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Abstract. We give a characterization of inter-model sets with Euclidean internal space.
This characterization is similar to previous results for general inter-model sets obtained
independently by Baake, Lenz and Moody, and Aujogue. The new ingredients are two
additional conditions. The first condition is on the rank of the abelian group generated
by the set of internal differences. The second condition is on a flow on a torus defined
via the address map introduced by Lagarias. This flow plays the role of the maximal
equicontinuous factor in the previous characterizations.
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1. Introduction
In the 1970s Meyer introduced some Delone sets in R

d , now called Meyer sets, in
connection with his work in harmonic analysis. He observed that each Meyer set can be
embedded into another type of Delone set called a model set. This last collection is a
subclass of Meyer sets defined by a simple geometric construction: they are the projection
on the first coordinate of some part of a lattice in R

d ×H where H, the internal space, is
a locally compact abelian group.

After the discovery of quasicrystals by Gratias et al [DSC84], model sets with
Euclidean internal space were proposed as a geometric model for the atomic positions
in a quasicrystal. Euclidean model sets and their associated dynamical systems played an
important role in the mathematical diffraction theory of quasicrystals. Hof in [Hof95]
proved that every repetitive regular inter-model set (see the definition in §2) has pure
point diffraction, and then Schlottmann in [Sch00] generalized this result to repetitive
regular inter-model sets with arbitrary locally compact abelian group as internal space.

https://doi.org/10.1017/etds.2022.113 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0
http://dx.doi.org/10.1017/etds.2022.113
https://orcid.org/0000-0002-2159-0228
mailto:allendes.mauricio@gmail.com
mailto:acoronel@mat.uc.cl
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2022.113&domain=pdf
https://doi.org/10.1017/etds.2022.113


3898 M. Allendes Cerda and D. Coronel

Euclidean model sets are also important in the theory of Pisot substitution tilings. A central
problem here has been to understand when the space generated by a Pisot substitution is
topologically conjugate to the space generated by a Euclidean model set [ABB+15, BK06,
BST10].

In [Sch98], Schlottmann gave a necessary and sufficient condition for a Delone set to be
a general non-singular model set in terms of the recurrence structure of the Delone set, and
he asked for a characterization of non-singular model sets with well-behaved internal space
such as Rn. We recall that every non-singular model set is a repetitive inter-model set (see
Definition 2.4). A dynamical characterization of repetitive regular inter-model sets was
given by Baake, Lenz and Moody in [BLM07], and then Aujogue [Auj16a] extended this
characterization to arbitrary repetitive inter-model sets not necessarily regular. Both results
apply to general repetitive inter-model sets but left open the question of characterizing
repetitive inter-model sets with Euclidean internal space. In this paper, we answer this
question by adding an algebraic and a dynamical property to the previous characterizations
in [Auj16a, BLM07]. The first condition is given in terms of the rank of the abelian group
generated by the set of differences of the Delone set, and the second condition is written
in terms of a flow on a torus constructed from the address map introduced by Lagarias in
[Lag99]. We call this flow the address system. We recall that every inter-model set is a
Meyer set, and all the previous characterizations of inter-model sets are written in the form
of what we need to add to a Meyer set in order to have an inter-model set. Our result states
that all the information needed for being an inter-model set with Euclidean internal space
is encoded in the rank of the group of differences and the dynamical relation between the
dynamical system associated to the Meyer set and the address system.

In order to give a more detailed statement of our results we recall some definitions; see
§2 for details.

A discrete subset � of R
d is a Delone set if it is uniformly discrete and relatively

dense. It is finitely generated if the abelian group generated by�−� is finitely generated,
and it is repetitive if every pattern in � appears with bounded gaps. Given a Delone
set �, its hull �� is defined as the collection of all Delone sets whose local patterns
agree with those of � up to translation. If � has finite local complexity, then the hull
can be endowed with a topology which is metrizable and compact. The subset of the
hull of all Delone sets containing 0 is called the canonical transversal of �� and we
denote it by ��. The group R

d acts on the hull continuously by translation, given a
(topological) dynamical system (��, Rd). Some combinatorial properties of the Delone
set translate into dynamical properties. For example, repetitivity of � is equivalent to
minimality of (��, Rd). It is well known in dynamical systems theory that there is a
dynamical system with an equicontinuous action of Rd that is a factor (semi-conjugacy)
of (��, Rd) and it is maximal with to respect these properties. This dynamical system is
unique up to topological conjugacy and we call it the maximal equicontinuous factor of
(��, Rd).

It is known that repetitivity implies finite local complexity (see, for instance, [BG13])
and that finite local complexity implies finitely generated (see [Lag99]). A Delone set �
in R

d is a Meyer set if the set of differences �−� is a Delone set.
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Let � be a finitely generated Delone set in R
d . The rank of � is the rank of the abelian

group generated by � as a subset of Rd . We denote this group by 〈�〉, and its rank by s.
Let B be a basis of 〈�〉. Then the address map for� associated to B is the coordinate map
with respect to the basis B from 〈�〉 to Z

s.
Notice that since 〈�〉 is an abelian group and 〈�−�〉 ⊆ 〈�〉, if 〈�〉 is finitely

generated then 〈�−�〉 is finitely generated. On the other hand, for every x in � one
has that 〈�〉 ⊆ 〈{x} ∪ (�−�)〉. Thus, if 〈�−�〉 is finitely generated then 〈�〉 is also
finitely generated. Moreover, we get that rank〈�−�〉 ≤ rank〈�〉 ≤ rank〈�−�〉 + 1.
Also observe that for every �0 in �� we have 0 ∈ �0 and thus

〈�0〉 = 〈�0 −�0〉. (1.1)

In particular, if � is a repetitive Meyer set in R
d then all Delone sets �′ in �� have the

same patterns and the set�′ −�′ does not depend on�′ and is the same for every Delone
set in ��.

Assume that � is a repetitive Meyer set in R
d . Given a basis B of 〈�−�〉, let

ϕ : 〈�−�〉 → Z
s be the coordinate map with respect to the basis B. By (1.1), we have

that for every �0 in �� the address map of �0 is equal to ϕ.
Lagarias proved in [Lag99] that if � is a Meyer set then there is a linear map from R

d

to R
s whose distance to the address map of � is uniformly bounded on the points of �.

In fact, this property characterizes Meyer sets. Our first result gives the existence of one
linear map that approximates the address map of all Delone sets in ��, and it also gives a
linear flow on a torus that we use to characterize inter-model sets with Euclidean internal
space.

Put ‖x‖s for the Euclidean norm of x in R
s .

PROPOSITION 1.1. (Address system) Let� be a repetitive Meyer set in R
d and let s be the

rank of 〈�−�〉. Let B be a basis of 〈�−�〉 and let ϕ : 〈�−�〉 → Z
s be the coordinate

map with respect to the basis B. There are an injective linear map � : Rd → R
s and a

constant C > 0 such that for every �0 in �� and every t ∈ �0 we have

‖ϕ(t)− �(t)‖s ≤ C.

Moreover, there is a linear flow (Ts , Rd) defined by

(w, t) ∈ T
s × R

d �−→ w + [�(t)]Zs ,

and there is a homomorphism πAd : �� → T
s such that for every�′ in �� and every t in

R
d we have πAd(�

′ − t) = πAd(�
′)+ [�(t)]Zs .

Notice that the dynamical system (Ts , Rd) and the homomorphism πAd in
Proposition 1.1 depend on the basis B chosen. However, if we change the basis, then
the new system is topologically conjugate to the previous one. We call any of these
dynamical systems an address system of �, and the map πAd an address homomorphism
of �, which are well defined up to topological conjugacy. Observe that each coordinate of
πAd in Proposition 1.1 gives a topological factor of (��, Rd) onto the circle T; however,
(Ts , Rd) is not necessarily a topological factor of (��, Rd). The minimality of (��, Rd)
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implies that (Ts , Rd) is a topological factor of (��, Rd) if and only it is minimal. Indeed,
minimality of (��, Rd) implies that (πAd(��), Rd) is minimal, and then πAd(��) = T

s

if and only if (Ts , Rd) is minimal. Finally, applying a well-known criterion for minimality
of linear flows on the torus [KH95, Proposition 1.5.1], we have that if we denote by A the
representative matrix of � in the canonical basis and by AT the transpose then we have
that (Ts , Rd) is minimal if and only if Ker(AT ) ∩ Z

s = {0}, which gives a simple way to
check minimality of the address system (Ts , Rd).

The next theorem is the main result of the paper; it characterizes inter-model sets with
Euclidean internal space.

