Please note: you will be unable to purchase articles on Cambridge Core between 8.00am and 11.00am (BST) on Tuesday 11 May. If you have any urgent queries, please visit the help pages to contact our customer service team.
We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Applying circle inversion on a square grid filled with circles, we obtain a configuration that we call a fabric of kissing circles. We focus on the curvature inside the individual components of the fabric, which are two orthogonal frames and two orthogonal families of chains. We show that the curvatures of the frame circles form a doubly infinite arithmetic sequence (bi-sequence), whereas the curvatures in each chain are arranged in a quadratic bi-sequence. We also prove a sufficient condition for the fabric to be integral.
Higher-dimensional binary shifts of number-theoretic origin with positive topological entropy are considered. We are particularly interested in analysing their symmetries and extended symmetries. They form groups, known as the topological centralizer and normalizer of the shift dynamical system, which are natural topological invariants. Here, our focus is on shift spaces with trivial centralizers, but large normalizers. In particular, we discuss several systems where the normalizer is an infinite extension of the centralizer, including the visible lattice points and the k-free integers in some real quadratic number fields.
An ordered hypergraph is a hypergraph whose vertex set is linearly ordered, and a convex geometric hypergraph is a hypergraph whose vertex set is cyclically ordered. Extremal problems for ordered and convex geometric graphs have a rich history with applications to a variety of problems in combinatorial geometry. In this paper, we consider analogous extremal problems for uniform hypergraphs, and determine the order of magnitude of the extremal function for various ordered and convex geometric paths and matchings. Our results generalize earlier works of Braı–Károlyi–Valtr, Capoyleas–Pach, and Aronov–Dujmovič–Morin–Ooms-da Silveira. We also provide a new variation of the Erdős-Ko-Rado theorem in the ordered setting.
In this paper, we follow and extend a group-theoretic method introduced by Greenleaf–Iosevich–Liu–Palsson (GILP) to study finite points configurations spanned by Borel sets in
$\mathbb{R}^n,n\geq 2,n\in\mathbb{N}.$
We remove a technical continuity condition in a GILP’s theorem in [Revista Mat. Iberoamer31 (2015), 799–810]. This allows us to extend the Wolff–Erdogan dimension bound for distance sets to finite points configurations with k points for
$k\in\{2,\dots,n+1\}$
forming a
$(k-1)$
-simplex.
We show that, for a constant-degree algebraic curve γ in ℝD, every set of n points on γ spans at least Ω(n4/3) distinct distances, unless γ is an algebraic helix, in the sense of Charalambides [2]. This improves the earlier bound Ω(n5/4) of Charalambides [2].
We also show that, for every set P of n points that lie on a d-dimensional constant-degree algebraic variety V in ℝD, there exists a subset S ⊂ P of size at least Ω(n4/(9+12(d−1))), such that S spans
$\left({\begin{array}{*{20}{c}} {|S|} \\ 2 \\\end{array}} \right)$
distinct distances. This improves the earlier bound of Ω(n1/(3d)) of Conlon, Fox, Gasarch, Harris, Ulrich and Zbarsky [4].
Both results are consequences of a common technical tool.
Neodymium magnets were independently discovered in 1984 by General Motors and Sumitomo. Today, they are the strongest type of permanent magnets commercially available. They are the most widely used industrial magnets with many applications, including in hard disk drives, cordless tools and magnetic fasteners. We use a vector potential approach, rather than the more usual magnetic potential approach, to derive the three-dimensional (3D) magnetic field for a neodymium magnet, assuming an idealized block geometry and uniform magnetization. For each field or observation point, the 3D solution involves 24 nondimensional quantities, arising from the eight vertex positions of the magnet and the three components of the magnetic field. The only unknown in the model is the value of magnetization, with all other model quantities defined in terms of field position and magnet location. The longitudinal magnetic field component in the direction of magnetization is bounded everywhere, but discontinuous across the magnet faces parallel to the magnetization direction. The transverse magnetic fields are logarithmically unbounded on approaching a vertex of the magnet.
In 1945–1946, C. L. Siegel proved that an $n$-dimensional lattice $\unicode[STIX]{x1D6EC}$ of determinant $\text{det}(\unicode[STIX]{x1D6EC})$ has at most $m^{n^{2}}$ different sublattices of determinant $m\cdot \text{det}(\unicode[STIX]{x1D6EC})$. In 1997, the exact number of the different sublattices of index $m$ was determined by Baake. We present a systematic treatment for counting the sublattices and derive a formula for the number of the sublattice classes under unimodular equivalence.
