chase, M. H. (1999) Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol 82: –19.CrossRefGoogle ScholarPubMed
Zolovick, A. J., Stern, W. C., Jalowiec, J. E., Panksepp, J. & Morgane, P. J. (1973) Sleep-waking patterns and brain biogenic amine levels in cats after administration of 6-hydroxydopamine into the dorsolateral pontine tegmentum. Pharm Bioch Behav 1: –67.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×