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Abstract. The construction of a spectral cocycle from the case of one-dimensional
substitution flows [A. I. Bufetov and B. Solomyak. A spectral cocycle for substitution
systems and translation flows. J. Anal. Math. 141(1) (2020), 165–205] is extended to the
setting of pseudo-self-similar tilings in Rd , allowing expanding similarities with rotations.
The pointwise upper Lyapunov exponent of this cocycle is used to bound the local
dimension of spectral measures of deformed tilings. The deformations are considered,
following the work of Treviño [Quantitative weak mixing for random substitution tilings.
Israel J. Math., to appear], in the simpler, non-random setting. We review some of the
results of Treviño in this special case and illustrate them on concrete examples.
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1. Introduction
We extend the construction of the spectral cocycle and partially extend the results from the
case of one-dimensional substitution flows treated in [11] to higher dimensions. Another
motivation for us is to make the results of [40] more accessible by presenting them in
the simplest possible non-trivial case of a single self-similar tiling (corresponding to a
stationary Bratteli diagram in [40]). We also indicate how the results of [40], where it is
assumed that the expansion map is a pure dilation, may be extended to the case of general
expanding similarities with rotations, which necessitates dealing with fractal boundaries
and passing from self-similar to pseudo-self-similar tiling spaces. We do not repeat the
rather technical proofs of [40], but illustrate the results on concrete examples (Kenyon’s
tilings defined via free group endomorphisms [25] and a ‘square’ tiling).

The spectral cocycle was introduced in [11] for translation flows and S-adic systems;
here we are concerned with the case of a single substitution. Briefly, given a primitive
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2 B. Solomyak and R. Treviño

aperiodic substitution ζ on m symbols with a non-singular substitution matrix Sζ , the
spectral cocycle from [11] is a complex matrix m×m cocycle over the endomorphism of
the m-torus induced by the transpose ST

ζ .
(In fact, in the case when Sζ is singular, one can restrict the underlying system to

a lower-dimensional sub-torus on which non-singularity holds, see [42].) Implicitly, the
spectral cocycle appeared already in [8] as a generalized matrix Riesz product. In [11],
it was shown that the (top, pointwise upper) Lyapunov exponents of this cocycle in some
sense control the local spectral behavior of substitution R-actions—suspension flows over
the usual substitution Z-action, with a piecewise-constant roof function. By ‘control’ we
mean lower and upper bounds for the local dimension of spectral measures of cylindrical
functions, see [8] for details. Independently, Baake et al [3, 4] introduced a Fourier matrix
cocycle, which coincides with the spectral cocycle on the one-dimensional ST

ζ -invariant
manifold on the torus corresponding to the Perron–Frobenius eigenvector; it is tailored
for the spectral analysis of (geometrically) self-similar tiling flows and was used to prove
singularity of the diffraction spectrum for a class of non-Pisot substitution systems. In [40],
it appeared as the application of traces applied to elements of certain AF algebras.

The tools of spectral cocycle (without calling it such) provided a framework for the
proof of almost sure Hölder regularity of translation flows on higher genus flat surfaces,
first in [9] for genus 2 and then in [12] for an arbitrary genus greater than 1, including
many surfaces of infinite genus and finite area. (The last paper appeared after the preprint
of, now published, [16] who used a different technique.)

The work [40] extended almost sure Hölder regularity results of [12] to the case of
(globally) random substitution tilings in Rd . In a sense, this is a higher-dimensional
version of an S-adic system, in which self-similar tile substitutions are applied randomly,
according to an underlying ergodic dynamical system, resulting in a tiling Rd -action.
A crucial distinction with the one-dimensional case is that one needs to define what
is meant by a ‘deformation’ of the tiling dynamical system. Whereas for d = 1, it was
rather natural to vary the tile lengths, or equivalently, view the system as a suspension
with a piecewise-constant roof function and vary the ‘heights’, this issue becomes more
complicated for d ≥ 2. In this setting, admissible deformations were studied, first by Clark
and Sadun [14] and then by Kellendonk [23] and Julien and Sadun [22]; this required
dealing with the (e.g., Čech) cohomology group Ȟ 1(X, Rd), where X is the tiling space.
The spectral cocycle for d ≥ 2 is still a complex matrix m×m cocycle, where m is the
number of prototiles, but the cocycle is over the endomorphism induced by the inflation
map on the first cohomology group. Incidentally, this point of view offers an advantage
even for d = 1.

The Fourier matrix cocycle has been introduced for self-similar tilings in [4], see also
[3, 6]; it is a cocycle over the inflation map of the entire Rd and it coincides with the
spectral cocycle on a measure zero subset. In this case, it was also used to prove singularity
for some systems, such as the Godrèche–Lançon–Billard tiling.

The paper is organized as follows. In §2, we recall the background on tilings and tiling
dynamical systems, which is mostly standard and appeared in many articles and books.
We also discuss pseudo-self-similar tilings, which are needed to define deformations when
the prototiles of the original self-similar tiling have fractal boundaries. Section 3 deals
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Spectral cocycle for substitution tilings 3

with cohomology and deformations. It also includes a treatment of geometric properties
of deformed tiling spaces and their consequences, in particular, unique ergodicity and a
formula for measures of cylinder sets. In §4, we define the spectral cocycle and state
the main result on local dimension estimates. In §5, we first state the result saying that
for deformed tiling spaces, weak mixing is equivalent to topological weak mixing, which
was characterized in [14]. The proof is a minor variation of the argument from [35]; we
sketch it in §7. Next we explain how a natural quantitative strengthening of the condition,
which we call the ‘quantitative Host–Veech criterion’, yields Hölder regularity of spectral
measures and quantitative weak mixing. Further, we state a theorem on quantitative weak
mixing, which is essentially a special case of [40, Theorem 1.1], but we believe it is more
accessible and easier to apply. A brief proof outline is included. Finally, we revisit the
case of one-dimensional substitution tilings and show how to extend [8, Theorem 4.1] to
the case of a reducible substitution matrix. Section 6 is devoted to examples. There is a
detailed discussion of a family of pseudo-self-similar planar tilings due to Kenyon [25],
to which our results apply. An example with ‘square tilings’ is included as well. Section 7
contains the remaining proofs.

2. Background
2.1. Tilings and tiling spaces. A tiling T of Rd is a covering by compact sets, called
tiles, such that their interiors do not intersect. The tiles need not be homeomorphic to balls
or even connected. We assume that every tile is a closure of its interior. We will consider
the translation Rd -action on tiling spaces (defined below in equation (2.1)): the translation
of T by t ∈ Rd is {T − t : T ∈ T}. Strictly speaking, a tile is a pair T = (A, j), where A is
the support of T and j is its type, color, or label. This is needed, since frequently we need
to distinguish geometrically equivalent tiles. However, to avoid cluttered notation, we will
often think of tiles as sets with colors or labels. The colors are assumed to be preserved
under translations, linear maps, etc.

A patch of the tiling T is a finite subset of T. For two patches P, P′ ⊂ T, we
write P ∼ P′ if there exists t ∈ Rd such that P′ = P− t ; such patches are called
translation-equivalent. For a bounded A ⊂ Rd , define the patches:

O−T (A) = the largest patch of Tcompletely contained in A;
O+T (A) = the smallest patch of T containing A.

We will always assume that all our tilings have (translational) finite local complexity,
or FLC: for any R > 0, there are finitely many patches of the form O−T (BR(x)) up to
translation equivalence. In particular, there are finitely many tiles up to translation. We
fix a collection of representatives A = {T1, . . . , Tm} and call them prototiles. Another
standing assumption will be that T is repetitive, that is, for any patch P ⊂ T, there exists
RP > 0 such that any ball BRP(x), with x ∈ Rd , contains a T-patch P′ ∼ P.

The tiling space (or ‘hull’) determined by T is the closure of the translation orbit:

XT := clos{T− x : x ∈ Rd} (2.1)

in the standard ‘local’ metric, in which T and T′ are ε-close for ε > 0 sufficiently small
if and only if there exists t ∈ Bε(0) such that T and T′ − t coincide in B1/ε(0). The
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4 B. Solomyak and R. Treviño

tiling dynamical system (XT, Rd) is the Rd -action by translations. If T is repetitive, then
XT = XT′ for any T′ ∈ XT, so the tiling dynamical system is minimal. We will often omit
the subscript T and simply write X for a tiling space. An alternative way to define the
tiling space is via the atlas of admissible patches (analogous to a language in symbolic
dynamics).

2.1.1. Functions. LetT be a tiling of Rd . A function h : XT→ C is transversally locally
constant (TLC) if there exists R > 0 such that

O−T′(BR(0)) = O−T′′(BR(0)) �⇒ h(T′) = h(T′′).
A function f : Rd → C is T-equivariant if there exists R > 0 such that

O−T (BR(x)) = O−T (BR(y))+ (x − y) �⇒ f (x) = f (y). (2.2)

Given a TLC-function h : XT→ C, we get a T-equivariant function via f (x) := h
(T− x).

2.1.2. Mutual local derivability. For two tilings T1 and T2, we say that T2 is locally
derivable (LD) from T1 with radius R > 0 if for all x, y ∈ Rd ,

O−T1
(BR(x)) = O−T1

(BR(y))+ (x − y)⇒ O+T2
({x}) = O+T2

({y})+ (x − y).
If T is LD from S and vice versa, then we say that tilings T and S are mutually locally
derivable (MLD). Note that this is similar in spirit to T-equivariance. MLD implies
conjugacy of tiling dynamical systems, but not the other way round, see [32, 33]. We will
say that two minimal tiling spaces X andX′ are MLD if there exist T ∈ X and T′ ∈ X′ that
are MLD.

2.1.3. Frequency of patches and unique ergodicity. Denote QR = [−R, R]d . The fol-
lowing is well known and may be considered folklore. We refer the reader to [28], which
is written in the language of Delone multisets; passing to the tiling setting is routine.

Given an FLC tiling T, we say that T has uniform patch frequencies (UPFs) if for any
patch P ⊂ T, the limit

freq(P, T) = lim
n→∞

#{t ∈ Rd : t + P ⊂ QR + x}
(2R)d

≥ 0

exists uniformly in x ∈ Rd . For a repetitive tiling space, the UPF property and the uniform
frequencies do not depend on the choice of the tiling.

THEOREM 2.1. [28, Theorem 2.7] Let T be an FLC tiling in Rd . The dynamical system
(XT, Rd) is uniquely ergodic if and only if T has the UPF property.