We calculate the growth rate of the complexity function for polytopal cut and project sets. This generalizes work of Julien where the almost canonical condition is assumed. The analysis of polytopal cut and project sets has often relied on being able to replace acceptance domains of patterns by so-called cut regions. Our results correct mistakes in the literature where these two notions are incorrectly identified. One may only relate acceptance domains and cut regions when additional conditions on the cut and project set hold. We find a natural condition, called the quasicanonical condition, guaranteeing this property and demonstrate by counterexample that the almost canonical condition is not sufficient for this. We also discuss the relevance of this condition for the current techniques used to study the algebraic topology of polytopal cut and project sets.
Let
${\mathcal{A}}$
be a star-shaped polygon in the plane, with rational vertices, containing the origin. The number of primitive lattice points in the dilate
$t{\mathcal{A}}$
is asymptotically
$\frac{6}{\unicode[STIX]{x1D70B}^{2}}\text{Area}(t{\mathcal{A}})$
as
$t\rightarrow \infty$
. We show that the error term is both
$\unicode[STIX]{x1D6FA}_{\pm }(t\sqrt{\log \log t})$
and
$O(t(\log t)^{2/3}(\log \log t)^{4/3})$
. Both bounds extend (to the above class of polygons) known results for the isosceles right triangle, which appear in the literature as bounds for the error term in the summatory function for Euler’s
$\unicode[STIX]{x1D719}(n)$
.
Let
$W\subset \operatorname{GL}(V)$
be a complex reflection group and
$\mathscr{A}(W)$
the set of the mirrors of the complex reflections in
$W$
. It is known that the complement
$X(\mathscr{A}(W))$
of the reflection arrangement
$\mathscr{A}(W)$
is a
$K(\unicode[STIX]{x1D70B},1)$
space. For
$Y$
an intersection of hyperplanes in
$\mathscr{A}(W)$
, let
$X(\mathscr{A}(W)^{Y})$
be the complement in
$Y$
of the hyperplanes in
$\mathscr{A}(W)$
not containing
$Y$
. We hope that
$X(\mathscr{A}(W)^{Y})$
is always a
$K(\unicode[STIX]{x1D70B},1)$
. We prove it in case of the monomial groups
$W=G(r,p,\ell )$
. Using known results, we then show that there remain only three irreducible complex reflection groups, leading to just eight such induced arrangements for which this
$K(\unicode[STIX]{x1D70B},1)$
property remains to be proved.
We provide a general program for finding nice arrangements of points in real or complex projective space from transitive actions of finite groups. In many cases, these arrangements are optimal in the sense of maximizing the minimum distance. We introduce our program in terms of general Schurian association schemes before focusing on the special case of Gelfand pairs. Notably, our program unifies a variety of existing packings with heretofore disparate constructions. In addition, we leverage our program to construct the first known infinite family of equiangular lines with Heisenberg symmetry.
We prove that n plane algebraic curves determine O(n(k+2)/(k+1)) points of kth order tangency. This generalizes an earlier result of Ellenberg, Solymosi and Zahl on the number of (first order) tangencies determined by n plane algebraic curves.
Gallagher’s theorem is a sharpening and extension of the Littlewood conjecture that holds for almost all tuples of real numbers. We provide a fibre refinement, solving a problem posed by Beresnevich, Haynes and Velani in 2015. Hitherto, this was only known on the plane, as previous approaches relied heavily on the theory of continued fractions. Using reduced successive minima in lieu of continued fractions, we develop the structural theory of Bohr sets of arbitrary rank, in the context of diophantine approximation. In addition, we generalise the theory and result to the inhomogeneous setting. To deal with this inhomogeneity, we employ diophantine transference inequalities in lieu of the three distance theorem.