THEOREM A. A repetitive Meyer set� in R
d is an inter-model set with Euclidean internal

space if and only if rank(〈�−�〉) > d and there is an address system of � that is a
topological factor of (��, Rd) such that there is one point with a unique preimage under
the factor map.

By [Pa76, Proposition 1.1] (see also [ABKL15, Lemma 3.11]) and the previous theorem,
an address system of a repetitive inter-model set � with Euclidean internal space is the
maximal equicontinuous factor of (��, Rd).

From Theorem A and [BLM07, Theorem 5] we obtain the following characterization for
regular inter-model sets with Euclidean internal space. Observe that if an address system
of � is minimal then it is also uniquely ergodic, since it is an equicontinuous system.

THEOREM B. A repetitive Meyer set � in R
d is a regular inter-model set with Euclidean

internal space if and only rank(〈�−�〉) > d and there is an address system of � that is
a topological factor of (��, Rd) such that the set of points in the address system with a
unique preimage under the factor map has full measure for the unique ergodic measure.

For the proof of Theorem A, given a Meyer set, we construct a cut and project scheme
(CPS) with a Euclidean internal space and a window, which we call the ‘Lagarias CPS’
and the ‘minimal window’, respectively. What we actually prove in Theorem A is that if
� satisfies the necessary condition then it is an inter-model set generated by the Lagarias
CPS and the minimal window. Using [BLM07, Theorem 5] again, we can give a more
explicit version of Theorem B.

THEOREM C. A repetitive Meyer set � in R
d is a regular inter-model set with Euclidean

internal space if and only rank(〈�−�〉) > d, there is an address system of � that is a
topological factor of (��, Rd) such that there is one point with a unique preimage under
the factor map and the boundary of minimal window of � has measure zero.

In order to put our results in context we mention an application to the theory of
unimodular Pisot irreducible substitution tilings. For this purpose, given a tiling T of R by
intervals, we identify T with the Delone set �(T ) in R obtained from the extreme points
of the tiles in T . It is well known that the hull of T with the action by translation of R
is topologically conjugate to the hull of �(T ) with the action by translation of R. When
T is a periodic point of a unimodular Pisot irreducible substitution with the length of the
tiles given by the coordinates of the eigenvector of the largest eigenvalue, one has that
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T (�) is a Meyer set [BK06]. Using that the substitution is Pisot and irreducible, it is not
difficult to prove that the length of the tiles forms a basis for the group of differences
generated by �(T ) and that the address system associated to this basis is a factor of
(��(T ), R). We call this address system the canonical address system of�(T ). Moreover,
from [BK06, Theorem 1] it is not difficult to deduce that the canonical address system
is the maximal equicontinuous factor of (��(T ), R). One has that the Lagarias CPS (see
§4.2.1) constructed from �(T ) is exactly the geometric construction that gives rise to the
Rauzy fractal modulo a linear change of coordinates, and the Rauzy fractal corresponds
to the minimal window in the Lagarias CPS. Since it is known that the Rauzy fractal has
zero measure boundary (see, for instance, [BST10]) we get that the minimal window has
zero measure boundary. Then, using Theorems A and C, one can give another proof of the
following known characterization of pure point unimodular Pisot irreducible substitution
tilings as regular model sets with Euclidean internal space, and by the condition that the
canonical address system has a point with unique preimage.

THEOREM 1.1. [BK06, Theorem 7.3, Corollary 9.4, and Remark 18.6] Let �T be the hull
of a unimodular Pisot irreducible substitution tiling T in R. The following assertions are
equivalent.

(i) �T has pure point dynamical spectrum.
(ii) ��(T ) is the hull of a regular model set with Euclidean internal space.

(iii) There is a point in the canonical address system of �(T ) with a unique preimage
under the factor map.

To prove Theorem 1.1, observe that (i) implies (iii). By Theorem C, we have that (iii) and
the fact that the minimal window has zero measure boundary implies (ii). Finally, it is well
known that the hull of a regular model set has pure point dynamical spectrum [Hof95].

There are constructions of Euclidean CPSs for Pisot type substitution in higher-
dimensional Euclidean spaces; see, for instance, [LAN18]. It is a current subject of
research to study the relation of those constructions and the Euclidean CPS proposed in
this paper.

Finally, we remark that from Proposition 1.1, for every repetitive Meyer set � in R
d ,

the dynamical system (��, Rd) has d continuous linearly independent eigenvalues in R
d .

This was first proved by Kellendonk and Sadun in [KS14] using pattern equivariant
cohomological methods. Our proof relies on dynamical methods. Both proofs are basically
the same and involve proving that some cocycles are coboundaries. But in our case we use
a groupoid version of the classical Gottschalk–Hedlund theorem in dynamical systems, and
in [KS14] the authors prove by hand that the cocycles that they define are coboundaries.

1.1. Strategy of the proof of Theorem A. The first step is to define an address system. This
is done in Proposition 1.1 where we show that an address map on the canonical transversal
minus the linear approximation defines a continuous cocycle on the transverse groupoid.
This cocycle is bounded. Then we apply a groupoid version of the Gottschalk–Hedlund
theorem [Ren12] to prove that the cocycle is a coboundary. Using this coboundary,
we define the homomorphism. For the necessary condition we show that the maximal
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equicontinuous factor of the hull of an inter-model set with Euclidean internal space is
topologically conjugate to the address system. To show that the condition is also sufficient
is much more complicated. The first step is to prove that for a repetitive Meyer set
the construction of an inter-model set given by Lagarias in [Lag99] gives a CPS that
we call the Lagarias CPS†; see the definition in §2.4. Then we show that the maximal
equicontinuous factor of the hull associated to the Lagarias CPS (for any window) is
topologically conjugate to the address system. Then we use [Auj16b, Proposition 3.3] to
prove that the closure of the projection in the internal space of the lifting of the Meyer set
to the product space is a window for the Lagarias CPS. Finally, elaborating on the ideas in
[Auj16a, Theorem 6.1], we show that if there is a point with a unique preimage under the
maximal equicontinuous factor map of the hull of the Meyer set then the Meyer set is an
inter-model set.

1.2. Organization. In §2 we give some definitions and results about the theory of aperi-
odic order related to Delone sets and the dynamical systems associated to the Delone sets.
In §3 we prove Proposition 1.1. In §4.1 we prove the necessary condition of Theorem A. In
§4.2.1, we describe the Lagarias CPS. The proof of the sufficient condition in Theorem A
is in §4.2.2 and uses a result that we prove later in §5, the main technical lemma.

2. Preliminaries
Let Rd be the Euclidean d-space endowed with its Euclidean norm that we denote by ‖ · ‖d .

2.1. Delone sets. A subset � of R
d is called a Delone set if it is uniformly discrete,

meaning that there is r > 0 such that every closed ball of radius r intersects � in at most
one point; and relatively dense, which means that there is R > 0 such that every closed
ball of radius R intersects � in at least one point.

Let � be a Delone set in R
d . For every t ∈ R

d , we denote by �− t the Delone set
{x − t | x ∈ �}.

For every ρ > 0 and every t in R
d denote by B(t , ρ) the open ball in R

d of radius ρ
and center t. A ρ-patch of � centered at t ∈ R

d is the set � ∩ B(t , ρ). We consider two
notions of long-range order for Delone sets: the first states that a Delone set � has finite
local complexity if for every ρ > 0 it has a finite number of ρ-patches up to translation;
and the second says that � is repetitive if for each ρ > 0 there is a number M > 0 such
that each closed ball of radius M contains the center of a translated copy of every possible
ρ-patch of �. Observe that every repetitive Delone set has finite local complexity; see
[BG13, Proposition 5.6].

2.2. Meyer sets and address map. Let� be a Delone set in R
d . We say that� is a Meyer

set if there is a finite set F in R
d such that

�−� ⊆ �+ F .

In [Mey72], Meyer proved that every model set is a Meyer set. The following
characterization of Meyer set is used in the proofs of Proposition 1.1 and the main theorem.