Under the UPF assumption, we also have an explicit formula for the measure of ‘cylinder
sets’. For a tiling space X, we define the transversal of a patch P by

ϒ(P) = {T ∈ X : P ⊂ T}.
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For a patch P and a Borel set U ⊂ Rd , the corresponding cylinder set is ϒ(P)+ U :=
{T+ x : T ∈ ϒ(P), x ∈ U}.
PROPOSITION 2.2. [28, Corollary 2.8] Let X be a uniquely ergodic FLC tiling space, with
the unique invariant Borel probability measure μ. Let η = η(X) be the diameter of the
largest ball contained in every prototile. Then for any patch P and a Borel set U with
diam(U) < η(X),

μ(ϒ(P)+ U) = Ld(U) · freq(P, T). (2.3)

2.2. Self-similar tilings. Now we define a self-similar tiling space, in the sense of [25,
35, 39]. Here we start with a substitution rule. As before, suppose that we have a finite
prototile set {T1, . . . , Tm}, where each Tj ⊂ Rd is the closure of its interior, possibly
with a fractal boundary. Let ϕ be an expanding similarity on Rd , with expansion constant
θ > 1 (we do not assume that ϕ is a pure dilation; in general, ϕ = θO, where O is an
orthogonal transformation). Assume that there is a tile substitution

ω(Tj ) =
⋃
k≤m

(Tk +Djk), j ≤ m, (2.4)

whereDjk is a finite set of translations and the right-hand side represents a patch such that

ϕAj =
⋃
k

(Ak +Djk), j ≤ m, Aj = supp(Tj ). (2.5)

For a translated prototile, the substitution acts by

ω(Tj + x) = ω(Tj )+ ϕ(x), j ≤ m, x ∈ Rd . (2.6)

This and the property in equation (2.5) imply that the substitution map can be iterated,
resulting in increasingly larger patches. In particular,

ω2(Tj ) = {Ts + ϕDjk +Dks}s≤m,k≤m, 1 ≤ j ≤ m, (2.7)

etc. The substitution tiling space Xω corresponding to ω is, by definition, the collection of
all tilings 𝒯 of Rd such that every 𝒯-patch is a sub-patch of ωn(Tj ) for some j ≤ m and
n ∈ N. We will sometimes omit the subscript ω and simply write X for the tiling space.
By definition, one can pass from ω to ωk for k ≥ 2, without affecting the substitution
tiling space. The substitution naturally extends to a continuous self-map of the tiling space
ω : Xω → Xω. This map is surjective, but not necessarily injective. Note that

ω(𝒯 − t) = ω(𝒯)− ϕ(t), 𝒯 ∈ Xω, t ∈ Rd . (2.8)

The substitution matrix is defined by

Sω(j , k) = #Dkj . (2.9)

We will assume that the substitution is primitive, that is, some power of Sω has all entries
strictly positive. Repetitivity of 𝒯 ∈ Xω implies primitivity. A tiling is called self-similar
if it is a fixed point of the substitution: ω(𝒯) = 𝒯. Such a tiling always exists, after
passing to a higher power of ω, if necessary. FLC repetitive self-similar tiling spaces are
known to be uniquely ergodic, see [28, 35].
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6 B. Solomyak and R. Treviño

2.2.1. Aperiodicity and recognizability; hierarchical structure. We will assume that our
tiling spaces are aperiodic, that is, 𝒯 = 𝒯 − t implies t = 0. It follows from equation
(2.8) that aperiodicity of Xω is necessary for ω to be injective. It turns out that it is also
sufficient [36]. Then ω is a homeomorphism, and we can ‘desubstitute’ any 𝒯 ∈ Xω in a
unique way; this property is usually called ‘recognizability’. Equivalently, there is a unique
way to compose the tiles of 𝒯 into a collection of patches of the form ω(Tj ), j ≤ m, in
such a way that we get a tiling from the space ϕ(Xω). These patches are called super-tiles of
order 1. This procedure can be iterated; thus any T ∈ 𝒯 is contained in a unique increasing
sequence of super-tiles of order n.

2.2.2. Substitution Delone set associated with a self-similar tiling. Let 𝒯 be a
self-similar tiling, ω(𝒯) = 𝒯, which we assume exists, without loss of generality.
Specify the location of each prototile Tj in 𝒯. Then ω(Tj ) is a 𝒯-patch, with the
support ϕ(supp(Tj )). The definition in equation (2.4) implies that each element ofDjk is
a translation vector between two occurrences of equivalent tiles in 𝒯, namely, Tk and its
translate. This means that Djk is a set of return vectors, which will be important in what
follows. We can write

𝒯 =
m⋃
k=1

(Tk +ℒk(𝒯)), (2.10)

where ℒk(𝒯) represents the set of locations of tiles of type k in 𝒯 (relative to the
prototiles). Each ℒk(𝒯) is a Delone set, that is, a uniformly discrete relatively dense set
in Rd . By convention, 0 ∈ℒk(𝒯) for each k. Note that equations (2.10) and (2.4) yield a
‘dual system of equations’ for the Delone sets:

ℒk(𝒯) =
∐
j≤m

(ϕℒj (𝒯)+Djk), k ≤ m. (2.11)

This means that (ℒk(𝒯))k≤m is a substitution Delone multiset in the sense of [27, 28].

Definition 2.3. [28]. A family of Delone sets (ℒk)k≤m is called a substitution Delone
multiset with expansion ϕ if there exist finite setsDjk such that

ℒk =
∐
j≤m

(ϕℒj +Djk), k ≤ m. (2.12)

This notion was introduced by Lagarias and Wang [27], except that they allowed each
	k to be a set ‘with multiplicities’.

We will also need a set of control points for the tiling 𝒯 and other tilings in Xω. The
sets ℒk are not convenient, since they represent locations of tiles of type k in 𝒯 relative to
the prototiles Tk ∈ 𝒯. To this end, pick a point c(Tk) ∈ int(Tk) for each prototile, and let
c(Tk + x) = c(Tk)+ x for translated tiles. Then

	k(𝒯) :=ℒk(𝒯)+ c(Tk)
represents the set of control points in all the tiles of type k, and

	(𝒯) :=
∐
k≤m

	k(𝒯) (2.13)
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is a Delone set of all the control points for the tiling. Note that (	k(𝒯))k≤m is a substitution
Delone multiset as well, satisfying equation (2.12), with Djk replaced by Djk + c(Tk)−
ϕc(Tj ).

2.3. Pseudo-self-similar (PSS) tilings. Our main object in this paper is tiling deforma-
tions, which are more conveniently defined for tilings whose tiles are convex polytopes
meeting face-to-face. When the tile boundaries are fractal, which is necessarily the case if
the expansion map ϕ involves an irrational rotation, an extra step is needed. We are going
to use (a variant of) the construction of derived Voronoi (DV) tilings introduced by N.
Priebe Frank [17], which turns a self-similar tiling into a pseudo-self-similar one, but with
‘nice’ convex polytope tiles.

Definition 2.4. Let ϕ : Rd → Rd be an expanding similarity map. A repetitive tiling T of
finite local complexity is called a pseudo-self-similar tiling, or PSS, with expansion ϕ if T
is locally derivable from ϕT.

In fact, in [17], the map ϕ is allowed to be any expanding linear map, but here we restrict
ourselves to similitudes.

Let 	 be a Delone set in Rd . The Voronoi cell of a point x ∈ 	 is, by definition,

V (x) = {t ∈ Rd : ‖t− x‖ ≤ ‖t− y‖ for all y ∈ 	 \ {x}},
and the corresponding Voronoi tiling (tesselation) is

T	 := {V (x) : x ∈ 	}.
The tiles of T	 are convex polytopes meeting face-to-face. Applying this procedure
to 	(𝒯), we want to make sure that the cells corresponding to equivalent tiles are
also translationally equivalent. This will usually require increasing the set of labels,
by ‘decorating’ each point with the translation equivalence class of a sufficiently large
neighborhood. It is always possible to achieve this, see [17, §4]. Below we assume that this
has already been done, and equations (2.4) and (2.5) still apply, possibly with a larger m.
Now let 	 = 	(𝒯) be from equation (2.13) and consider the tiling T	, where the tiles
‘inherit’ the labels from the corresponding control points. It can be shown, as in [17], that,
assuming that the labels carry the information about a sufficiently large neighborhood, the
tiling T	 is MLD with the original 𝒯 and hence the translation dynamics are conjugate.
If 𝒯 is self-similar, then T	, with 	 = 	(𝒯), is pseudo-self-similar with the same
expansion map. We have

T	 =
m⋃
k=1

(Tk +ℒk(𝒯)),

where

supp(Tk) = supp(V	−x(c(Tk)) for x ∈ℒk(𝒯),

and consistency (independence of x) is guaranteed by construction. For the pseudo-
self-similar tiling T	, we have a substitution, ‘inherited’ from ω, which we denote by
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the same letter by abuse of notation. In fact, similarly to equations (2.4) and (2.6),

ω(Tj ) =
⋃
k≤m

(Tk +Djk), ω(Tj + x) = ω(Tj )+ ϕ(x), j ≤ m, x ∈ Rd , (2.14)

but the analog of equation (2.5) does not hold exactly—only approximately. Then the PSS
tiling satisfies ω(T	) = T	. The atlas of patches of T	, or equivalently, its orbit closure
in the natural topology, defines the PSS tiling space. By construction, the PSS tiling space
is MLD with the initial self-similar tiling space.

We summarize this discussion in the following proposition, but first we need some
terminology.

Definition 2.5. A tiling of Rd will be called polytopal if its tiles are convex polytopes
meeting face-to-face, and this induces a structure of a CW-complex.

Definition 2.6. A repetitive FLC PSS tiling T, with the prototile set {Tj }j≤m, an expansion
map ϕ, and a (combinatorial-geometric) substitution ω, will be called an L-PSS tiling
(L is for ‘lucky’) if it is polytopal and there exists a substitution Delone multi-set (ℒk)k≤m
with expansion ϕ, satisfying equation (2.12), such that T =⋃m

k=1(Tk +ℒk) = ω(T) and
ω acts by equation (2.14).

We have proved the following.

PROPOSITION 2.7. If T′ is a self-similar tiling with an expansion map ϕ, then there exists
an L-PSS tiling T with the expansion map ϕ, such that T and T′ are MLD.

Remark 2.8. (a) Although the procedure described above is general, for specific examples,
there is frequently a direct and relatively simple way to obtain a PSS tiling from a
self-similar one without increasing the number of prototiles. In fact, often a planar PSS
tiling is given directly, equipped with a ‘substitution-with-amalgamation’, see [14], and
a procedure of ‘redrawing the boundary’ is used to show that it is MLD to a genuine
self-similar one [19]. This is the case for the class of Kenyon’s tilings [25] which we
analyze in §6.

(b) The step of passing from a self-similar tiling to a PSS tiling is not needed if the
self-similar tiling is polytopal to begin with.