Over the past forty years many papers have studied logarithmic sheaves associated to reduced divisors, in particular logarithmic bundles associated to plane curves. An interesting family of these curves are the so-called free ones for which the associated logarithmic sheaf is the direct sum of two line bundles. Terao conjectured thirty years ago that when a curve is a finite set of distinct lines (i.e. a line arrangement) its freeness depends solely on its combinatorics, but this has only been proved for sets of up to 12 lines. In looking for a counter-example to Terao’s conjecture, the nearly free curves introduced by Dimca and Sticlaru arise naturally. We prove here that the logarithmic bundle associated to a nearly free curve possesses a minimal non-zero section that vanishes on one single point, P say, called the jumping point, and that this characterises the bundle. We then give a precise description of the behaviour of P. Based on detailed examples we then show that the position of P relative to its corresponding nearly free arrangement of lines may or may not be a combinatorial invariant, depending on the chosen combinatorics.
We generalize work by Bourgain and Kontorovich [On the local-global conjecture for integral Apollonian gaskets, Invent. Math. 196 (2014), 589–650] and Zhang [On the local-global principle for integral Apollonian 3-circle packings, J. Reine Angew. Math. 737, (2018), 71–110], proving an almost local-to-global property for the curvatures of certain circle packings, to a large class of Kleinian groups. Specifically, we associate in a natural way an infinite family of integral packings of circles to any Kleinian group
${\mathcal{A}}\leqslant \text{PSL}_{2}(K)$
satisfying certain conditions, where
$K$
is an imaginary quadratic field, and show that the curvatures of the circles in any such packing satisfy an almost local-to-global principle. A key ingredient in the proof is that
${\mathcal{A}}$
possesses a spectral gap property, which we prove for any infinite-covolume, geometrically finite, Zariski dense Kleinian group in
$\operatorname{PSL}_{2}({\mathcal{O}}_{K})$
containing a Zariski dense subgroup of
$\operatorname{PSL}_{2}(\mathbb{Z})$
.
We construct a family of self-affine tiles in $\mathbb{R}^{d}$ ($d\geqslant 2$) with noncollinear digit sets, which naturally generalizes a class studied originally by Q.-R. Deng and K.-S. Lau in $\mathbb{R}^{2}$, and its extension to $\mathbb{R}^{3}$ by the authors. We obtain necessary and sufficient conditions for the tiles to be connected and for their interiors to be contractible.
Given complex numbers w1,…,wn, we define the weight w(X) of a set X of 0–1 vectors as the sum of $w_1^{x_1} \cdots w_n^{x_n}$ over all vectors (x1,…,xn) in X. We present an algorithm which, for a set X defined by a system of homogeneous linear equations with at most r variables per equation and at most c equations per variable, computes w(X) within relative error ∊ > 0 in (rc)O(lnn-ln∊) time provided $|w_j| \leq \beta (r \sqrt{c})^{-1}$ for an absolute constant β > 0 and all j = 1,…,n. A similar algorithm is constructed for computing the weight of a linear code over ${\mathbb F}_p$. Applications include counting weighted perfect matchings in hypergraphs, counting weighted graph homomorphisms, computing weight enumerators of linear codes with sparse code generating matrices, and computing the partition functions of the ferromagnetic Potts model at low temperatures and of the hard-core model at high fugacity on biregular bipartite graphs.
This paper is concerned with the maximisation of the
$k$
-th eigenvalue of the Laplacian amongst flat tori of unit volume in dimension
$d$
as
$k$
goes to infinity. We show that in any dimension maximisers exist for any given
$k$
, but that any sequence of maximisers degenerates as
$k$
goes to infinity when the dimension is at most 10. Furthermore, we obtain specific upper and lower bounds for the injectivity radius of any sequence of maximisers. We also prove that flat Klein bottles maximising the
$k$
-th eigenvalue of the Laplacian exhibit the same behaviour. These results contrast with those obtained recently by Gittins and Larson, stating that sequences of optimal cuboids for either Dirichlet or Neumann boundary conditions converge to the cube no matter the dimension. We obtain these results via Weyl asymptotics with explicit control of the remainder in terms of the injectivity radius. We reduce the problem at hand to counting lattice points inside anisotropically expanding domains, where we generalise methods of Yu. Kordyukov and A. Yakovlev by considering domains that expand at different rates in various directions.
the pioneer of interchange laws in universal algebra
We establish a combinatorial model for the Boardman–Vogt tensor product of several absolutely free operads, that is, free symmetric operads that are also free as 𝕊-modules. Our results imply that such a tensor product is always a free 𝕊-module, in contrast with the results of Kock and Bremner–Madariaga on hidden commutativity for the Boardman–Vogt tensor square of the operad of non-unital associative algebras.