† In the terminology of Lagarias, what we prove is that repetitivity implies that the CPS is irreducible; see §4.2.1.
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THEOREM 2.1. [Lag99, Theorem 3.1] Let � be a finitely generated Delone set in R
d with

rank s. Then � is a Meyer set if and only if every address map

ϕ : 〈�〉 → Z
s ,

is almost linear, that is, there are a unique linear map � : Rd → R
s and a constant C > 0

such that for every x in � we have

‖ϕ(x)− �(x)‖s ≤ C. (2.1)

Remark 2.1. In the proof of [Lag99, Theorem 3.1] it was proved that � is some kind of
‘ideal address map’ in the sense that if {v1, . . . , vs} is the basis of 〈�〉 that we used to
define the address map of � then for every t in R

d we have
s∑
i=1

�i(t)vi = t . (2.2)

2.3. Dynamical systems and transverse groupoid. Let � ⊆ R
d be a Delone set with

finite local complexity. The hull of � is the collection of all Delone sets in R
d whose

ρ-patches, for every ρ > 0, are also ρ-patches of � up to translation. We denote this set
by ��. There is a natural metrizable topology on ��. Roughly speaking, two Delone sets
are close in this topology if they agree on a large ball around the origin up to a small
translation. In particular, for every�′ in �� a basis of open neighborhoods for�′ is given
by the following sets. First, for every R > 0 put

T (�′, R) := {�̃ ∈ �� | �̃ ∩ B(0, R) = �′ ∩ B(0, R)},
and for every 0 < ε < R/2 we define the open neighborhood N(�′, ε, R) of �′ by

N(�′, ε, R) := {�′′ ∈ �� | there exists �̃ ∈ T (�′, R),
there exists t ∈ B(0, ε), �′′ = �̃− t};

for more details see, for example, [FHK02, KL13, LM06, Sch00]. If � has finite local
complexity then its hull �� is compact. Observe that the action by translation of Rd on
�� is continuous. Thus, we obtain a topological dynamical system denote by (��, Rd).
The orbit of x in �� is the set {x − t | t ∈ R

d}, and a subset A of �� is called invariant if
it is invariant by the action of Rd . The dynamical system (��, Rd) is minimal if and only
if the only closed invariant sets are the empty set and the whole space. It is well known
that minimality is equivalent to the fact every point has a dense orbit, and in the context of
Delone sets repetitivity is equivalent to minimality.

We recall that every topological dynamical system admits a maximal equicontinuous
factor, that is, a topological factor with an equicontinuous action such that any other
equicontinuous factor is a topological factor of it; see, for instance, [BKS12, BK13,
Kur03]. For a topological dynamical system (X, G), where X is a compact metric space
and G a locally compact abelian group, we denote by (Xme, G) its maximal equicontinuous
factor. Given two minimal dynamical systems (X, G) and (Y , G), and a factor map π :
(X, G) → (Y , G), we say that π : (X, G) → (Y , G) is an almost automorphic extension
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or that (X, G) is an almost automorphic extension of (Y , G) if there is a point in Y with a
unique preimage under π .

The transversal of the hull is the closed subset

�� := {x ∈ �� | 0 ∈ x} ⊆ ��.

In general, the restriction of the action of Rd to �� is not defined. For this reason, to study
the dynamical properties of the transversal we introduce the transverse groupoid,

G� = {(x, t) ∈ �� × R
d | x − t ∈ ��} ⊆ �� × R

d .

This set, endowed with the induced topology from the product space �� × R
d , has the

structure of a topological groupoid; see [Ren80] for the abstract definition of topological
groupoids. Two elements (x, t) and (z, s) in G� are composable if and only if x − t = z,
and the composition of (x, t) and (z, s) is defined by

(x, t) · (z, s) = (x, t + s).

The inverse map ·−1 : G� → G� is defined by (x, t)−1 = (x − t , −t) and the domain
d : G� → �� and range r : G� → �� maps are defined by

d(x, t) = x and r(x, t) = x − t .

Notice that d(G�) = r(G�) = ��. In this context, the set �� is called the unit
space of G�.

We say that a subset E of the unit space is invariant by the groupoid G if
E = r(d−1(E)). We recall the following definition from [Ren80].

Definition 2.2. A groupoid is minimal if the only open invariant subsets of its unit space
are the empty set and the unit space itself.

The following result relates the minimality of (��, Rd) to the minimality of the
transverse groupoid.

PROPOSITION 2.3. The topological groupoid G� is minimal if and only if the dynamical
system (��, Rd) is minimal.

Proof. First, observe that for every subset E of �� we have

r(d−1(E)) = {x − t ∈ �� | x ∈ E, t ∈ x}. (2.3)

Assume that the dynamical system (��, Rd) is minimal. Suppose, by contradiction, that
E ⊆ �� is invariant by the groupoid G�. Define

Ê := {x − t ∈ �� | x ∈ E, t ∈ R}.
We have that Ê is open in �� and by (2.3) it is invariant for the R

d -action on ��. Then
the complement of Ê is an invariant non-empty closed set strictly contained in ��, which
contradicts the minimality of (��, Rd).
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Conversely, suppose that (��, Rd) is not minimal. Let C ⊆ �� be an invariant
non-empty closed set strictly contained in ��. Put E = Cc ∩��. By (2.3), we have

E ⊆ r(d−1(E)).

Since C is an invariant Rd -action, we get r(d−1(E)) = E. So, E is a non-empty open set
strictly contained in �� invariant by the groupoid, and thus G� is not minimal.

2.4. Cut and project scheme and inter-model sets. A cut and project scheme over Rd

is the data (H , L) of a locally compact σ -compact abelian group H, and a discrete set
L ⊆ R

d ×H with compact quotient (Rd ×H)/L whose first coordinate projection on R
d

is one-to-one and whose second coordinate projection on H is dense. A compact subset W
of H that is the closure of its interior is called a window for the CPS. In the CPS the space
R
d is called the physical space, the locally compact abelian group H is called the internal

space and the set L the lattice. Following [Auj16b], a CPS can also be described as a
triple (H , �, sH ) where H is a locally compact σ -compact abelian group, � a countable
subgroup of Rd and sH : � → H a group homomorphism with range sH (�) dense in H
such that the graph

G(sH ) := {(γ , sH (γ )) ∈ R
d ×H | γ ∈ �}

is a lattice, that is, a discrete and cocompact set. When H is a Euclidean space R
n, for

some positive integer n, we say that (H , �, sH ) is an Euclidean CPS.
Let (H , �, sH ) be a CPS with window W. For every w in H, the projection on R

d of the
set G(sH ) ∩ (Rd × (w +W)) is called a model set. More generally, for every subset V of
H and every w in H denote by �(w + V ) the set

�(w + V ) := {t ∈ � | sH (t) ∈ w + V }.
Definition 2.4. Let (H , �, sH ) be a CPS over Rd with window W. A Delone set � ⊆ R

d

is called an inter-model set if there exist t ∈ R
d and w ∈ H such that

�(w + int(W))− t ⊆ � ⊆ �(w +W)− t .

We say that an inter-model set� is non-singular or generic if there is (t , w) in R
d ×H

such that

�(w + int(W))− t = � = �(w +W)− t .

Observe that this is equivalent to the fact that the boundary ofw +W does not intersect the
projection of G(sH ) in H. Additionally, if the boundary of w +W has zero Haar measure
we say the inter-model set is regular.

Remark 2.5. Notice that by Baire’s theorem, the fact that ∂W has empty interior and sH (�)
is countable, the set

NS := H \
⋃

γ ∗∈sH (�)
γ ∗ − ∂W
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is a dense Gδ-set in H. Moreover, for every w in H, the boundary of w +W does not
intersect the projection of G(sH ) in H if and only if w ∈ NS. In particular, for every (t , w)
in R

d ×H , the set �(w +W)− t is a non-singular inter-model set if and only if w ∈ NS.

We say thatW ′ is irredundant if the equationW ′ + w = W ′ holds only for w = 0 in H.
The following two results are well known in the theory of model sets and will be used

in the proof of Theorem A.

PROPOSITION 2.6. Let (H, L, sH) be a CPS over Rd with window W. The class of generic
model sets generated by (H, L, sH) and window W gives a unique hull, denoted by �MS,
and the dynamical system (�MS, Rd) is minimal. Moreover, every element in �MS is a
repetitive inter-model generated by (H, L, sH) and the window W. If the window W is
irredundant then every repetitive inter-model set generated by (H, L, sH) and the window
W belongs to �MS. In particular, for every repetitive inter-model set � generated by
(H, L, sH) and the irredundant window W we have that �� = �MS.

The first part of Proposition 2.6 follows from [Rob07, Proposition 5.18, Corollary 5.10]
and [LM06, Proposition 4.4]. The part that assumes that the window is irredundant follows
from [Rob07, Theorem 5.19] and the idea of the proof of [LM06, Proposition 4.6].

Let (H , �, sH ) be a CPS in R
d and consider the set TG := (Rd ×H)/G(sH ) with an

action of Rd given by translation on the first coordinate. More precisely, for every s ∈ R
d

and every [(t , w)] ∈ TG the action of s on [(t , w)] is

[(t , w)] · s := [(t , w)] + [(s, 0)].