(c) It is proved in [19] for tilings in the plane and in [37] for the general case that any
PSS tiling with an expansion map ϕ is MLD with a genuine self-similar tiling, with the
expansion map ϕn for some n ∈ N. Thus in the last proposition, we could start with an
arbitrary PSS tiling, at the cost of raising the associated expansion map to a power.

3. Cohomology and deformations
3.1. Pattern equivariant cohomology. Let T be an aperiodic repetitive tiling of finite
local complexity and recall the definition of a T-equivariant function in equation (2.2). A
T-equivariant k-form is a k-form α such that its coefficients are T-equivariant functions.
We denote the set of C∞, T-equivariant k-forms by �kT, which is a subspace of the set of
smooth k-forms on Rd . As such, the restriction of the usual de Rham differential operator
gives a differential operator on the complex {�kT}k of T-equivariant forms.
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Definition 3.1. The cohomology of the complex of smooth T equivariant forms

Hk(X; R) := ker d : �kT→ �k+1
T

im d : �k−1
T → �kT

is called the T-equivariant cohomology.

We denoted the cohomology asHk(X; R) since it is independent of which tiling T ∈ X
we used to define it [24].

3.2. Čech cohomology. Let T be an aperiodic, repetitive tiling of finite local complexity,
which we now assume has a CW structure. More specifically, we assume that all the tiles of
T are d-cells of the CW complex T where all tiles meet face-to-face. (In practice, we will
work with polytopal tilings, see Definition 2.5.) For any tile t ∈ T, we define T(t) = T(1),
called the 1-corona of t, to be the set of all tiles in T which intersect t. Continue recursively
as follows. Given a (k − 1)-corona of a tile T(k−1)(t), the k-corona of the tile t is the patch

T(k)(t) = {t ′ ∈ T : t ′ ∩ T(k−1)(t) �= ∅}.
A k-collaring of a tile t is the tile with the same support as t, but the label being the
translation-equivalence class of T(k)(t). This is a useful tool to keep track of bigger
neighborhoods of tiles by increasing the set of labels.

3.2.1. The Anderson–Putnam complex. Following Anderson and Putnam [1], we define
a cell complex AP 0(X) by gluing together the prototiles along their faces in all the ways in
which they can be adjacent in the tiling space. This can be done equally well for k-collared
tiles (this just increases the set of labels). The resulting space is denoted APk(X). Here is
a formal definition.

Definition 3.2. Let X be a tiling space of repetitive, aperiodic tilings of Rd of finite
local complexity. We define on X × Rd an equivalence relation ∼1, where X carries
the discrete topology and Rd the usual topology, as (T1, v1) ∼1 (T2, v2) if and only
if T1(t1)− v1 = T2(t2)− v2 for some tiles t1, t2 with v1 ∈ t1 ∈ T1 and v2 ∈ t2 ∈ T2.
The space X × Rd/ ∼1 is the Anderson–Putnam complex of X, denoted by AP(X). For
k ≥ 0, the kth-collared Anderson–Putnam complex APk(X) is similarly obtained by using
k-collared tiles instead of 1-collared tiles, where 0-collared tiles are just tiles. Note that
AP(X) = AP1(X) by definition.

Assuming a tile substitution rule as in equation (2.14) is a cellular map, it defines a
map γ : AP(X)→ AP(X). The important observation of Anderson and Putnam is that,
as defined,

X ∼= lim←−(AP (X), γ ),

that is, the tiling space X is homeomorphic to the set of all infinite sequences {xi}i∈N ∈
AP(X)∞ with the property that γ (xi) = xi−1. What this result gives is the easy
calculation of the Čech cohomology of X using the induced maps γ ∗ on the cohomology
of AP(X):

Ȟ ∗(X; Z) ∼= lim−→(Ȟ
∗(AP (X); Z), γ ∗). (3.1)
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3.2.2. Cohomology for PSS tilings. Let T be a polytopal pseudo-self-similar tiling. The
latter means that there exists an R > 0 and expansive map ϕ such that for all x, y ∈ Rd ,

O−ϕT(BR(x)) = O−ϕT(BR(x))+ (x − y) �⇒ O−T (B1(x)) = O−T (B1(x))+ (x − y).
Let X be the tiling space of T and Xϕ the tiling space of ϕT. If ϕ is pure dilation, then
AP(Xϕ) is a rescaled copy of AP(X) by θ := |det ϕ|1/d , since linear expansive maps do
not affect the process of collaring. If ϕ is not pure dilation, thenAP(Xϕ) is a rescaled copy
of AP(X) by θ , but where all the cells have also been rotated.

PROPOSITION 3.3. Let X be the tiling space of a polytopal pseudo-self-similar tiling T.
Then there exists a κ ∈ N and a map γ : APκ(X)→ APκ(X) such that

X ∼= lim←−(APκ(X), γ ). (3.2)

Proof. Since T is PSS with expanding map ϕ, there exists an R > 0 such that for any
x ∈ Rd , the R-neighborhood of x in ϕT determines the tile(s) to which x belongs in T.
Let k′ ∈ N be the smallest integer k such that the R-neighborhood of any tile t ∈ ϕT is
contained in (ϕT)(k)(t). We will first show that any � ≥ k′ allows us to define a map γ� :
AP�(X)→ AP�(X).

Let Xϕ be the tiling space of ϕT. Since the pseudo-self-similarity ϕ maps n-cells of T
to n-cells of ϕT and respects collaring, it determines a bijection r� : AP�(X)→ AP�(Xϕ)

for every � ∈ N. We now define a map s� : AP�(Xϕ)→ AP�(X) for any � ≥ k′ as follows.
Let [x]ϕ ∈ AP�(Xϕ) and let x ∈ t ∈ ϕT ∈ Xϕ be a representative on the tiling. Then the
R neighborhood of x in ϕT determines a point in T whereon x lies, and thus a point
[x] ∈ AP�(X). Since [x] was completely determined by the R-neighborhood of x and this
neighborhood is completely contained in (ϕT)(�), then the map s�([x]ϕ) = [x] ∈ AP�(X)
is well defined (that is, independent of representatives of classes). Let γ� := s� ◦ r� :
AP�(X)→ AP�(X).

Now the inverse limit of (APk′(X), γk′) is well defined, but it may or may not be
homeomorphic to X. By the argument of Anderson and Putnam, collaring once more
guarantees that the map forces the border. Therefore, picking κ = k′ + 1 ensures that and
we obtain equation (3.2).

COROLLARY 3.4. Let X be the tiling space of a polytopal pseudo-self-similar tiling T and
γ : APκ(X)→ APκ(X) the map from Proposition 3.3. Then,

Ȟ ∗(X; Z) ∼= lim−→(Ȟ
∗(APκ(X); Z), γ ∗). (3.3)

Finally, we note that for polytopal tilings of finite local complexity in which cells meet
face to face, we have that the T-equivariant and Čech cohomologies are isomorphic [24],
that is,

H ∗(X; R) ∼= Ȟ ∗(X; R). (3.4)

3.3. Deformations. In this section, we go over deformations of tiling spaces, following
[14, 22]. Let T be a repetitive, aperiodic polytopal tiling of finite local complexity and
let X be the corresponding tiling space. Observe that for L-PSS tiling spaces, H 1(X; R)
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is finite dimensional by equation (3.3). Each class [α] ∈ H 1(X; R) is represented by
a T-equivariant smooth 1-form α : Rd → T ∗Rd (up to a T-equivariant exact form).
Now consider the space H 1(X; Rd) = H 1(X; R)⊗ Rd . Each class [f] ∈ H 1(X; Rd) is
represented by a T-equivariant smooth 1-form f : Rd → T ∗Rd ⊗ Rd ∼= Md×d (up to a
T-equivariant exact form). That is, the representative f is a T-equivariant choice of linear
transformation of Rd .

A representative f of a class in H 1(X; Rd) is called shape deformation as it defines a
deformation ofT as follows. (We essentially quote the beginning of [22, §8] here.) Suppose
that f is T-equivariant with some radius R. LetHf : Rd → Rd be defined asHf(x) =

∫ x
0 f.

We will deform the vertices of tiles, assuming that one of the vertices is at the origin. Each
of these vertices is decorated with the equivalence class of the pattern of radius R0 > R

around it, where R0 is greater than R plus the greatest distance between the adjacent
vertices (that is, connected by an edge). If x is a vertex, we let Hf(x) be the deformed
vertex (with the same label). If v1v2 was an edge, then the displacement vector v2 − v1 has
been changed to

∫ v2
v1

f. The label of v1 determines the pattern of T out to distance R along
the entire edge and hence determines

∫ v2
v1

f. Thus, the local patterns of Tf are determined
from local patterns of T, and Tf has FLC.

Since we deform the tiles by deforming their edges, for d > 2, we need to make sure
that higher-dimensional faces are well defined. For instance, for two-dimensional faces,
we would need the side edges to remain co-planar. To avoid imposing such a condition,
we can simply triangulate all the tiles to begin with. It is easy to see that there exists a
triangulation which is equivariant and preserves the face-to-face property. When all the
faces are simplices, they stay being simplices after perturbing the edges. The new simplex
sub-tiles should carry a label which contains both the label of the tile it came from and its
location in the triangulation; then the triangulated tiling is MLD to the original one, and
we can work with it from the start without loss of generality.

What is not clear at this point is whether the deformation is in fact a homeomorphism
or not. As proved by [22], what determines the answer to this question is invertibility of
the Ruelle–Sullivan cycle applied to [f].

Definition 3.5. Let T be a polytopal, repetitive, aperiodic tiling of finite local complexity,
with uniform patch frequency. The Ruelle–Sullivan map is the map C : H 1(X; Rd)→
Md×d defined, for a class [f] ∈ H 1(X; Rd), as

C([f]) = lim
R→∞

1
Vol(BR)

∫
BR

f(t) dt ,

which is independent of the representative f.

We can now recall one of the main results of [22]: if C([f]) is invertible, then one
can choose a representative f so that Hf is a homeomorphism of Rd . Then the shape
deformation f induces an orbit equivalence between the tiling spaces X and Xf. In
particular, the spaces X and Xf are homeomorphic. As such, the set

M(X) := {[f] ∈ H 1(X; Rd) : det C([f]) �= 0}
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12 B. Solomyak and R. Treviño

parameterizes deformations of the tiling space X, up to deformations given by cobound-
aries. Deformations given by representatives of classes inM(X) are all orbit equivalences.
Moreover, f can be chosen so that the homeomorphism Hf will be arbitrarily close to
the identity, see the proof of [22, Theorem 8.1]. This, however, will come at the cost of
collaring to a possibly very large radius.

