Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T13:28:32.360Z Has data issue: false hasContentIssue false

22 - Glutamatergic regulation of REM sleep

from Section IV - Neuroanatomy and neurochemistry

Published online by Cambridge University Press:  07 September 2011

Pierre-Hervé Luppi
Affiliation:
Université de Lyon, France
Olivier Clement
Affiliation:
Université de Lyon, France
Emilie Sapin
Affiliation:
Université de Lyon, France
Damien Gervasoni
Affiliation:
Université de Lyon, France
Denise Salvert
Affiliation:
Université de Lyon, France
Patrice Fort
Affiliation:
Université de Lyon, France
Birendra N. Mallick
Affiliation:
Jawaharlal Nehru University
S. R. Pandi-Perumal
Affiliation:
Somnogen Canada Inc, Toronto
Robert W. McCarley
Affiliation:
Harvard University, Massachusetts
Adrian R. Morrison
Affiliation:
University of Pennsylvania
Get access

Summary

Summary

Since the discovery of rapid eye movement (REM) sleep (also known as paradoxical sleep, PS), it has been accepted that sleep is an active process. Paradoxical sleep is characterized by electroencephalogram (EEG) rhythmic activity resembling that of waking with a disappearance of muscle tone and the occurrence of REMs in contrast to slow-wave sleep (SWS, also known as non-REM sleep) identified by the presence of delta waves. Here, we review the most recent data indicating that glutamatergic neurons play a key role in the genesis of PS. We propose an updated integrated model of the mechanisms responsible for PS integrating these neurons. We hypothesize that the entrance from SWS to PS is due to the activation of PS-active glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD). We further propose that these neurons are tonically excited across all the sleep–waking cycle by glutamatergic neurons localized in the lateral periaqueductal gray. We finally hypothesize that the onset of activity of the SLD glutamatergic neurons is due to the removal of a GABAergic input from neurons localized in the ventrolateral periaqueductal gray and the adjacent deep mesencephalic reticular nucleus.