THEOREM 2.2. Let (H, L, sH) be a CPS over Rd , let W be an irrendundant window, and
let �MS be the hull of the repetitive inter-model sets generated by (H, L, sH) and W. Then
every point in �MS is an inter-model set, and there exists a factor map π : �MS → TG
such that for every �′ in �MS there is (t , w) in R

d ×H such that π(�′) = [(t , w)] if and
only if

�(w + int(W))− t ⊆ �′ ⊆ �(w +W)− t . (2.4)

Moreover, the map π is injective precisely on the subset of non-singular inter-model
sets in �MS and the dynamical system (TG , Rd) is the maximal equicontinuous factor
of (�MS, Rd).

The proof of Theorem 2.2 is mainly in [Sch00]. The proof that (TG , Rd) is the
maximal equicontinuous factor of (�MS, Rd) follows from the fact that (TG , Rd) is an
equicontinuous factor and from the existence of points where π is injective; see, for
instance, [ABKL15, Lemma 3.11].

2.5. Torus parametrization. Let X be a compact space and let (X, Rd) be a topological
dynamical system. Consider a compact abelian group K with a minimal action of R

d

coming from group multiplication via a group homomorphism from R
d into K. A

torus parametrization is a factor map π : (X, Rd) → (K, Rd). A section of π is a map
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s : K → X such that π ◦ s is the identity on K. A point x ∈ X is called singular if the fiber
π−1(π(x)) contains more than one element. Otherwise, x ∈ X is called non-singular. The
set of non-singular points of X for π is denoted by Rπ(X). The following proposition was
proved in [BLM07].

PROPOSITION 2.7. [BLM07, Proposition 3] Let π : X → K be a torus parametrization
and let s be a section of π . Then s is continuous at all points of π(Rπ(X)).

3. The address system
In this section we prove Proposition 1.1. Given a repetitive Meyer set � in R

d , we start
by defining a continuous and bounded cocycle in the transverse groupoid of � (see
Definition 3.1 below). We use a version of the Gottschalk–Hedlund theorem for groupoids
to show that this cocycle is a coboundary. We use this cocycle and the map defining the
coboundary to construct an equicontinuous dynamical system and homomorphism from
(��, Rd) into this equicontinuous system.

3.1. Defining a cocycle on the groupoid. Let � ⊆ R
d be a repetitive Meyer set. Let

B = {v1, . . . , vs} ⊆ R
d be a basis for 〈�−�〉 and let ϕ : 〈�−�〉 → Z

d be the
coordinate map with respect to the basis B. Recall that by the repetitivity of � for every
x ∈ �� we have that 〈x − x〉 = 〈�−�〉, and thus the address map of x associated to B
is equal to ϕ. Note that for all t and t ′ in 〈�−�〉 we have

ϕ(t + t ′) = ϕ(t)+ ϕ(t ′). (3.1)

From Theorem 2.1, for every x ∈ �� there is a unique linear map �x : Rd → R
s such that

ξx := sup
t∈x

‖ϕ(t)− �x(t)‖s < +∞. (3.2)

Definition 3.1. Let H be an abelian group. A cocycle on the topological groupoid G� with
values in H is a map c : G� → H such that for all composable pairs (x, t) and (z, s) in
G� one has

c((x, t) · (z, s)) = c((x, t))+ c((z, s)).

We define the maps� : G� → Z
s and L : G� → R

s as follows: for every (x, t) ∈ G�,

�(x, t) := ϕ(t) and L(x, t) := �x(t).

The aim of this subsection is to show that L−� defines a continuous cocycle on G�.
For this, we first prove that L does not depend on the first coordinate. The proof of the
continuity is at the end of the subsection.

PROPOSITION 3.2. There is a linear map � : Rd → R
s such that for all (x, t) ∈ G� we

have L(x, t) = �(t).

The proof of this proposition is given at the end of this subsection after some lemmas.
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LEMMA 3.3. Let �′ be a relatively dense set in R
d . The set {t/‖t‖d | t ∈ �′} is dense in

the boundary of the Euclidean unitary ball centered on the origin. In particular, for all
linear maps T : Rd → R

s we have that

‖T ‖op = sup
t∈x

∥∥∥∥T
(

t

‖t‖d
)∥∥∥∥

s

,

where ‖ · ‖op is the operator norm.

Proof. PutD := {t/‖t‖d | t ∈ �′}. By contradiction, suppose the set D is not dense in the
boundary of B(0, 1). So there exists an open set in the relative topology which contains
no elements of D. If we project this open set towards infinity, it generates a cone that
contains Euclidean balls of size arbitrarily large and where there are no points of �′. This
contradicts the fact that �′ is relatively dense.

LEMMA 3.4. For all (x, t) ∈ G�, we have �x = �x−t .

Proof. Fix (x, t) in G�. Let u ∈ R
d be such that u ∈ x − t . In particular, t + u ∈ x. By

(3.2), we have

‖ϕ(u)− �x−t (u)‖s ≤ ξx−t and ‖ϕ(u)− �x(t + u)‖s ≤ ξx .

Using these inequalities and (3.1), we get

‖�x(t + u)− �x−t (u)‖s ≤ ‖ϕ(t + u)− �x(t + u)‖s + ‖ϕ(t + u)− �x−t (u)‖s
≤ ξx + ‖ϕ(t)+ ϕ(u)− �x−t (u)‖s
≤ ξx + ‖ϕ(t)‖s + ξx−t .

Dividing both sides of this last inequality by ‖u‖d , we obtain∥∥∥∥�x
(

t

‖u‖d
)

+ �x

(
u

‖u‖d
)

− �x−t
(

u

‖u‖d
)∥∥∥∥

s

≤ ξx + ‖ϕ(t)‖s + ξx−t
‖u‖d .

Taking the limit as ‖u‖d → +∞, we have

lim‖u‖d→+∞
u∈x−t

∥∥∥∥(�x − �x−t )
(

u

‖u‖d
)∥∥∥∥

s

= 0.

This, together with Lemma 3.3, implies that ‖�x − �x−t‖op = 0, and thus concludes the
proof of the lemma.

Proof of Proposition 3.2. Fix y in ��. We prove that for every x in �� we have �x = �y .
By (3.1), (3.2) and Lemma 3.4, for t ′ in y we have

ξy−t ′ = sup
t∈y−t ′

‖ϕ(t)− �y−t ′(t)‖s

= sup
t∈y−t ′

‖ϕ(t)− �y(t)‖s

= sup
t+t ′∈y

‖ϕ(t + t ′)− ϕ(t ′)− �y(t)‖s (3.3)
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= sup
t+t ′∈y

‖ϕ(t + t ′)− ϕ(t ′)− �y(t + t ′ − t ′)‖s

= sup
t+t ′∈y

‖ϕ(t + t ′)− ϕ(t ′)− �y(t + t ′)+ �y(t
′)‖s

≤ 2ξy .

Fix x in��. By minimality, there is a sequence (tn)n∈N in R
d such that y − tn converges

to x in ��. Fix t ∈ x and consider ε > 0 such that ‖t‖ ≤ 1/ε. There is N ∈ N such that
for all n > N we have

(y − tn) ∩ B
(

0,
1
ε

)
= x ∩ B

(
0,

1
ε

)
.

In particular, for all n > N we get t ∈ y − tn. Then, using Lemma 3.4 and (3.3), for every
t in x we have

‖ϕ(t)− �y(t)‖s = ‖ϕ(t)− �y−tn (t)‖s ≤ 2ξy .

By uniqueness of the map �x , we conclude the proof of the proposition.

LEMMA 3.5. The map L−� is a continuous cocycle on G�.

Proof. By (3.1) and Proposition 3.2, we have that L−� is a cocycle. Now we prove the
continuity of L−�. Consider a sequence {(xn, tn)}n∈N in G� that converges to (x, t) in
G�. By definition of convergence in the groupoid, we have that {xn}n∈N ⊆ �� converges
to x ∈ ��, and {tn}n∈N converges to t in R

d . Let ε be a positive real number less than the
uniformly discrete radius of � such that ‖t‖d < 1/2ε. There is a positive integer N such
that for all n ≥ N we have

xn ∩ B
(

0,
1
ε

)
= x ∩ B

(
0,

1
ε

)
, ‖tn − t‖d < ε and ‖tn‖d < 1

ε
. (3.4)

By definition of the groupoid G�, for all n in N we have that tn ∈ xn, and also t ∈ x. By
(3.4), for every n ≥ N we get tn = t . Then, for every n ≥ N , we have

L(tn) = �(t) and �(xn, tn) = ϕ(tn) = ϕ(t) = �(x, t),

which implies the continuity of L−�.

3.2. Proof of Proposition 1.1. We use the following version of the Gottschalk–Hedlund
theorem, due to Jean Renault, to find continuous eigenvalues of G�. This version is adapted
to our context from [Ren80, Theorem 1.4.10] and appears in [Ren12].