It is important for us that the deformation preserves the combinatorial structure of the
tiling, in the sense of neighbor graph and faces of all dimensions. This can be achieved
either by collaring, or by working only with super-tiles of sufficiently large size and
ignoring the ‘small-scale’ combinatorics.

Definition 3.6. A shape deformation of an FLC polytopal tiling space X will be called
admissible if it preserves the local combinatorial structure of the tilings and it defines a
homeomorphism via the map Hf introduced above. In practical terms, this means that we
will consider deformations that are small compared with the size of the prototiles.

Now consider the tiling space Xω of an L-PSS tiling, see Definition 2.6. Picking
[f] ∈M(Xω) and applying an admissible f to 𝒮 ∈ Xω having a vertex at the origin, we
obtain a tiling 𝒮f and the f-deformed substitution tiling space Xf

ω (the translation orbit
closure), whose prototiles will be denoted by T f

j . To be precise, we need to specify the

location of T f
j in Rd . By construction, the L-PSS tiling T has distinguished prototiles

Tk ∈ T and is also a fixed point of the substitution ω(T) = T. Choose any vertex v in T
and consider the shifted tiling T− v, with a vertex at the origin. Then the deformation
(T− v)f is well defined. We then let the deformed prototiles be

T
f
j := (Tj − v)f, j ≤ m. (3.5)

Further, ωn(Tj )− v ⊂ T− v for all n ∈ N, so we can define deformed higher order
super-prototiles by

T
f,n
j = (ωn(Tj )− v)f. (3.6)

(Strictly speaking, these are patches rather than individual tiles. The exact location is not
that important, but we want their supports to be subsets of Rd , e.g., to be able to perform
integration over them.) The assumption that f is admissible implies that the tilings in the
deformed tiling space Xf

ω will have a hierarchical structure combinatorially equivalent to
those of Xω.

3.4. Recurrences, return vectors, and recurrence vectors. Let T be a repetitive FLC
polytopal tiling and X the corresponding tiling space. Following [14], we say that a pair of
points (z1, z2) in a tiling T is a recurrence of size r if

O−T (Br(z2)) = O−T (Br(z1))+ (z2 − z1) (3.7)

and r is maximal possible. The vector z2 − z1 is called a return vector of size r. We will
always assume that r ≥ 2Dmax, where Dmax is the diameter of the largest prototile, then
equation (3.7) implies thatO+T ({z2}) = O+T ({z1})+ (z2 − z1). We can assume without loss
of generality that z1 and z2 are vertices of the tiling T. Each path along edges from z1

to z2 projects to a closed loop in AP(X), and hence to a closed chain in C1(AP (X)).
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Different paths from z1 to z2 project to homologous chains. The class in H1(AP (X), Z)
of a recurrence is called a recurrence class. Recurrences of size greater than (k + 1)Dmax

project to closed chains in APk(X) and define classes in H1(APk(X), Z).

Definition 3.7. Let T be a polytopal tiling. A pair of points (z1, z2) in T will be
called an elementary recurrence if there exists a tile T ∈ T such that z1 ∈ supp(T ) and
T + (z2 − z1) ∈ T. Similarly to the above, we can associate to (z1, z2) a closed loop in
AP 0(X) which defines a class in H1(AP 0(X), Z), called an elementary recurrence class.

Definition 3.8. Let [f] ∈M(X) ⊂ H 1(X; Rd). We will call it elementary if it is a
pull-back of a class in H 1(AP 0(X), Rd) under the ‘forgetful’ map. In particular, it is a
class of a shape deformation which acts on elementary recurrences. A representative f of
an elementary class [f] will also be called elementary.

In the rest of the paper, we will restrict ourselves to elementary shape deformations.
This is not an essential restriction, since we can always ‘collar’ the tiles of T to the
level κ , given in Proposition 3.3, and then an elementary deformation defines a class in
H 1(APκ(X); Rd), hence in H 1(X; Rd), by Proposition 3.3.

We continue with the construction, following [14]. Let X be an L-PSS tiling space.
The set of integer linear combinations of elementary recurrence classes is a subgroup
� < H1(AP 0(X), Z), which is a finitely generated free Z-module. Let {a1, . . . , as} be a
basis (set of free generators) for�. For each elementary recurrence (z1, z2), which defines a
class [(z1, z2)], the corresponding recurrence vector in Zs is the decomposition of the class
in this basis; it will be denoted α(z1, z2). The transformation α : �→ Zs is sometimes
called the address map. For a shape parameter f, define

Lf = (f(a1), . . . , f(as)), (3.8)

which can be thought of as a Rd -valued row vector that gives the displacements of the
deformed vectors in the basis. Then the deformation of the displacement vector z2 − z1,
corresponding to the recurrence vector v = α(z1, z2), is equal to Lfv.

Given an elementary recurrence (z1, z2) in T, we have that (ϕ(z1), ϕ(z2)) is an
elementary recurrence as well, because T is a PSS tiling with expansion ϕ, see equation
(2.14). (In fact, applying the substitution increases the size of the recurrence, but is still
an elementary too.) It follows that the expansion map ϕ induces an endomorphism of the
Z-module generated by elementary recurrence vectors. Thus, there exists an integer s × s
matrix M satisfying

α(ϕ(z1), ϕ(z2)) = Mα(z1, z2), z1, z2 ∈ 	(T). (3.9)

Let f be an elementary admissible deformation. Then, combining equations (2.14) and
(3.6) (for n = 1) yields

T
f,1
j =

⋃
j≤m

(T
f
k + f(Djk)), (3.10)

where the right-hand side is a patch of a tiling in Xf
ω. Here we view the elements of Djk

as elementary recurrences, since they represent the prototile Tk ∈ T and its translated copy
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in ω(T) ⊂ T. Using the address map, as above, we get an associated set of recurrence
vectors, denoted α(Djk). By definition,

f(Djk) = Lfα(Djk).

We can iterate the procedure and obtain the decomposition of higher order deformed
super-tiles as well. For instance,

T
f,2
j =

⋃
s≤m,k≤m

(T f
s + f(ϕDjk)+ f(Dks)),

=
⋃

s≤m,k≤m
(T f
s + LfMα(Djk)+ Lfα(Dks)), 1 ≤ j ≤ m. (3.11)

3.5. Geometric properties of deformed tilings and consequences. The following geo-
metric lemma will be useful. We will write � to indicate that the equality holds up to a
uniformly bounded from 0 and∞ multiplicative constant.

LEMMA 3.9. Let ω be an L-PSS tile substitution with expansion ϕ and Xω the corre-
sponding tiling space. Fix an elementary admissible shape deformation f, and consider
the corresponding deformed tiling space Xf

ω. For the f-deformed super-tiles T f,n
j , j ≤ m,

let Rf
n be the radius of the smallest ball containing (a translate of) every T f,n

j , and let rfn be

the radius of largest ball contained in a (translate of) any T f,n
j . Then there exists Cf > 1

depending only on f such that
rfn ≥ C−1

f θn (3.12)

and
Rf
n ≤ Cfθ

n, (3.13)

where θ = ‖ϕ‖.
Proof. We use the fact that, combinatorially, the hierarchical structure of the tilings in
X

f
ω is the same as in Xω. The L-PSS tile substitution was obtained from a self-similar,

‘geometric’ tile substitution, so that T is MLD with a self-similar tiling 𝒯 having the
expansion ϕ. For the tiles and super-tiles of 𝒯, the properties in equations (3.12) and
(3.13) are immediate by self-similarity. It follows that the same properties hold for the PSS
tiling, since it was built using a derived Voronoi tesselation construction, with	 = 	(𝒯).

Let us call a sequence of tiles S1, . . . , Sk (of arbitrary type) a chain if Sj ∩ Sj+1 �= ∅
for j = 1, . . . , k − 1 (recall that our tiles are compact sets which share faces).

Claim 1. Let Tj be a prototile of the L-PSS tiling T, with c(Tj ) (control point) in its
interior, and consider the T-patch ωn(Tj ), as well as Anj := supp(ωn(Tj )). Let S be any
T-tile in the patch ωn(Tj ) containing the point ϕn(c(Tj )). Then any chain of T-tiles in
ωn(Tj ) connecting S to ∂Anj contains at least c1θ

n tiles, where c1 > 0 depends only on T.

The claim is immediate since Anj , being a bounded displacement of ϕnAj , with Aj =
supp(Tj ), contains a ball of radius � θn centered at ϕn(c(Tj )), by the equation (3.12)
property for T.

https://doi.org/10.1017/etds.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.64


Spectral cocycle for substitution tilings 15

Now consider the f-deformed super-tile T f,n
j = (ωn(Tj )− v)f, see equation (3.6), with

the deformed tile (S − v)f inside. Denote Af,n
j := supp(T f,n

j ).

Claim 2. Let d((S − v)f, ∂Af,n
j ) be the usual Euclidean distance between the compact

boundary of the deformed super-tile and the compact (S − v)f in its interior. Then there
exists a chain of f-deformed tiles in the patch T

f,n
j connecting (S − v)f to ∂A

f,n
j of

cardinality Nf(n), such that

Nf(n) · V f
min ≤ cd−1 · [d((S − v)f, ∂Af,n

j )+ 2dfmax] · (dfmax)
d−1, (3.14)

where V f
min is the minimal volume of an f-deformed tile, dfmax is the maximal diameter of

an f-deformed tile, and cd−1 is the volume of a unit ball in Rd−1.

Combining Claim 2 with Claim 1 yields equation (3.12). Indeed, for every f-chain in
T
f,n
j , there is a combinatorially equivalent chain in the pseudo-self-similar ωn(Tj ), and

this yields a lower bound � θn for d((S − v)f, ∂Af,n
j ) for large enough n. (For small n,

both equations (3.12) and (3.13) are trivial.)
For the proof of Claim 2, consider the shortest straight line segment J from (S − v)f

to ∂Af,n
j and consider the union of deformed tiles in T f,n

j intersecting J. One can certainly

form a chain of f-deformed tiles connecting (S − v)f to ∂Af,n
j out of them, and their total

volume is at least the expression in the left-hand side of equation (3.14). However, these
tiles are all contained in the df-neighborhood of J, whose volume is less than that on the
right-hand side of equation (3.14).

The proof of equation (3.13) is similar. Indeed, the maximal distance from a point in S to
a point on the boundary ∂Anj is at mostC2θ

n by self-similarity, hence for any point on ∂Anj ,
there exists a chain of T-tiles connecting that point to S of cardinality at most C̃2θ

n. For
any such chain, there is a corresponding deformed chain of the same cardinality, showing
that the diameter of Af,n

j is bounded above by const · θn, with the constant depending only
on the deformation. This completes the proof of the lemma.