Type
Chapter
Information
Rapid Eye Movement Sleep
Regulation and Function
, pp. 214 - 222
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghajanian, G. K. & Vandermaelen, C. P. (1982) Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure. J Neurosci 2: –92.CrossRefGoogle ScholarPubMed
Alam, M. N.Gong, H., Alam, T. ., (2002) Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J Physiol 538: –31.CrossRefGoogle ScholarPubMed
Aston-Jones, G. & Bloom, F. E. (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep–waking cycle. J Neurosci 1: –86.CrossRefGoogle ScholarPubMed
Baghdoyan, H. A. (1997) Cholinergic mechanisms regulating REM sleep. In Sleep Science: Integrating Basic Research and Clinical Practice, ed. Schwartz, W. J.. Basel: S. Karger Publishing, pp. 88–116.Google Scholar
Beitz, A. J. (1990) Relationship of glutamate and aspartate to the periaqueductal gray-raphe magnus projection: analysis using immunocytochemistry and microdialysis. J Histochem Cytochem 38: –65.CrossRefGoogle ScholarPubMed
Boissard, R., Fort, P., Gervasoni, D., Barbagli, B. & Luppi, P. H. (2003) Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci 18: –39.CrossRefGoogle ScholarPubMed
Boissard, R., Gervasoni, D., Fort, P. . (2000) Neuronal networks responsible for paradoxical sleep onset and maintenance in rats: a new hypothesis. Sleep, 23 Suppl: .Google Scholar
Boissard, R., Gervasoni, D., Schmidt, M. H. . (2002) The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16: –73.CrossRefGoogle ScholarPubMed
Bourgin, P., Escourrou, P., Gaultier, C. & Adrien, J. (1995) Induction of rapid eye movement sleep by carbachol infusion into the pontine reticular formation in the rat. Neuroreport 6: –6.CrossRefGoogle ScholarPubMed
Brooks, P. L. & Peever, J. H. (2008) Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia. J Neurosci 28: –45.CrossRefGoogle Scholar
Carli, G. & Zanchetti, A. (1965) A study of pontine lesions suppressing deep sleep in the cat. Arch Ital Biol 103: –88.Google ScholarPubMed
Chase, M. H. (2008) Confirmation of the consensus that glycinergic postsynaptic inhibition is responsible for the atonia of REM sleep. Sleep 31, ––97.CrossRefGoogle ScholarPubMed
Chase, M. H., Soja, P. J. & Morales, F. R. (1989) Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep. J Neurosci 9: –51.CrossRefGoogle ScholarPubMed
Crochet, S., Onoe, H. & Sakai, K. (2006) A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study. Eur J Neurosci 24: –12.CrossRefGoogle ScholarPubMed
Crochet, S. & Sakai, K. (1999a) Alpha-2 adrenoceptor mediated paradoxical (REM) sleep inhibition in the cat. Neuroreport 10: –204.CrossRefGoogle ScholarPubMed
Crochet, S. & Sakai, K. (1999b) Effects of microdialysis application of monoamines on the EEG and behavioural states in the cat mesopontine tegmentum. Eur J Neurosci 11: –52.CrossRefGoogle ScholarPubMed
Deurveilher, S., Hars, B. & Hennevin, E. (1997) Pontine microinjection of carbachol does not reliably enhance paradoxical sleep in rats. Sleep 20: –607.Google Scholar
Fort, P., Luppi, P. H. & Jouvet, M. (1993) Glycine-immunoreactive neurones in the cat brain stem reticular formation. Neuroreport 4: –6.Google ScholarPubMed
Fort, P., Luppi, P. H., Wenthold, R. & Jouvet, M. (1990) [Glycine immunoreactive neurons in the medulla oblongata in cats]. C R Acad Sci III, 311: –12.Google ScholarPubMed
Garzon, M., De Andres, I. & Reinoso-Suarez, F. (1998) Sleep patterns after carbachol delivery in the ventral oral pontine tegmentum of the cat. Neuroscience 83: –44.CrossRefGoogle ScholarPubMed
George, R., Haslett, W. L. & Jenden, D. J. (1964) A cholinergic mechanism in the brainstem reticular formation: induction of paradocixal sleep. Int J Neuropharmacol 3: –52.CrossRefGoogle ScholarPubMed
Gervasoni, D., Lin, S. C., Ribeiro, S., . (2004) Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci 24: –47.CrossRefGoogle ScholarPubMed
Gervasoni, D., Panconi, E., Henninot, V., . (2002) Effect of chronic treatment with milnacipran on sleep architecture in rats compared with paroxetine and imipramine. Pharmacol Biochem Behav 73: –63.CrossRefGoogle ScholarPubMed
Gnadt, J. W. & Pegram, G. V. (1986) Cholinergic brainstem mechanisms of REM sleep in the rat. Brain Res 384: –41.CrossRefGoogle ScholarPubMed