THEOREM 3.1. Let G be a minimal topological groupoid with compact unit space X. For
a continuous cocycle c : G → R

d the following properties are equivalent.
(1) There exists a continuous function g : X → R

d such that

c = g ◦ r − g ◦ d .

(2) There exists x ∈ X such that c(d−1(x)) is relatively compact.
(3) c(G) is relatively compact.
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Proof of Proposition 1.1. Let � ⊆ R
d be a repetitive Meyer set. Let B = {v1, . . . , vs} ⊆

R
d be a basis for 〈�−�〉 and let ϕ : 〈�−�〉 → Z

d be the coordinate map with respect
to the basis B. Let L and� be as in §3.1. We check that G� and the cocycleL−� : G� →
R
s verify the hypotheses of Theorem 3.1. By Proposition 2.3, the groupoid is minimal. By

Lemma 3.5, the map L−� is a continuous cocycle. Let � be the linear map given by
Proposition 3.2. By (3.2), for every x ∈ �� the set

(L−�)(d−1(x)) = {�(t)− ϕ(t) | t ∈ x}
is bounded. By Theorem 3.1, there is a continuous map F : �� → R

s such that for every
(x, t) in G� we have

�(t)− ϕ(t) = L(x, t)−�(x, t) = F ◦ r(x, t)− F ◦ d(x, t) = F(x − t)− F(x).

(3.5)

Since F is continuous and the space �� is compact there is a constant C > 0 such that the
inequality in the first part of Proposition 1.1 holds.

Now we check that � is injective. By contradiction suppose that the kernel of � has
dimension greater than 1. Hence, there is an infinite subset of� such that the address map
is bounded on this infinite set, which gives a contradiction.

Finally, we construct the address system. Denote by T
s the torus Rs/Zs . Since � is linear

the following map defines an equicontinuous action of Rd on T
s :

(w, t) ∈ T
s × R

d �−→ w + [�(t)]Zs .

Now we define πAd : �� → T
s as follows. For every y ∈ �� there exist x ∈ �� and

t ∈ R
d such that y = x − t . Put

πAd(y) := [F(x)]Zs + [�(t)]Zs .

We verify that πAd is well defined. Indeed, suppose that for y ∈ �� there are x1, x2 ∈ ��
and t1, t2 ∈ R

d such that y = x1 − t1 = x2 − t2. Thus, x1 = x2 − (t2 − t1), and by (3.5)
we have that

F(x1) = F(x2)+ �(t2 − t1)− ϕ(t2 − t1),

which is equivalent to

F(x1)+ �(t1) = F(x2)+ �(t2)− ϕ(t2 − t1).

Together with the fact that ϕ(t2 − t1) ∈ Z
s , this implies that πAd is well defined. Now we

prove the continuity of πAd. Fix y ∈ �� and suppose that y = x − t for some x ∈ �� and
t ∈ R

d . For every y′ close to y there is x′ in �� close to x and there is t ′ close to t such
that y′ = x′ − t ′. By the continuity of F and �, the map π̃Ad defined in a sufficiently small
neighborhood of y by π̃Ad(y

′) = F(x′)+ �(t ′) is continuous. By the continuity of the
canonical projection of Rs onto T

s we conclude that πAd is continuous at y. It remains to
check that for every y in �� and every t in R

d we have πAd(y − t) = πAd(y)+ [�(t)]Zs .
Fix y in �� and fix t in R

d . There are x1 and x2 in �� and t1 and t2 in R
d such that

y = x1 − t1 and y − t = x2 − t2. Then x2 = x1 − (t1 − t2 + t). Using this, (3.5) and the
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fact that ϕ(t1 − t2 + t) ∈ Z
s , we get that

πAd(y − t) = [F(x2)]Zs + [�(t2)]Zs

= [F(x1)+ �(t1 − t2 + t)− ϕ(t1 − t2 + t)]Zs + [�(t2)]Zs

= [F(x1)+ �(t1)]Zs + [�(t)]Zs = πAd(y)+ [�(t)]Zs ,

which concludes the proof of the proposition.

4. Proof of Theorem A
In this section we prove Theorem A. First, we prove a characterization of the maximal
equicontinuous factor for a Euclidean CPS, and then we prove the necessary condition.
Having done so, we use the address map to construct a Euclidean CPS that we use in the
proof of the sufficient condition. Finally, we prove the sufficient condition assuming the
main technical lemma. This lemma is stated in §4.2 and proved in §5.

4.1. Necessary condition. Let� be an inter-model set for a Euclidean CPS over Rd with
internal space R

n, lattice L and window W. Denote by �MS the hull of the non-singular
model sets generated by these data. Repetitivity of � and Proposition 2.6 imply that
�MS = ��. By [Auj16a, Theorem 8.1], the associated dynamical system (�MS, Rd) is
almost automorphic (see also [Sch00, FHK02]). The remaining part of the proof of the
necessary condition follows directly from the following proposition.

PROPOSITION 4.1. Let �MS be the hull of the non-singular model sets generated by a
Euclidean cut and project scheme (Rn, �, sRn) over Rd and a window W. Then, for every
� in �MS, we have that the group 〈�−�〉 is equal to � and its rank is d + n. Moreover,
the maximal equicontinuous factor of (�MS, Rd) is topologically conjugate to an address
system of �.

Proof. Denote by p1 and by p2 the orthogonal projections from R
d × R

n onto R
d and

R
n, respectively, and put L := G(sRn). Fix� in�MS. By [Moo97, Proposition 2.6(ii)], for

every w in R
n we have that

〈�(w +W)〉 = �.

In particular, 〈�(w +W)− �(w +W)〉 = �. By Proposition 2.6, there is w in NS such
that �(w +W) is in �MS, and thus by repetitivity

〈�−�〉 = 〈�(w +W)− �(w +W)〉 = �.

We now prove that the maximal equicontinuous factor of (�MS, Rd) is topologically
conjugate to the address system of �. Fix a basis B = {̃v1, . . . , ṽs} of L. Let � be the
linear map given by the Proposition 1.1 applied to � with the basis p1(B) for � and let
(Ts , Rd) be the corresponding address system. Denote by ψ : Rs → R

d × R
n the linear

isomorphism sending the canonical basis of Rs onto {̃v1, . . . , ṽs}, that is,

ψ(u1, . . . , us) = u1ṽ1 + · · · + usṽs .
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By (2.2), for every t ∈ R
d we have

p1(ψ(�(t))) = t . (4.1)

Define the map � : Ts → TG by �([w]Zs ) = [ψ(w)]L. Note that � is a homeomorph-
ism. By (4.1), for all t ∈ R

d and [w] ∈ T
s , we have

�([w]Zs + [�(t)]Zs ) = �([w + �(t)]Zs )

= [ψ(w + �(t))]L = [ψ(w)]L + [ψ(�(t))]L
= [ψ(w)]L + [(p1(ψ(�(t))), p2(ψ(�(t))))]L
= [ψ(w)]L + [(t , p2(ψ(�(t))))]L.

To prove that � conjugates the address system with the maximal equicontinuous factor
(Rd × R

n/L, Rd), we need to show that for every t ∈ R
d ,

p2(ψ(�(t))) = 0.

By Remark 2.5, Proposition 2.6 and the fact that the window W has non-empty interior,
there is w inNS such that 0 ∈ w +W and the set �(w +W) is in�MS. Put�0 := �(w +
W). We have that�0 is in ��. Observe that ϕ is also the address map for�0 associated to
the basis p1(B). By Proposition 1.1, there is a constant Ĉ > 0 such that for every t ∈ �0

we have

‖p2(ψ(ϕ(t)))− p2(ψ(�(t)))‖d ≤ Ĉ.

Together with the fact that p2(ψ(ϕ(�0))) = p2(sRn(�0)) ⊆ w +W , this implies that the
map p2 ◦ ψ ◦ � is uniformly bounded on �0. Using that �0 is relatively dense in R

d

and that p2 ◦ ψ ◦ � is linear, we get that p2(ψ(�(R
d))) is bounded, which implies that

p2(ψ(�(R
d))) = 0. We conclude that (Ts , Rd) and (TG , Rd) are topologically conjugated,

finishing the proof of the lemma.