For each prototile T f
j of the deformed tiling space Xf

ω, we also fix a control point c(T f
j )

in the interior and then in all tiles at the same relative location. For a tiling 𝒮f ∈ Xf
ω, let

	(𝒮f) := {c(T f) : T f ∈ 𝒮f}.
LEMMA 3.10. Let T ∈ Xω be an L-PSS tiling, f an admissible elementary deforma-
tion, and 𝒮f = (T− v)f ∈ Xf

ω, where v is a vertex of T. Then 	(T) and 	(𝒮f) are
quasi-isometric; in fact, there exists Cω,f (independent of T) such that for any z1, z2 ∈
	(T) and the corresponding zf1, zf2 ∈ 	(𝒮f), holds

C−1
ω,f|z1 − z2| ≤ |zf1 − zf2| ≤ Cω,f|z1 − z2|. (3.15)

Proof. Consider the graph Graph(T) associated with a tiling T, in which the vertices
are the tiles and graph edges connect neighboring tiles (tiles whose compact supports
intersect). By construction, this graph is stable under the deformations that we consider.
It follows from the proof of Lemma 3.9 that for the deformed tiling 𝒮f, the set 	(𝒮f) is
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quasi-isometric to the set of vertices of the graph Graph(𝒮f) ∼= Graph(T), endowed with
the graph metric. This implies the desired claim.

Definition 3.11. A tiling T is called linearly repetitive if there exists C > 0 such that for
every patch P ⊂ T, a translationally equivalent T-patch may be found in every ball of
radius Cdiam(P).

COROLLARY 3.12. Let Xω be an FLC primitive aperiodic L-PSS tiling space. Fix an
admissible elementary shape deformation f and consider the corresponding deformed
tiling space Xf

ω. Then:
(i) all the tilings in Xf

ω are linearly repetitive;
(ii) the deformed tiling dynamical system (X

f
ω, Rd) is uniquely ergodic.

Proof. Linear repetitivity of primitive self-similar tiling spaces is well known, see, e.g.
[36], and the last lemma implies that this is the case for Xf

ω. Linear repetitivity implies the
existence of uniform patch frequencies [26] and hence unique ergodicity.

The unique invariant probability measure for (Xf
ω, Rd) will be denoted by μf.

Remark 3.13. The deformed tiling space Xf
ω falls into the very general framework of

fusion, developed by Frank and Sadun [18]. In fact, our situation satisfies the conditions
of transition-regular, primitive, and recognizable fusion rules, for which unique ergodicity
was proved in [18, Corollary 3.10]. Moreover, we have a constant number of prototiles
(equal to m) at each level, and a constant transition matrix, hence the tiling dynamical
system (X

f
ω, Rd), with the unique invariant probability measure μf, is not strongly mixing

by [18, Theorem 4.13].

We will need a formula for the unique invariant measure μf on Xf
ω. Recall the notion of

transversal, defined by

ϒ(Pf) = {Tf ∈ Xf
ω : Pf ⊂ Tf}

for a deformed tiling space Xf
ω and a deformed patch Pf.

LEMMA 3.14. Let Xω be an FLC primitive aperiodic L-PSS tiling space, with expansion
ϕ = θO. Fix an elementary admissible shape deformation f and consider the correspond-
ing deformed tiling spaceXf

ω. Then there exists cω,f > 0, such that for any Borel set U and
all n ∈ N,

diam(U) ≤ cω,fθ
n �⇒ μf(ϒ(T

f,n
j )+ U) ≥ const ·Ld(U) · θ−nd , (3.16)

with the constants depending only on ω and on f.

Proof. It is proved in [36, Lemma 2.4] that for an aperiodic primitive self-similar tiling 𝒯,
there exists 0 < c < 1 such that ifP ⊂ 𝒯 is a patch containing a ball of radiusR > 0 in its
support, then P+ x �⊂ 𝒯 for all x with ‖x‖ ≤ cR. Since the Delone set of the deformed
tiling 𝒮f = (T− v)f is quasi-isometric to 	(T) = 	(𝒯) by Lemma 3.10, this property
persists, with an appropriate constant, for 𝒮f. By equation (3.12), the patch T f,n

j contains
a ball of radius � θn in its support. We are going to use Proposition 2.2. Represent the
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set U as a union of disjoint Borel sets Uk , each of diameter less than η(𝒮f) = 2rf, the
maximal diameter of a ball contained in the support of every deformed tile. It follows that
if diam(U) ≤ cω,fθ

n, with a sufficiently small constant, independent of n, then the sets
ϒ(T

f,n
j )+ Uk are mutually disjoint, and hence by equation (2.3),

μf(ϒ(T
f,n
j
)+ U) =

∑
k

μf(ϒ(T
f,n
j
)+ Uk) =

∑
k

Ld(Uk) · freq(T f,n
j
) = Ld(U) · freq(T f,n

j
).

(3.17)

By primitivity of the substitution and the Perron–Frobenius theorem, the frequency of
ωn(Tj ) in the self-similar tiling space is at least const · θ−nd (in fact, an upper bound holds
as well, using [36, Lemma 2.4] again, but we do not need it), just by counting the number of
n-level super-tiles inside (n+ k)-level super-tiles. By quasi-isometry, the same asymptotic
bound holds for the deformed tiling space, and equation (3.16) follows.

4. The spectral cocycle; statement of result on local dimension
LetXω be an FLC primitive aperiodic L-PSS tiling space. The Fourier matrix is anm×m
complex matrix-function on Rd whose (j , k)-entry is

[ℬ(λ)](j ,k) :=
[ ∑

x∈Djk
exp(−2πi〈λ, x〉)

]
, λ ∈ Rd , 1 ≤ j , k ≤ m, (4.1)

see [4, (29)]. First, we need to define a ‘deformed’ Fourier matrix. Recall that the
set of integer linear combinations of elementary recurrence classes is a subgroup � <
H1(AP0(Xω), Z), for which we fixed a set of free generators {a1, . . . , as}. The decompo-
sition with respect to this basis is given by α : �→ Zs , the address map. Recall equation
(3.9) saying that the expansion induces a linear mapping on Zs given by a matrix M, so
that

αϕ = Mα.

For a shape parameter f (a representative of a class in H 1(AP0(Xω); Rd)), we considered
the row vector Lf = (f(a1), . . . , f(as)), see equation (3.8). We also discussed that
elements of Djk can be identified with elementary recurrences, so α(x) ∈ Zs is well
defined for x ∈ Djk . Now we define the deformed Fourier matrix by[ ∑

x∈Djk
exp(−2πi〈λ, Lfα(x)〉)

]
j ,k≤m

=
[ ∑

x∈Djk
exp(−2πi〈LT

f λ, α(x)〉
Rs
)

]
j ,k≤m

, λ ∈ Rd .

(4.2)

The spectral cocycle will be over the toral endomorphism

z �→ MTz mod Zs ,

where the superscript T indicates the transpose. It will be an endomorphism of the
s-torus Ts if det(M) �= 0; otherwise, we can restrict it to a lower-dimensional invariant
sub-torus. Let

ℳ(z) :=
[ ∑

x∈Djk
exp(−2πi〈z, α(x)〉

Rs
)

]
j ,k≤m

, z ∈ Rs ; (4.3)
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this is closely related to the deformed Fourier matrix, which was defined as ℳ(LT
f λ),

for λ ∈ Rd , in equation (4.2). Because of periodicity, ℳ is well defined on the torus
Ts = Rs/Zs .

Definition 4.1. The matrix product

ℳ(z, n) :=ℳ((MT)
n−1

z) · · · · ·ℳ(z), z ∈ Ts , n ∈ N,

will be called the spectral cocycle associated with the L-PSS tiling space Xω.

We will see below that for z = LT
f λ, the growth behavior of ℳ(z, n) in some sense

‘controls’ the local behavior of spectral measures at λ.
As a consistency check, consider the case of unperturbed self-similar tiling, when

Lf = [a1, . . . , as]. Then z = [a1, . . . , as]Tλ and

〈z, α(x)〉 = 〈λ, [a1, . . . , as]α(x)〉 = 〈λ, x〉,
by the definition of the address map α. So we obtain ℳ(z) =ℬ(λ) (the Fourier matrix)
from equations (4.3), (4.1). Further,

MTz = MT[a1, . . . , as]Tλ = [a1, . . . , as]TϕTλ, (4.4)

by the definition of M, and hence

ℳ(z, n) =
n−1∏
j=0

ℬ((ϕT)jλ),

which agrees with the Fourier matrix cocycle of Baake et al, see [4, 6].
Define the pointwise upper Lyapunov exponent of the cocycle ℳ(z, n) at the point

z ∈ Rs by

χ+(z) := lim sup
n→∞

1
n

log ‖ℳ(z, n)‖; (4.5)

we omit the superscript if the limit exists. In the ‘unperturbed,’ self-similar case, it becomes

χ+(λ) := lim sup
n→∞

1
n

log
∥∥∥∥
n−1∏
j=0

ℬ((ϕT)jλ)

∥∥∥∥.
We will also need a more refined version of the Lyapunov exponent: for �ζ ∈ Cm, let

χ+(z, �ζ ) := lim sup
n→∞

1
n

log ‖ℳ(z, n)�ζ‖. (4.6)

Obviously, χ+(z, �ζ ) ≤ χ+(z) for all �ζ .
Observe that ℳ(0) = ST

ω , the transpose substitution matrix of ω, see equation (2.9). Its
PF eigenvalue is ϑ1 = |det ϕ| = θd , where θ is the expansion constant, by self-similarity.
Thus, χ(0) = d log θ . Since every entry of ℳ(z) in absolute value is less than or equal to
the corresponding entry of ℳ(0), a non-negative primitive matrix, we obtain that

χ+(z) ≤ d log θ for all z ∈ Rs .
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The lower local dimension of a finite positive Borel measure ν at a point x is defined by

d−(ν, x) = lim inf
r→0

log ν(Br(x))
log r

. (4.7)

Equivalently,

d−(ν, x) = sup{γ ≥ 0 : ν(Br(x)) ≤ Crγ for all r > 0, for some C > 0}. (4.8)

Note that the definition is not changed if we only require the upper bound for the measure
of balls of sufficiently small radius, since the measure is finite. We will say that a measure
ν is Hölder regular on a set F if

there exists α > 0 such that d−(ν, x) ≥ α for all x ∈ F . (4.9)

Let f be an elementary admissible deformation of Xω. Recall that the deformation was
well defined only on a transversal of the tiling space, namely, on the tilings having a vertex
at the origin, whereas the deformed tiling space Xf

ω is simply the translation orbit closure
of one representative deformed tiling. For concreteness, we fixed a vertex v ∈ T, an L-PSS
tiling in Xω, and define the deformed prototiles and super-prototiles for j ≤ m by

T
f
j := (Tj − v)f ∈ (T− v)f; T

f,n
j = (ωn(Tj )− v)f ⊂ (T− v)f, j ≤ m,

see equations (3.5) and (3.6).
For a tiling 𝒮f ∈ Xf

ω and j ≤ m, let ℒj (𝒮f) be the Delone set of translation vectors
between the prototiles T f

j and the tiles in 𝒮f equivalent to it, that is,

𝒮f =
⋃
j≤m

(T
f
j +ℒj (𝒮f)). (4.10)

Now we are ready to state our main result. Assume for simplicity that the test function
φ is a TLC function of level 0 on Xf

ω, represented as

φ(𝒮f) =
m∑
j=1

∑
x∈ℒj (𝒮f)

δx ∗ ψj (0), (4.11)

where ψj is an integrable function, with supp(ψj ) ⊂ T f
j . General TLC functions may be

represented in a similar way, using higher-level super-tiles.