Goutagny, R., Luppi, P. H., Salvert, D., Gervasoni, D. & Fort, P. (2005) GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep-waking cycle. Neuroreport 16: –73.CrossRefGoogle ScholarPubMed
Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189: –8.CrossRefGoogle ScholarPubMed
Holmes, C. J. & Jones, B. E. (1994) Importance of cholinergic, GABAergic, serotonergic and other neurons in the medial medullary reticular formation for sleep-wake states studied by cytotoxic lesions in the cat. Neuroscience 62: –200.Google ScholarPubMed
Jones, B. E. (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40: –56.CrossRefGoogle Scholar
Jones, B.E., Bobillier, P. & Jouvet, M. (1969) [Effect of destruction of neurons containing catecholamines of the mesencephalon on the wake-sleep cycle in cats]. C R Seances Soc Biol Fil 163; –80.Google ScholarPubMed
Jouvet, M. (1962) Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol 100: –206.Google Scholar
Jouvet, M. (1965) [The paradoxical phase of sleep]. Int J Neurol 5: –50.Google Scholar
Jouvet, M. & Michel, F. (1959) Corrélations électromyographiques du sommeil chez le chat décortiqué et mésencéphalique chronique. CR Soc Biol 153: –5.Google Scholar
Jouvet, M., Michel, F. & Courjon, J. (1959) Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physiologique. CR Seances Soc Biol 153: –8.Google Scholar
Kodama, T., Lai, Y. Y. & Siegel, J. M. (1998) Enhanced glutamate release during REM sleep in the rostromedial medulla as measured by in vivo microdialysis. Brain Res 780: –81.CrossRefGoogle ScholarPubMed
Kovacs, K. J. (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33: –97.CrossRefGoogle ScholarPubMed
Lai, Y. Y. & Siegel, J. M. (1990) Cardiovascular and muscle tone changes produced by microinjection of cholinergic and glutamatergic agonists in dorsolateral pons and medial medulla. Brain Res 514: –36.CrossRefGoogle ScholarPubMed
Lai, Y. Y. & Siegel, J. M. (1991) Pontomedullary glutamate receptors mediating locomotion and muscle tone suppression. J Neurosci 11: –7.CrossRefGoogle ScholarPubMed
Lee, M. G., Hassani, O. K. & Jones, B. E. (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25: –20.CrossRefGoogle ScholarPubMed
Léger, L., Goutagny, R., Sapin, E. . (2009) Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. J Chem Neuroanat 37: 149–57.CrossRefGoogle ScholarPubMed
Lu, J., Sherman, D., Devor, M. & Saper, C. B. (2006) A putative flip-flop switch for control of REM sleep. Nature 441: –94.CrossRefGoogle ScholarPubMed
Luppi, P. H., Sakai, K., Fort, P., Salvert, D. & Jouvet, M. (1988) The nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat nucleus reticularis magnocellularis: a double-labeling study with cholera toxin as a retrograde tracer. J Comp Neurol 277: –20.CrossRefGoogle ScholarPubMed
Maloney, K. J., Mainville, L. & Jones, B. E. (1999) Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 19: –72.CrossRefGoogle ScholarPubMed
Maloney, K. J., Mainville, L. & Jones, B. E. (2000) c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery. J Neurosci 20: –79.CrossRefGoogle ScholarPubMed
McCarley, R. W. & Hobson, J. A. (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189: –60.CrossRefGoogle ScholarPubMed
McGinty, D. J. & Harper, R. M. (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: –75.CrossRefGoogle ScholarPubMed
Mileykovskiy, B. Y., Kiyashchenko, L. I. & Siegel, J. M. (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46: –98.CrossRefGoogle ScholarPubMed
Onoe, H. & Sakai, K. (1995) Kainate receptors: a novel mechanism in paradoxical (REM) sleep generation. Neuroreport 6: –6.Google ScholarPubMed
Paxinos, G. & Watson, C. (1997) The Rat Brain in Stereotaxic Coordinates. Orlando: Academic Press, Sydney.Google Scholar
Pollock, M. S. & Mistlberger, R. E. (2003) Rapid eye movement sleep induction by microinjection of the GABA-A antagonist bicuculline into the dorsal subcoeruleus area of the rat. Brain Res 962: –77.CrossRefGoogle ScholarPubMed
Sakai, K. (1985) Neurons responsible for paradoxical sleep. In Sleep: Neurotransmitters and Neuromodulators, eds. A. Wauquier, & Janssen Research Foundation. New York: Raven Press, pp. 29–42.Google Scholar