4.2. Sufficient condition

4.2.1. The Lagarias cut and project scheme. Let � be a repetitive Meyer set in R
d and

suppose that 〈�−�〉 has rank s > d. Let B be a basis of 〈�−�〉 formed by vectors
{v1, . . . , vs} ⊆ R

d and let ϕ : 〈�−�〉 → Z
d be the coordinate map with respect to the

basis B. Fix �0 in ��. Remember that since 0 ∈ �0, we have 〈�−�〉 = 〈�0 −�0〉 =
〈�0〉 and that ϕ is also the address map for�0. Let � : Rd → R

s be the linear map given by
Proposition 1.1. Define φ : Rs → R

d by φ(u1, . . . , us) = u1v1 + · · · + usvs . By (2.2),
for every t ∈ R

d we have

φ◦�(t) = t . (4.2)

In particular,

Ker(�) = {0} and Im(φ) = R
d . (4.3)

Put n := s − d and note that the dimension of Ker(φ) is n. Let B′ := {k1, . . . , kn} be an
orthonormal basis for Ker(φ). Notice that for every 1 ≤ j ≤ s we have that the vector
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wj := �(vj )− ej belongs to Ker(φ), where ej is the jth canonical coordinate vector. For
every j ∈ {1, . . . , s} denote by (αj ,1, . . . αj ,n) the coordinates of wj in the basis B′, and
define for every j ∈ {1, . . . , s} the vectors

v�j := (αj ,1, . . . αj ,n)
t and ṽj := (vj , v�j ).

In the proof of [Lag99, Theorem 3.1], Lagarias proved that the set B̃ := {̃v1 . . . , ṽs} is
Z-linearly independent in R

d × R
n and generates a full-rank lattice. Denote by L̃ the lattice

generated by B̃. Denote by p1 and p2 the orthogonal projections of Rd × R
n onto R

d and
R
n, respectively. By construction, p1 is injective on L̃ and its image is 〈�−�〉. Denote

by ψ : Rs → R
d × R

n the linear isomorphism sending the canonical basis of R
s onto

{̃v1, . . . , ṽs}, that is,

ψ(u1, . . . , us) = u1ṽ1 + · · · + usṽs .

In the proof of [Lag99, Theorem 3.1], it was proved that for every t in 〈�−�〉 we have

‖p2(ψ(ϕ(t)))‖n = ‖ϕ(t)− �(t)‖s . (4.4)

LEMMA 4.2. Let � be a repetitive Meyer set in R
d . If the address system of � associated

with B is a topological factor of (��, Rd), then p2(L̃) is dense in R
n.

Proof. The proof is by contradiction. Assume that p2(L̃) is not dense. Then there is a
non-empty closed ball V ⊆ R

n such that p2(L̃) ∩ V = {∅}. In particular,

L̃ ∩ (Rd × V ) = {∅}. (4.5)

By Proposition 1.1 and (4.4), there is a constant Ĉ > 0 such that for every t ∈ �0 we have

max{‖p2(ψ(ϕ(t)))‖n, ‖p2(ψ(ϕ(t)))− p2(ψ(�(t)))‖n} ≤ Ĉ.

Therefore the linear map p2 ◦ ψ ◦ � is uniformly bounded on�0, which is relatively dense.
Then, for all t ∈ R

d , we have

p2 ◦ ψ ◦ �(t) = 0. (4.6)

Consider the dynamical system defined on the space (Rd × R
n)/L̃ with the following

R
d -action: for every t ∈ R

d and every w ∈ (Rd × R
n)/L̃,

w · t := w + [(t , 0)]L̃.

Define the map � : Ts → (Rd × R
n)/L̃ by �([w]Zs ) = [ψ(w)]L̃ for every [w]Zs in

(Rd × R
n)/L̃. By (4.6), the map � is a topological conjugacy between the address

system of � and the dynamical system just defined ((Rd × R
n)/L̃, Rd). Let πAd be the

address homomorphism defined in Proposition 1.1. Since we are assuming that πAd is
a factor of (��, Rd), we have that the map � ◦ πAd is also a factor from (��, Rd)
to ((Rd × R

n)/L̃, Rd). By the repetitivity of � we have that (��, Rd) is minimal, and
then the factor ((Rd × R

n)/L̃, Rd) is also minimal. But the set [Rd × V ]L̃ is closed and
R
d -invariant, and by (4.5), it is strictly contained in (Rd × R

n)/L̃, which is a contradiction
to the minimality of ((Rd × R

n)/L̃, Rd).
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Put sL := p2 ◦ ψ ◦ ϕ on 〈�−�〉. By Lemma 4.2 if the address system of � is a
topological factor of (��, Rd) the triple (Rn, 〈�−�〉, sL) is a CPS and we call it the
Lagarias CPS for �.

Recall that a window is irredundant if its redundancies group is trivial (see §2.4).
By compactness, every window in R

n is irredundant. By Theorem 2.1 and (4.4), the set
sL(�0) ⊆ R

n is a compact. Together with Proposition 5.2 we obtain the following result.

LEMMA 4.3. Let� be a repetitive Meyer set in R
d and let 〈�−�〉 be the subgroup of Rd

generated by �−�. Put n = rank(〈�−�〉)− d and assume that n > 0. Also assume
that some address system of � is a topological factor of (��, Rd). Let (Rn, 〈�−�〉, sL)
be the Lagarias CPS for �. For every �0 in �� the set sL(�0) is an irredundant window.

From the proof of Lemma 4.2 and by Lemma 4.3 we obtain the following lemma.

LEMMA 4.4. Let� be a repetitive Meyer set in R
d and let 〈�−�〉 be the subgroup of Rd

generated by �−�. Put n = rank(〈�−�〉)− d and assume that n > 0. Also assume
that some address system of � is a topological factor of (��, Rd). Let (Rn, 〈�−�〉, sL)
be the Lagarias CPS for �. For every �0 in ��, let �MS be the hull of the generic
inter-model sets generated by (Rn, 〈�−�〉, sL) and the window sL(�0). Then the
maximal equicontinuous factor of (�MS, Rd) is topologically conjugated to each address
system of �.

4.2.2. Proof of sufficient condition. The main technical step in the proof of the sufficient
condition is the following lemma, proved in §5.

MAIN TECHNICAL LEMMA. Let � ⊆ R
d be a repetitive Meyer set and let � be the

subgroup of Rd generated by�. Let (H ′, �, sH ′) be a CPS and suppose thatW ′ = sH ′(�)
is a window. Let �MS be the hull of the generic model sets generated by (H ′, �, sH ′) and
W ′. Then there is a factor map

π̃ : �� → �MS,me,

such that if (��, Rd) is an almost automorphic extension of (�MS,me, Rd) for π̃ , then
there are �0 in �� and a non-singular inter-model set �1 in �MS such that �0 = �1.

Proof of sufficient condition in Theorem A. Let � be a repetitive Meyer set in R
d and let

〈�−�〉 be the subgroup of Rd generated by �−�. Assume that rank(〈�−�〉) = s >

d , that some address system of � is a topological factor of (��, Rd) and that (��, Rd)
is an almost automorphic extension of this address system. Since the address systems
are topologically conjugated among them we have that every address system of � is a
topological factor of (��, Rd) and that (��, Rd) is an almost automorphic extension of
every address system of �.

Let (Rn, 〈�−�〉, sL) be the Lagarias CPS for � where n = s − d . Fix �∗ in ��
and recall that by the repetitivity of � we have that �� = ��∗ . By Lemma 4.3, the set
W ′ = sL(�∗) is an irredundant window. Denote by�MS the hull of the generic inter-model
sets generated by (Rn, 〈�−�〉, sL) andW ′. By Lemma 4.4, the maximal equicontinuous
factor of (�MS, Rd) is topologically conjugated to every address system of � which
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agrees with the address systems of �∗ by Proposition 1.1. By hypothesis, the dynamical
system (��∗ , Rd) is an almost automorphic extension of every address system of �∗, and
then it is also an almost automorphic extension of (�MS,me, Rd). By the main technical
lemma applied to�∗ and (Rn, 〈�−�〉, sL), there are�0 ∈ ��∗ and�1 ∈ �MS such that
�0 = �1. By the minimality of (��∗ , Rd) we have that ��∗ is equal to the hull of �0

which is equal to the hull of the generic model sets generated by a Euclidean CPS. Since
�� = ��∗ by Proposition 2.6 we conclude that � is an inter-model set generated by a
CPS with Euclidean internal space, finishing the proof of the sufficient condition.

5. Proof of main technical lemma
In this section we prove the main technical lemma used in the proof of Theorem A. Indeed,
we prove a more detailed version of the main technical lemma for future reference.

MAIN TECHNICAL LEMMA′. Let� ⊆ R
d be a repetitive Meyer set and let� the subgroup

of Rd generated by �. Let (H ′, �, sH ′) be a CPS and suppose that W ′ = sH ′(�) is a
compact, irredundant window in H ′.

Let�MS be the hull of the generic inter-model sets for the CPS (H ′, �, sH ′) and window
W ′. Let π0 be the maximal equicontinuous factor map from �MS to �MS,me, and denote
by Rπ0(�MS) the set of non-singular points in �MS for π0. Then there is a factor map

π̃ : �� → �MS,me.