THEOREM 4.2. Let T be an FLC primitive aperiodic L-PSS tiling and Xω the corre-
sponding tiling space. Let � be the Z-module generated by elementary recurrences for
T and {a1, . . . , as} a set of free generators for �. Let f be a shape parameter defining
an admissible elementary deformation, Lf = [f(a1), . . . , f(as)], and Xf

ω the deformed
substitution tiling space. Consider the measure-preserving system (X

f
ω, Rd , μf). For a

TLC function φ on Xf
ω of the form in equation (4.11), let σφ be the corresponding spectral

measure on Rd . Then

d−(σφ , λ) ≥ 2 min
{
d − χ

+(z, �ζ )
log θ

, 1
}

, λ ∈ Rd \ {0}, (4.12)

where z = LT
f λ and �ζ = [ψ̂1(λ), . . . , ψ̂m(λ)]T.
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For λ = 0, suppose that φ is orthogonal to constants, that is,
∫
X

f
ω
φ dμf = 0. Then,

d−(σφ , 0) ≥ 2 min
{
d − log |ϑ2|

log θ
, 1
}

, (4.13)

where ϑ2 is the second eigenvalue of Sω (the PF eigenvalue being ϑ1 = θd ).

Remark 4.3
(a) This is an extension to higher dimensions of the lower bound in [11, Theorem 4.6]

(in the case of a single substitution); it is essentially contained in [40], although it is
not stated there in terms of the spectral cocycle.

(b) The reason for the ‘switch’ in the estimate at χ+(z) = (d − 1) log θ is due to
‘boundary effects,’ as in [7, 34, 40].

(c) For unperturbed tiling self-similar spaces, there are more precise, two-sided bounds
for the local dimension of the spectral measure at zero and even asymptotic
expansions; see [7] (for one-dimensional tilings) and [15] (for d > 1).

(d) Juan Marshall Maldonaldo [31, Theorem 3.10] proved that for a self-similar tiling in
Rd , with an expansion diagonalizable over R that is strongly non-Pisot (that is, has
an eigenvalue outside the unit circle), spectral measures are log-Hölder regular. This
means that they satisfy an estimate of the form σf (Br(λ)) ≤ Cλ log(1/r)γ , r > 0,
with γ > 0 independent of λ �= 0. This is an extension of [8, Theorem 5.1] which
obtained the result for d = 1.

(e) Using the Fourier matrix cocycle in equation (4.4), Baake, Grimm, and Mañibo [4,
Theorem 5.7] proved that for an unperturbed self-similar tiling (even for self-affine
and even without the FLC assumption), if there exists ε > 0 such that χ+(λ) ≤
(d/2) log θ − ε for Lebesgue-almost every (a.e.) λ, then the diffraction spectrum
(which is essentially a ‘part’ of the dynamical spectrum) is purely singular. For
d = 1, this follows from [11, Corollary 4.7], but for d ≥ 2, we cannot make such
a conclusion by our methods, essentially because (d − 1) log θ ≥ (d/2) log θ .

(f) It would be interesting to also obtain upper bounds for the local dimension of spectral
measures, by analogy with [11]. We have some partial results in this direction and
hope to return to this question in the future.

5. Eigenvalues, quantitative Host–Veech criterion, and Hölder regularity of spectral
measures
The material in this section is not particularly new, but included for completeness, and we
also emphasize the connections.

5.1. Eigenvalues. Recall that λ ∈ Rd is a topological eigenvalue for the tiling dynamical
system (X

f
ω, Rd) if there exists a continuous function φ : Xf

ω → C such that

φ(𝒮f − z) = exp(−2πi〈λ, z〉) · φ(𝒮f) for all 𝒮f ∈ Xf
ω, z ∈ Rd . (5.1)

THEOREM 5.1. (Variant of [14, Theorem 4.1]) Let T be an FLC primitive aperiodic L-PSS
tiling and Xω the corresponding tiling space. Let f be a shape parameter defining an
elementary admissible deformation, Xf

ω the deformed substitution tiling space, and Lf

https://doi.org/10.1017/etds.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.64


Spectral cocycle for substitution tilings 21

given by equation (3.8). A vector λ ∈ Rd is in the topological point spectrum of (Xf
ω, Rd)

if and only if for every elementary recurrence vector v of T,

〈λ, LfM
nv〉 → 0 (mod 1), n→∞, (5.2)

where the convergence is exponentially fast and uniform in v. Here M is the matrix from
equation (3.9).

In fact, our setting is more general, since [14] assumed a pure dilation expansion map,
whereas we allow an expansion which is a general similitude. However, the proof transfers
almost verbatim. Furthermore, in [14, Theorem 4.1], only uniform in v convergence is
claimed, but the exponential rate follows from the proof immediately.

Next we show that the same condition characterizes measurable eigenvalues for
the uniquely ergodic system (X

f
ω, Rd , μ). Thus, for admissible deformations of

pseudo-self-similar tiling spaces, weak mixing is equivalent to topological weak mixing.
These results follow a long line of earlier work, starting with Host [21], who obtained a
similar criterion for the eigenvalues of (symbolic) substitution Z-actions, in terms of return
words, and also proved that every measure-theoretic eigenvalue is topological. For interval
exchange transformations and translation flows, an analogous criterion was obtained by
Veech [41].

PROPOSITION 5.2. Under the assumptions of Theorem 5.1, a vector λ ∈ Rd is in the
topological point spectrum of (Xf

ω, Rd) if and only if it is in the point spectrum of the
uniquely ergodic measure-preserving system (X

f
ω, Rd , μf).

The proof is a minor variation of the argument in [35]; we sketch it for completeness in
§7. Note that

〈λ, LfM
nv〉 = 〈LT

f λ, Mnv〉
Rs
= 〈(MT)

n
(LT

f λ), v〉
Rs

, (5.3)

where 〈·, ·〉 is the inner product in Rd , as opposed to the inner product in Rs on the
right-hand side.

LEMMA 5.3. There exists a uniform c1 > 0 with the following property. Let v be a
recurrence vector for T, such that for all j ≤ m, there exists k satisfying

there exists z1, z2 ∈ Djk such that v = α(z1, z2). (5.4)

Then,

‖ℳ(LT
f λ, n)‖ ≤ const · θnd

n−1∏
i=0

(1− c1‖〈(MT)
i
(LT

f λ), v〉
Rs
‖2
R/Z
), n ≥ 1. (5.5)

For the proof, see [40]; it is a generalization of [8] to higher rank actions.
In view of primitivity and repetitivity, for any given recurrence vector v, the property in

equation (5.4) holds if we replace ω by a sufficiently high power. Passing from ω to ωk for
some k ∈ N, we can assume without loss of generality that equation (5.4) holds for a set of
recurrence vectors v generating Zs .

The following lemma is elementary, see e.g. [12, Lemma 5.1].
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LEMMA 5.4. Let Zs = Z[v1, . . . , v�] for some � ≥ s. Then we have for x ∈ Rs:

max
j≤� ‖〈x, vj 〉‖R/Z � ‖x‖Rs/Zs ,

with implied constants depending only on the generating set v1, . . . , v�.

COROLLARY 5.5. Under the assumptions of Theorem 5.1, there exists k = k(ω) ∈ N such
that:
(i) λ ∈ Rd is in the discrete spectrum of the system (X

f
ω, Rd) (in the topological or

measurable category) if and only if

lim
i→∞ ‖(M

T)ki(LT
f λ)‖

Rs/Zs
= 0,

and the convergence is exponential;
(ii)

‖ℳ(LT
f λ, n)‖ ≤ const · θnd

n−1∏
i=0

(1− c̃1‖(MT)ki(LT
f λ)‖2

Rs/Zs
), n ≥ 1.

Proof.
(i) Follows from Theorem 5.1 and Lemma 5.4.

(ii) Is immediate from equation (5.4) and Lemmas 5.3 and 5.4.

Thus, weak mixing of the tiling dynamical system is equivalent to

for all λ ∈ Rd \ {0}, ‖(MT)ki(LT
f λ)‖Rs/Zs �→ 0, i →∞, for k = k(ω)

(this is analogous to the Veech criterion [41]). However, if ‖(MT)ki(LT
f λ)‖Rs/Zs �→ 0 in

some ‘quantitative way’ (say, with a positive frequency the distance is greater than δ) for
all λ ∈ Rd \ {0}, then we get quantitative weak mixing.

5.2. Hölder regularity

THEOREM 5.6. Let T be an FLC primitive aperiodic L-PSS tiling andXω the correspond-
ing tiling space. Let � be the Z-module generated by elementary recurrences for T and M
be the integer matrix of the induced action of the expansion map on �. LetM be an open
set of elementary admissible deformations. If the dimension of the (strictly) expanding
subspace of M is at least d + 1, then for Lebesgue-a.e. [f] ∈M, there exist a representative
f of [f] such that the deformed Rd action on Xf

ω has uniformly Hölder-regular spectral
measures. More precisely, there exists α > 0, depending only on the tiling space and
the substitution, such that for a.e. [f] ∈M with admissible representative f and every
transversally locally constant function φ on X

f
ω, the spectral measure σφ , associated

with the uniquely ergodic dynamical system (X
f
ω, Rd , μf), satisfies d−(σφ , λ) ≥ α for all

λ ∈ Rd \ {0}.
This is an extension of [40, Corollary 1.1] to the case of pseudo-self-similar tilings

with a general (not necessarily pure dilation) expansion map. Analogously to [10] and
[40, Theorem 1.2], one can also deduce uniform rates of weak mixing for functions with
sufficient regularity in the leaf direction, as well as bounds on integrals of correlations.
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In many cases, Theorem 5.6 may be applied based only on the knowledge of the
algebraic properties of the expansion ϕ. It is well known that all the eigenvalues of ϕ must
be (real or complex) algebraic integers, see e.g. [29, Corollary 4.2]. A family of algebraic
integers � = {θ1, . . . , θd}, all of absolute value greater than one, is called a Pisot family
if every Galois conjugate of every θj ∈ � is either another element of � or lies inside the
unit circle. For d = 1, this is the definition of a (real) Pisot number, and for d = 2, with
θ1, θ2 complex conjugates, this is the definition of a complex Pisot number. Under very
general conditions, if the set of eigenvalues of ϕ is a Pisot family, then the tiling dynamical
system is not weakly mixing, see [30], and sometimes even pure discrete. We will say that
� is strongly non-Pisot if there exists θj ∈ � such that at least one of its Galois conjugates
has absolute value strictly greater than one.