Sakai, K., Crochet, S. & Onoe, H. (2001) Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch Ital Biol 139: –107.Google ScholarPubMed
Sakai, K., Kanamori, N. & Jouvet, M. (1979) [Neuronal activity specific to paradoxical sleep in the bulbar reticular formation in the unrestrained cat]. C R Seances Acad Sci D 289: –61.Google ScholarPubMed
Sakai, K. & Koyama, Y. (1996) Are there cholinergic and non-cholinergic paradoxical sleep-on neurones in the pons?Neuroreport 7: –53.CrossRefGoogle ScholarPubMed
Sakai, K., Sastre, J. P., Kanamori, N. & Jouvet, M. (1981) State-specific neurones in the ponto-medullary reticular formation with special reference to the postural atonia during paradoxical sleep in the cat. In Brain Mechanisms of Perceptual Awareness and Purposeful Behavior, eds. Pompeiano, O. & Marsan, C. Aimone. New York: Raven Press, pp. 405–29.Google Scholar
Sanford, L. D., Tang, X., Xiao, J., Ross, R. J. & Morrison, A. R. (2003) GABAergic regulation of REM sleep in reticularis pontis oralis and caudalis in rats. Journal of Neurophysiology 90: –45.CrossRefGoogle ScholarPubMed
Sapin, E., Lapray, D., Berod, A. . (2009) Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS ONE 4: .CrossRefGoogle ScholarPubMed
Sastre, J. P., Buda, C., Kitahama, K. & Jouvet, M. (1996) Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience 74: –26.CrossRefGoogle ScholarPubMed
Sastre, J. P., Buda, C., Lin, J. S. & Jouvet, M. (2000) Differential c-fos expression in the rhinencephalon and striatum after enhanced sleep-wake states in the cat. Eur J Neurosci 12: –410.CrossRefGoogle ScholarPubMed
Sastre, J. P., Sakai, K. & Jouvet, M. (1981) Are the gigantocellular tegmental field neurons responsible for paradoxical sleep?Brain Res 229: –61.CrossRefGoogle ScholarPubMed
Shiromani, P. J. & Fishbein, W. (1986) Continuous pontine cholinergic microinfusion via mini-pump induces sustained alterations in rapid eye movement (REM) sleep. Pharmacol Biochem Behav 25: –61.CrossRefGoogle ScholarPubMed
Siegel, J. M. (2005) Clues to the functions of mammalian sleep. Nature 437: –71.CrossRefGoogle ScholarPubMed
Swanson, L. W. (1998) Brain Maps: Structure of the Rat Brain: A Laboratory Guide with Printed and Electronic Templates for Data, Models, and Schematics. New York: Elsevier.Google Scholar
Takahashi, K., Lin, J. S. & Sakai, K. (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake–sleep states in the mouse. J Neurosci 26: –8.CrossRefGoogle ScholarPubMed
Tononi, G., Pompeiano, M. & Cirelli, C. (1991) Suppression of desynchronized sleep through microinjection of the alpha 2-adrenergic agonist clonidine in the dorsal pontine tegmentum of the cat. Pflugers Arch 418: –18.CrossRefGoogle ScholarPubMed
Vanni-Mercier, G., Sakai, K. & Jouvet, M. (1984) [Specific neurons for wakefulness in the posterior hypothalamus in the cat]. C R Acad Sci III 298: –200.Google ScholarPubMed
Vanni-Mercier, G., Sakai, K., Lin, J. S. & Jouvet, M. (1989) Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol 127: –64.Google ScholarPubMed
Velazquez-Moctezuma, J., Gillin, J. C. & Shiromani, P. J. (1989) Effect of specific M1, M2 muscarinic receptor agonists on REM sleep generation. Brain Res 503: –31.CrossRefGoogle ScholarPubMed
Verret, L., Leger, L., Fort, P. & Luppi, P. H. (2005) Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur J Neurosci 21: –504.CrossRefGoogle ScholarPubMed
Webster, H. H. & Jones, B. E. (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res 458: –302.CrossRefGoogle ScholarPubMed
Xi, M. C., Morales, F. R. & Chase, M. H. (1999) Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol 82: –19.CrossRefGoogle ScholarPubMed
Xi, M. C., Morales, F. R. & Chase, M. H. (2001) The motor inhibitory system operating during active sleep is tonically suppressed by GABAergic mechanisms during other states. J Neurophysiol 86: –15.CrossRefGoogle ScholarPubMed
Yamamoto, K., Mamelak, A. N., Quattrochi, J. J. & Hobson, J. A. (1990) A cholinoceptive desynchronized sleep induction zone in the anterodorsal pontine tegmentum: locus of the sensitive region. Neuroscience 39: –93.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×