Put �0
�

:= π̃−1(π0(Rπ0(�MS))). There is a continuous map

π1 : �0
� → Rπ0(�MS)

such that for every �0 ∈ �0
� we have

π1(�0 − t) = π1(�0)− t and π̃(�0) = π0 ◦ π1(�0).

Moreover, for every �1 in Rπ0(�MS) we have

�1 =
⋃

�′∈π̃−1(π0(�1))

�′. (5.1)

In addition, if π̃ : �� → �MS,me is an almost automorphic extension then

π0(Rπ0(�MS)) ∩ π̃(Rπ̃ (��))
is a residual set in�MS,me, and for every�1 inRπ0(�MS) such that π0(�1) ∈ π̃(Rπ̃ (��))
we have that �1 is in �0

�.

The proof of the lemma will be given in §5.2 after recalling the definition of the optimal
CPS of a Meyer set introduced in [Auj16a].

5.1. The optimal CPS and the optimal window. Let� be a repetitive Meyer set in R
d and

let � be the subgroup of Rd generated by �. Define �� as the collection of all �′ ∈ ��
having support in �:

�� := {�′ ∈ �� | �′ ⊆ �}.
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Observe that�� ⊆ �� . We consider the combinatorial topology on��, which is obtained
from the distance

dist(�′, �′′) =
{

1
R + 1

∣∣∣∣�′ ∩ B(0, R) = �′′ ∩ B(0, R)
}

.

The combinatorial topology is always strictly finer than the usual topology on ��, and
on the transversal �� both topologies coincide. We endow ��

′
with the combinatorial

topology. We say that �′ and �′′ in �� are strongly regionally proximal, denoted �′ ∼srp

�′′, if for each R > 0 there are �1, �2 ∈ �� and t ∈ R
d such that

�′ ∩ B(0, R) = �1 ∩ B(0, R),
�′′ ∩ B(0, R) = �2 ∩ B(0, R),

(�1 − t) ∩ B(0, R) = (�2 − t) ∩ B(0, R).

Since � is a repetitive Meyer set we have that the strongly regionally proximal relation
is a closed R

d -invariant equivalent relation on ��, and moreover, it agrees with the
equicontinuous relation; see [BK13]. In particular, the quotient ��/ ∼srp gives the
maximal equicontinuous factor.

In the following proposition we recall some results in [Auj16a] which allow us to
introduce the optimal CPS and optimal window for a Meyer set. More precisely, part (1)
is deduced by [Auj16a, Proposition 4.4 and Lemma 4.5], part (2) comes from [Auj16a,
Proposition 6.1 and Definition 6.2], and part (3) is in [Auj16a, Theorem 7.1].

PROPOSITION 5.1. Let � be a repetitive Meyer set in R
d and let � the subgroup of Rd

generated by �.
(1) If �′ ∈ �� then its equivalence class [�′]srp is contained into �� .
(2) The set H := ��/ ∼srp with the quotient topology admits a locally compact abelian

group structure such that [�]srp is the identity element, the map sH : � → H defined
by sH (γ ) = [�− γ ]srp is a group morphism and sH (�) = H .

We remark that Aujogue defined sH in [Auj16a] with a plus sign instead of a minus as
we do. So some results that we use from [Auj16a, Auj16b] look slightly different since
we need to make a sign correction. From Proposition 5.1, the triple (H , �, sH ) is a CPS.
Moreover, by [Auj16a, Theorem 6.3], the set [��]srp is a window for (H , �, sH ). The CPS
(H , �, sH ) and the window [��]srp are called the optimal CPS and the optimal window for
�, respectively. Indeed, in [Auj16b], the author proved that the model set that it defines,

� := {γ ∈ R
d | sH (γ ) ∈ [��]srp},

satisfies that for every model set M that includes � we have � ⊆ � ⊆ M .
Finally, we recall some results in [Auj16b] that we use in the proof of the main technical

lemma′. The first result allows us to prove that a compact and irredundant set is a window.

PROPOSITION 5.2. [Auj16b, Proposition 3.3] Let � be a repetitive Meyer set in R
d and

let � the subgroup of Rd generated by �. Let (H , �, sH ) and W be the optimal CPS and
window for �, respectively. Suppose that (H ′, �, sH ′) is a CPS such that the closure W ′
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of the set sH ′(�) is compact and irredundant in H ′. Then there is a continuous open and
onto morphism

θ : H → H ′

such that sH ′ = θ ◦ sH on �. Moreover, the setW ′ is a window inH ′ andW ′ = θ([��]srp).

In the following result we recall the definition of a map that we use to construct the
maps π1 and π̃ in the statement of the main technical lemma′.

LEMMA 5.3. [Auj16b, Lemmas 3.4, 3.5, 3.6] Let � be a repetitive Meyer set in R
d and

let � be the subgroup of Rd generated by �. Suppose that (H ′, �, sH ′) is a CPS such that
the closure W ′ of the set sH ′(�) is compact and irredundant in H ′. We have that each �′
in �� defines a unique element w′

� through

{w′
�} =

⋂
γ∈�′

sH ′(γ )−W ′.

Define the map

ω :�� → H ′
�′ �→ w�′ .

We have that ω is uniformly continuous for the combinatorial topology, and for all
�′ ∈ �� and γ ∈ � we have:
(1) ω(�′ − γ ) = ω(�′)− sH ′(γ );
(2) ω(�′) = −θ([�′]srp), where θ is the morphism in Proposition 5.2.

5.2. Proof of main technical lemma′. Let � ⊆ R
d be a repetitive Meyer set and let

� be the subgroup of R
d generated by �. Let (H ′, �, sH ′) be a CPS and assume that

W ′ = sH ′(�) is a compact and irredundant window in H ′. Let �MS be the hull of
inter-model sets generated by (H ′, �, sH ′) andW ′. Recall that the maximal equicontinuous
factor �MS,me can be obtained by the quotient (Rd ×H ′)/G(sH ′) and denote by π0 be the
maximal equicontinuous factor map from �MS to �MS,me.

5.2.1. Construction of π̃ . We now construct the map π̃ : �� → �MS,me. For every
(t , w) in R

d ×H ′ we denote by [(t , w)] its equivalent class in �MS,me. For every �̃ in
�� there is t ∈ R

d such that �̃− t is in �� , and we define π̃(�̃) by

π̃(�̃) := [(−t , ω(�̃− t))] ∈ �MS,me.

We verify that π̃ is well defined. Assume that there is s in R
d such that �̃− s is in �� .

Observe that t − s is in �. By part (1) in Lemma 5.3, we have that

(−t , ω(�̃− t)) = (−t + s − s, ω(�̃− (t + s − s)))

= (−s − (t − s), ω(�̃− s)− sH ′(t − s))

= (−s, ω(�̃− s))− (t − s, sH ′(t − s)).
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Since (t − s, sH ′(t − s)) belongs to G(sH ′), we have that

[(−t , ω(�̃− t))] = [(−s, ω(�̃− s))],

and hence π̃ is well defined.
We now check that π̃ commutes with the R

d action on �� and on �MS,me. Let �̃ be in
�� and t be in R. There are s and s′ in R

d such that �̃− s and (�̃− t)− s′ = �̃− (t + s′)
are in �� . Notice that t + s′ − s belongs to �. Again, by part (1) in Lemma 5.3 we have

(−s′, ω((�̃− t)− s′)) = (−s′, ω((�̃− s)− (t + s′ − s)))

= (−s′, ω(�̃− s)− sH ′(t + s′ − s))

= (−s′ + (t + s′ − s), ω(�̃− s))− (t + s′ − s, sH ′(t + s′ − s))

= (t − s, ω(�̃− s))− (t + s′ − s, sH ′(t + s′ − s)).

Since (t + s′ − s, sH ′(t + s′ − s)) is in G(sH ′) we have

π̃(�̃− t) = [(−s′, ω((�̃− t)− s′))] = [(−s, ω(�̃− s))] + [(t , 0)] = π̃(�̃)+ [(t , 0)].