COROLLARY 5.7. Under the assumptions of Theorem 5.6, suppose that the set of
eigenvalues of ϕ is strongly non-Pisot. Then for Lebesgue-a.e. admissible deformation
[f] ∈M, the deformed Rd action on Xf has uniformly Hölder-regular spectral measures.

Derivation of Corollary 5.7 assuming Theorem 5.6. Let � be the Z-module generated by
elementary recurrences for T. The expansion ϕ induces an endomorphism of � given by
the integer matrix M. It follows that all the eigenvalues of ϕ are algebraic integers, and
moreover, every eigenvalue of ϕ is also an eigenvalue of M, see e.g. [38, Lemma 1.4.5].
However, M is an integer matrix, hence every Galois conjugate of its every eigenvalue
is also an eigenvalue of M. By the strongly non-Pisot assumption, the dimension of the
expanding subspace for M is at least d + 1, and the claim follows from Theorem 5.6.

To conclude this section, we want to show that the above results can be extended to
general PSS tilings, not necessarily the ‘special’ L-PSS ones, and we summarize now how
this is done.

Let T be a PSS tiling and X its tiling space. By Remark 2.8(c), there is a tiling space X′
and a tiling T′ ∈ X′ which is L-PSS and MLD equivalent to T. Denote by� : X→ X′ the
homeomorphism of tiling spaces defined by the MLD equivalence. LetM′ :=M(X′) ⊂
H 1(X′; Rd) be the set of non-singular classes of deformations, as defined in §3.3, and
M := �∗M′ ⊂ H 1(X; Rd) its pullback under the MLD map.

Consider a class [f]′ ∈M′ ⊂ H 1(X′; Rd) with representative f, a Rd -valued,
T′-equivariant, admissible smooth 1-form. First, we claim that f is also T-equivariant.
Indeed, the value of f(x) depends on O+T′(BR′(x)) for some R′ > 0. Moreover, by MLD
equivalence, the patch O+T′(BR′(x)) is determined by the patch O+T (BR(x)) for some
R > 0. Thus, whenever O+T (BR(x)) = O+T (BR(y))+ x − y, we have that f(x) = f(y),
that is, f is T-equivariant. Thus, f has a class in H 1(X; Rd), which is denoted by [f], and
it is indeed the image of [f]′ under the pullback map: [f] = �∗[f]′.

Since [f]′ ∈M′, by the results of §3.3, the representative f defines a homeomorphism
Hf : Rd → Rd throughHf(x) =

∫ x
0 f, which satisfiesHf(T− t) = T−Hf(t). Let Tf′ :=

Hf(T′) and Tf := Hf(T) be the deformed tilings, which are both FLC and repetitive. As
such, they have well-defined tiling spaces Xf′ and Xf, respectively. Consider the map
�f := Hf ◦� ◦H−1

f sending Tf to Tf′ . This map extends by minimality to all of Xf,

and gives a map �f : Xf→ Xf′ . This map is an MLD equivalence: indeed, since f is C∞
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and bounded, the distorsion of the map Hf (and that of its inverse) is bounded over sets
with diameter less than some finite fixed diameter. As such, the tile(s) covering x ∈ Rd in
Tf′ is determined by the patch O−Tf(BR(x)) for some R large enough.

Finally, note that a function φ : Xf→ R is TLC if and only if φ = �∗fφ′ for some TLC

function φ′ : Xf′ → R. As such, we have that SyR(φ, λ) = S�f(y)

R (φ′, λ) for any λ ∈ Rd ,
where SyR(φ, λ) is the twisted ergodic integral of φ, introduced in §7.1, and used in all
proofs of bounds of lower local dimension. As such, bounds on SyR(φ, λ) are equivalent to

bounds on S
�f(y)

R (φ′, λ) (see Lemma 7.1). Thus we have proved the following corollary.

COROLLARY 5.8. Theorem 5.6 holds with the weaker assumption of T being
pseudo-self-similar, not necessarily L-PSS. Moreover, if the set of eigenvalues of the
inflation of a PSS tiling is strongly non-Pisot, then for Lebesgue-a.e. class [f] ∈M,
there exists a representative f such that the deformed Rd action on Xf has uniformly
Hölder-regular spectral measures.

5.3. Quantitative Veech criterion. The proof of Theorem 5.6 is based on the following
proposition, where we assume that k = 1 without loss of generality. This type of result
goes by the name of quantitative Veech criterion.

PROPOSITION 5.9. Let [f] ∈M and f be an admissible representative. If there exist ρ, δ ∈
(0, 1

2 ) such that

lim sup
N→∞

1
n
|{n ∈ N ∩ (0, N) : ‖(MT)n(LT

f λ)‖
Rs/Zs

< ρ}| < 1− δ (5.6)

for λ ∈ Rd \ {0}, then there exists α > 0, depending only on ρ and δ, such that for any
transversally locally constant function φ : Xf→ R, d−(σφ , λ) ≥ α holds.

Proof. This follows from Lemma 5.3 and equation (4.12). For details, see [12, §5] and [40,
Proposition 8.1].

Recall that when we deform tilings and their spaces, we do so through admissible
representatives f of classes in M. If we pick a basis a = {a1, . . . , as} of the Z-module
�, then we obtain the shape vector Lf by evaluating f on each element ai and obtaining
the vector f(ai) ∈ Rd . The action of f on this basis is by definition independent of
representative f of its class [f] used and is given by the d × s matrix Lf. Therefore, the
shape vector is assosciated to a class and not representative. Below we write Ma for an
open set of d × s matrices which are sufficiently small perturbations of [f(a1), . . . , f(as)].
In particular, all matrices inMa are uniformly bounded and have maximal rank d; more
precisely, there are d columns such that the determinant of the corresponding d × d matrix
is bounded away from zero in modulus by a uniform c > 0.

Proof sketch of Theorem 5.6. This is a brief sketch; for details, the reader should consult
[12, 40]. Denote

εn(z) := ‖(MT)nz‖Rs/Zs , z ∈ Rs .
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The exceptional set is defined as follows: for B > 1 and N ∈ N, let

EN(ρ, δ, B) = {z ∈ Rs : B−1 ≤ ‖z‖ ≤ B, |{n ≤ N : εn(z) ≥ ρ}| < δN},
EN(ρ, δ, B) = {f ∈Ma : there exists λ ∈ Rd , LT

f λ ∈ EN(ρ, δ, B)}, (5.7)

and
E(ρ, δ, B) :=

∞⋂
N0=1

∞⋃
N=N0

EN(ρ, δ, B).

(This definition of the exceptional set follows [12, 5.8] and agrees with the one given in
an earlier preprint version of [40]. To obtain uniform Hölder estimates for test functions of
mean zero, a minor modification is needed, see [10, Proposition 4.1] and the final version
of [40, §11].)

The theorem easily follows from Proposition 5.9, combined with the next lemma, in
view of the fact thatMa is an open subset of Rsd .

LEMMA 5.10. Let E+ be the (strictly) expanding subspace for the linear map MT on Rs .
There is ρ > 0 such that given any ε1 > 0, for every δ > 0 sufficiently small, for all B > 1,

dimH (E(ρ, δ, B)) ≤ γ := sd − dim E+ + d + ε1. (5.8)

Proof. The proof is a version of the ‘Erdős–Kahane argument’ (or a kind of quantitative
‘linear exclusion’ in the spirit of [2, §7]). We provide a somewhat detailed sketch, since
the proofs in [12, §5] and [40, §11] are rather technical, and our situation here is simpler:
we apply a fixed transformation MT instead of a random sequence, so there is no need for
Oseledets theorem. Let

(MT)nz = Kn(z)+ εn(z), n ≥ 0, (5.9)

where Kn(z) ∈ Zs is (a) nearest lattice point to (MT)nz. It will be convenient to use the
�∞ norm, so that ‖εn(z)‖∞ = εn(z) ≤ 1/2. It follows from equation (5.9) that

Kn+1(z)+ εn+1(z) = MTKn(z)+MTεn(z), n ≥ 0,

and hence
‖Kn+1(z)−MTKn(z)‖∞ = ‖MTεn(z)− εn+1(z)‖∞, n ≥ 0. (5.10)

Using that MTKn(z) ∈ Zs , we immediately obtain the following lemma.

LEMMA 5.11. For all n ≥ 0, independent of z ∈ Rs , holds:
(i) given Kn(z), there are at most (‖MT‖∞ + 2)d possibilities for Kn+1(z);

(ii) let
ρ := 2(‖MT‖∞ + 1)−1. (5.11)

If max{εn(z), εn+1(z)} < ρ, then Kn+1(z) = MTKn(z).

We will use ρ from equation (5.11) in Lemma 5.10. Lemma 5.11 implies that if δ > 0
is very small, then there is a good upper bound on the set of possible finite sequences
{K0(z), . . . , KN(z)} for z ∈ EN(ρ, δ, B). We will next show that this yields an efficient
covering of EN(ρ, δ, B).
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Denote by E− the contracting subspace for MT on Rs , complementary to E+.
Let MT+ be the restriction of MT to E+. Let P+ and P− be the projections onto
E+, E−, respectively, commuting with MT. From equation (5.9), we obtain, using that
P+ commutes with MT:

P+z = (MT+ )−nP+(Kn(z)+ εn(z)).

Let κ = dim E+ and let θκ be the minimal eigenvalue of M greater than 1. Fix any r ∈
(1, θκ). Then

‖(MT+ )−nP+‖ ≤ Cr−n, n ≥ 0,

and hence

‖P+z− (MT+ )−nP+Kn(z)‖ ≤ Cr−n, n ≥ 0,

where C depends only on M. Thus, the knowledge of Kn(z) yields an approximation of
order ∼ r−n for P z. Now, using the combinatorial counting argument from [12, §5],
we can conclude that the set {P+z : z ∈ EN(ρ, δ, B)} may be covered by OB,M(1) ·
exp[L(1/δ log δ)N] balls of radius r−N , where L is a uniform constant. Choosing δ > 0
sufficiently small guarantees that this number is at most OB,M(1) · rNε1 . This yields a
covering of EN(ρ, δ, B) by OB,M(1) · rN(s−κ+ε1) balls of radius Cr−N , since s − κ =
dim E− and there are a priori bounds ‖z‖ ≤ B.