Now we prove that π̃ is continuous. Let �′ be �MS and let U be a neighborhood of
0 in �MS,me. We can assume that U = [B(0, r0)× UH ′] where r0 > 0 and UH ′ is a
neighborhood of 0 in H ′. There exists t ′ ∈ �′ such that �′ − t ′ ∈ �� ⊆ �� . For r > 0,
denote

Cr =
⋂

γ∈(�′−t ′)∩B(0,r)

sH ′(γ )−W ′,

and observe that for r > r ′ we have Cr ⊆ Cr ′ . By Lemma 5.3,⋂
r>0

Cr = {ω(�′ − t ′)}. (5.2)

Now we prove that there is r ′ > 0 such that for every r ≥ r ′,

Cr ⊆ ω(�′ − t ′)+ UH ′ . (5.3)

By contradiction, suppose that there is an increasing sequence (ri)i∈N of positive real num-
bers converging to infinity as i goes to infinity, such that (Cri − ω(�′ − t ′)) ∩ Uc

H ′ �= ∅.
Then, for every i ∈ N, there is

xi ∈ (Cri − ω(�′ − t ′)) ∩ UcH ′

since for every i, j in N with j ≥ i we have Crj ⊆ Cri . By compactness of Cr1 there is an
accumulation point x̃ of (xi)i∈N in Uc

H ′ , and thus x̃ �= 0. But x̃ also belongs to
⋂
r>0 Cr −

ω(�′ − t ′) which is {0} by (5.2), giving the desired contradiction.
Put R := ‖t ′‖d + r ′ + r0 and consider the set

T := {�̃ ∈ �� | �′ ∩ B(0, R) = �̃ ∩ B(0, R)}.
For every ε > 0 sufficiently small the set

Vε := {�′′ ∈ �� | there exists �̃ ∈ T , there exists t ∈ B(0, ε), �′′ = �̃− t}
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is an open neighborhood of�′. Fix ε < r0. By the definition of R, for every�′′ in Vε there
are t in B(0, ε) and �̃ in T such that

(�′′ − (t ′ − t)) ∩ B(0, r ′) = (�̃− t ′) ∩ B(0, r ′) = (�′ − t ′) ∩ B(0, r ′).

Put t ′′ := t ′ − t . We have ‖t ′ − t ′′‖d < r0 and since �′ − t ′ is in �� we also have that
�′′ − t ′′ is in �� ⊆ �� . Then⋂

γ∈(�′′−t ′′)∩B(0,r ′)

sH ′(γ )−W ′ =
⋂

γ∈(�′−t ′)∩B(0,r ′)

sH ′(γ )−W ′.

Together with (5.3), this implies ω(�′′ − t ′′) ∈ ω(�′ − t ′)+ UH ′ . Therefore, π̃(�′′) =
[−t ′′, ω(�′′ − t ′′)] is included in

[−t ′ + (t ′ − t ′′), ω(�′ − t ′)+ UH ′] ⊆ [−t ′ + B(0, δ), ω(�′ − t ′)+ UH ′]

= [−t ′, ω(�′ − t ′)] + [B(0, δ), UH ′],

showing the continuity of π̃ at �′ in �MS.
Finally, since the R

d -action on �MS,me is minimal we have that π̃ is surjective, which
concludes the proof that π̃ is a factor map.

5.2.2. Definition of π1. Recall that R(�MS) denotes the set of non-singular points of
�MS for π0 as defined in §2.5. By definition, all sections of π0 agree on π0(R(�MS)).
Let s̃ : �MS,me → �MS be a section of π0. Put �0

�
:= π̃−1(π0(R(�MS)), and define the

surjective map π1 : �0
� → R(�MS) by π1 := s̃ ◦ π̃ .

By the continuity of π̃ and Proposition 2.7, the map π1 is also continuous. Since s̃ is a
section of π0, for every �′ in �0

� we have

π̃(�′) = π0 ◦ π1(�
′). (5.4)

Since s̃ commutes with the action of Rd on the set π0(R(�MS)), we get that for every �′
in �0

� and t in R
d ,

π1(�
′ − t) = π1(�

′)− t .

5.2.3. Proof of (5.1). Fix �1 in Rπ0(�MS). We prove that (5.1) holds. First, we assume
that �1 is in π1(�

0
� ∩��). By Theorem 2.2, if π0(�1) = [(t , w)] then

�(w + int(W ′)) = �1 + t = �(w +W ′). (5.5)

Observe that, by definition of π̃ , for every �′ in �0
� ∩�� we have π̃(�′) = [(0, ω(�′)].

In addition, if �′ satisfies π1(�
′) = �1 then, using (5.4), we get

π0(�1) = π0 ◦ π1(�
′) = π̃(�′) = [(0, ω(�′))].

Together with (5.5), this implies that for every �′ ∈ �0
� ∩�� such that π1(�

′) = �1, we
have

�1 = {γ ∈ � | sH ′(γ ) ∈ ω(�′)+W ′}. (5.6)

https://doi.org/10.1017/etds.2022.113 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.113


3920 M. Allendes Cerda and D. Coronel

By Proposition 5.2 and part (2) of Lemma 5.3, we have

−ω(��) = θ([��]srp) = W ′. (5.7)

Since�′ ∈ �� , and for every γ ∈ �′ we have�′ − γ ∈ ��, using part (1) of Lemma 5.3,
we get ω(�′ − γ ) = ω(�′)− sH ′(γ ). Together with (5.6) and (5.7), this implies that for
every γ in �′ we have

ω(�′ − γ ) ∈ ω(��) ⇐⇒ sH ′(γ ) ∈ ω(�′)− ω(��)

⇐⇒ sH ′(γ ) ∈ ω(�′)+W ′ ⇐⇒ γ ∈ �1.

Therefore, for every �′ ∈ �0
� ∩�� such that π1(�

′) = �1 we have

�′ ⊆ �1. (5.8)

On the other hand, fix γ in�1. By (5.6), for every�′ ∈�0
�∩�� such that π1(�

′)=�1

we have

sH ′(γ ) ∈ ω(�′)+W ′ ⇔ ω(�′) ∈ ω(�� + γ ).

Thus, there is�′′ in�� + γ ⊆ �� such that ω(�′′) = ω(�′). Then�′′ − γ is in��, and
thus γ is in �′′. Therefore,

�1 ⊆
⋃

�′′∈�0
�∩�� s.t. ω(�′′)=ω(�′)

�′′. (5.9)

Observe that for every �′ ∈ �0
� ∩�� and every �′′ ∈ �� such that ω(�′) = ω(�′′)

we have that π̃(�′) = π̃(�′′), and thus �′′ ∈ �0
� ∩�� . In particular, π1(�

′) = π1(�
′′),

which, together with (5.9), implies

�1 ⊆
⋃

π1(�′′)=�1

�′′. (5.10)

We now prove that for every �′ ∈ �0
� ∩�� and every �′′ ∈ �0

� such that π1(�
′) =

π1(�
′′), we have that

�′′ ∈ �� . (5.11)

First, observe that for all �′ and �′′ in �0
� we have that π1(�

′) = π1(�
′′) ⇔ π̃(�′′) =

π̃(�′). Now let �′ ∈ �0
� ∩�� and �′′ ∈ �0

� be such that π̃(�′′) = π̃(�′). By definition
of π̃ , this holds if and only if there exists t in R

d such that�′′ − t ∈ �� and [(−t , ω(�′′ −
t))] = [(0, ω(�′))], which is equivalent to the existence of γ in � such that

(−t , ω(�′′ − t))− (0, ω(�′)) = (γ , sH ′(γ )).

Then −t = γ ∈ � and we get �′′ ⊆ � − γ = �, which proves (5.11). By (5.8), (5.10) and
(5.11), we conclude that

�1 =
⋃

π1(�′′)=�1

�′′,
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which is equivalent to

�1 =
⋃

�′∈ π̃−1(π0(�1))

�′. (5.12)

If �1 is not in π1(�
0
� ∩��) then there is t in R

d such that �1 − t is in π1(�
0
� ∩��).

By (5.12), we have that

�1 − t =
⋃

�̃∈ π̃−1(π0(�1−t))
�̃.

Since π̃(�̃) = π0(�1 − t) if and only if π̃(�̃− (−t)) = π0(�1), we conclude that

�1 =
⋃

�̃∈ π̃−1(π0(�1−t))
�̃− (−t) =

⋃
�′∈ π̃−1(π0(�1))

�′, (5.13)

which finishes the proof of (5.1).

5.2.4. (��, Rd) almost automorphic extension of (�MS,me, Rd). Finally, suppose that
π̃ is an almost automorphic extension of (�MS,me, Rd). By [Vee70, Lemma 4.1], we have
that the set

π̃(Rπ̃ (��)) = {x ∈ �MS,me | π̃−1(x) is a singleton}
is a residual set in�MS,me, and by [Auj16a], the set π0(Rπ0(�MS)) is also a residual set in
�MS,me. Then

π0(Rπ0(�MS)) ∩ π̃(Rπ̃ (��))
is also a residual set in �MS,me. By (5.13), for every �1 in Rπ0(�MS) such that π0(�1) ∈
π̃(Rπ̃ (��)) we have that �1 is in �0

�, which concludes the proof of the main technical
lemma′.
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