Finally, we need to pass from the covering of EN(ρ, δ, B) ⊂ Rs to a covering of
EN(ρ, δ, B) ⊂Ma ⊂ Rds . The latter is the set of matrices Lf such that LT

f λ = z ∈
EN(ρ, δ, B). The assumptions on Ma guarantee that λ is bounded away from 0 and ∞
in norm.

For z ∈ Rs , the set of Lf such that LT
f λ = z, with z fixed, can be parameterized (at least,

locally) as follows. Choose d rows of Lf with a determinant bounded away from zero in
modulus. Solving the d × d system yields a unique solution λ. Then the remaining s − d
rows in the linear system define a codimension 1 hyperplane each as the set of possibilities
for the rows of Lf, resulting in a set of total dimension d × d + (s − d)× (d − 1) = sd −
s + d . Hence, the set EN(ρ, δ, B) may be covered by

OB,M(1) · rN(sd+d−κ+ε1) = OB,M(1) · rγ

balls of radius Cr−N . Now equation (5.8) follows by a standard estimate of the Hausdorff
dimension of limsup sets.

Remark 5.12. The last proof highlights the fact that the main ‘play’ in the proof of Hölder
regularity occurs in the strictly expanding subspace E+ for MT. One may ask what is
the role of the contracting subspace. The following result of Clark and Sadun [14] shows
that by perturbing the deformation in the contracting direction, we obtain a topologically
conjugate system, and hence all the spectral properties remain unchanged.

PROPOSITION 5.13. (Corollary of [14, Theorems 2.2 and 3.1]) Let T be an FLC primitive
aperiodic L-PSS tiling and Xω the corresponding tiling space. For two classes [f], [g] ∈
M ⊂ H 1(Xω, Rd), consider the deformed tiling spaces Xf

ω and X
g
ω, where f, g are

admissible representatives. LetE− be the contracting subspace forMT, that is, the span of
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(generalized) eigenvectors corresponding to eigenvalues less than one in modulus. If there
exists k ∈ N such that (MT)k(Lf)− Lg ∈ E− or (MT)k(Lg)− Lf ∈ E−, then (Xf

ω, Rd)
and (Xg

ω, Rd) are topologically conjugate.

Although [14] assumed a pure dilation expansion map, their proof extends verbatim.

5.4. One-dimensional substitution tilings revisited. For one-dimensional substitution
tilings, there is a space of ‘natural’ deformations, obtained simply by changing the
tile sizes. Similarly to [14, §5], we can extend [8, Theorem 4.1]. First, we need to
introduce some notation. Let ζ be a primitive aperiodic substitution on d symbols,
(Xζ , T , μ) the (2-sided) uniquely ergodic tiling Z-action, and (X�sζ , ht , μ̃) the suspension
flow corresponding to a ‘roof vector’ �s ∈ Rd+. A word v is called a return vector for ζ if
vc occurs in x ∈ Xζ , where c is the first letter of v, that is, v separates the two consecutive
occurrences of c. Denote by ��(v) the ‘population vector’ of a word v. Let �ζ < Zd be
the Z-module generated by {��(v) : v is a return vector for ζ }, and the ‘essential subspace’
Vζ := �ζ ⊗ R the real linear span of �ζ . First we recall the earlier result.

THEOREM 5.14. [8, Theorem 4.1] Let ζ be a primitive aperiodic substitution on d
symbols with a substitution matrix Sζ . Suppose that the characteristic polynomial of Sζ
is irreducible over Q and the second eigenvalue satisfies |θ2| > 1. Then for Lebesgue-a.e.
�s ∈ Rd+, the spectral measures of TLC functions for the system (X�sζ , ht , μ̃) are Hölder
regular away from zero, with a uniform Hölder exponent.

For comparison, now we have the following result, which is essentially a special case of
Theorem 5.6, with d = 1.

THEOREM 5.15. Let ζ be a primitive aperiodic substitution on d symbols with a
substitution matrix Sζ and the essential subspace Vζ . Suppose that the second eigenvalue
of Sζ |Vζ satisfies |θ2| > 1. Then for Lebesgue-a.e. �s ∈ Vζ , the spectral measures of TLC
functions for the system (X�sζ , ht , μ̃) are Hölder regular away from zero, with a uniform
Hölder exponent.

Remark 5.16
(a) It is easy to see that if Sζ is irreducible, then Vζ = Rd , however, the latter often

happens even when Sζ is reducible.
(b) Suppose that Vζ �= Rd . Then it follows from [13] that for �s ∈ Rd+ that is orthogonal

to Vζ , the suspension flow (X�sζ , ht , μ̃) has point spectrum containing Z. If �s, �s′ ∈ Rd+
are such that �s − �s′ is orthogonal to Vζ , then the tiling spaces X�sζ and X�s′ζ are MLD,
and hence the flows are topologically conjugate.

(c) As it was pointed out in [14, §5], suspension flows (X�sζ , ht , μ̃) do not necessarily
supply the entire space of admissible deformations; sometimes it happens that
collaring will result in a group (the analog of �ζ ) of higher rank than d.

6. Examples
6.1. Kenyon’s (pseudo-) self-similar tilings. In [25], given integers p, q ≥ 0 and r ∈
N, Kenyon introduced an algebraic construction of pseudo-self-similar tilings using
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parallelograms, from which one can obtain a true self-similar tiling of R2. The nature of the
construction is such that there is an obvious subspaceMp,q,r of deformation parameters
which are accessible without having to compute the cohomology of the associated tiling
spaces. In this section, we give sufficient conditions under which for a typical deformation
of Kenyon’s tilings, in the natural deformation spaceMp,q,r , we obtain tiling spaces which
are quantitatively weak mixing.

Let us review the construction: let a, b, c be three vectors in R2 pointing in different
directions, and let F be the set of polygonal paths starting at the origin, each of which is
a translate of ±a, ±b, or ±c without backtracking (that is, x is not followed by −x). A
product can be defined on F by concatenating paths and errasing any backtrack. As such,
any element in F defines an element of the free group F(a, b, c) on three generators and a
natural isomorphism h : F(a, b, c)→ F .

Pick p, q to be non-negative integers, r ∈ N, and let φ : F(a, b, c)→ F(a, b, c) be the
endomorphism defined by

φ(a) = b,

φ(b) = c, (6.1)

φ(c) = cpa−rb−q .

The three commutators A = [a, b], B = [b, c], and C = [a, c] define three closed paths
which enclose parallelograms which we label A, B, C. The action of the endomorphism
on the commutators is thus

φ(A) = B,

φ(B) = cpa−r [ar , c](b−q [bq , c]bq)arc−q , (6.2)

φ(C) = [b, cp]cpa−r [ar , b]arc−p.

Consider the polynomial

f (z) = z3 − pz2 + qz+ r . (6.3)

We have to impose the assumptions that f is irreducible over Q and has a complex root
λ of absolute value greater than 1: a complex Perron number, that is, a non-real algebraic
integer strictly greater in absolute value than its Galois conjugates other than λ. This does
not always happen: for example, f has a root −1, hence reducible, if r = p + q + 1, and
z3 − 4z2 + z+ 1 has three real zeros. Later we will also need the condition for all three
roots to be outside of the unit circle, that is, for λ not to be a complex Pisot number.

LEMMA 6.1
(i) The polynomial f has a complex root if and only if p2 < 3q, or p2 ≥ 3q and

27r > 2(p2 − 3q)(p +
√
p2 − 3q)− 3pq. (6.4)

(ii) If f does have a complex root λ, then it is complex Perron, unless p = q = 0.
(iii) If the above conditions are satisfied, all the roots are outside of the unit circle if and

only if r > p + q + 1. If r < p + q + 1, then λ is a complex Pisot number.
(iv) The polynomial f is reducible over Q if and only if it has an integer root, which is

necessarily a divisor of r.

https://doi.org/10.1017/etds.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.64


Spectral cocycle for substitution tilings 29

Proof. (i) Note first that df/dz = 3z2 − 2pz+ q has zeros (p ±√p2 − 3q)/3, hence if
p2 < 3q, we know that there is only one real root of f, and hence there is a complex root.
If p2 ≥ 3q, then both (or the unique) extremal points z1 ≤ z2 are non-negative, and the
condition for having a complex root is that f (z2) > 0 (keeping in mind that f (0) = r > 0).
A computation (left to the reader) shows that this is equivalent to equation (6.4).

(ii) Suppose that the conditions from part (i) hold, and let λ be the complex root of f
with a positive imaginary part. If p = q = 0, then λ3 = −r , and hence it is not a complex
Perron number. Suppose that max{p, q} ≥ 1. There is one negative zero −α, and two
complex zeros λ and λ, such that |λ|2 · α = r . Observe that

f (−r1/3) = −r − pr2/3 − qr1/3 + r < 0,

hence α < r1/3 �⇒ |λ| > α, and so λ is complex Perron.
(iii) Assuming λ is complex Perron, all zeros are greater than one in absolute value if

and only if −α < −1, and this is equivalent to f (−1) = −1− p − q + r > 0, implying
the first claim. If f (−1) < 0, then −α ∈ (−1, 0) and λ is complex Pisot.

(iv) The (ir)reducibility claim is immediate, since f is a monic polynomial.

For the rest of the section, we assume that p, q, r are such that f is irreducible over Q
and λ is a complex Perron number. In the above construction, let a, b, c be 1, λ, λ2 ∈ C.
We can now express the operation in terms of parallelograms obtained from equation (6.2).
With slight abuse of notation,

ω(A) = B,

ω(B) =
[ q−1⋃
j=0

B − r − jλ+ pλ2
]
∪
[ r⋃
j=1

C − j + pλ2
]

, (6.5)

ω(C) =
[ r⋃
j=1

A− j + pλ2
]
∪
[ p−1⋃
j=0

B − jλ2 + pλ2
]

.

This is not exactly a substitution rule, but a ‘substitution with amalgamation’. We will
show how this gives both pseudo-self-similar tilings and self-similar tilings as a limit of
the pseudo-self-similar ones.

Using the rules ω(K + x) = ω(K)+ λx and ω(K1 ∪K2) = ω(K1) ∪ ω(K2) for K ∈
{A, B, C}, we can iterate the rules given in equation (6.5) to obtain larger and larger
patches Kn = ωn(K) for every n ∈ N. The patches Kn grow in area exponentially with
n while containing the origin and so, in the limit, they define tilings TK of R2 belonging
to the same tiling space Xp,q,r .

PROPOSITION 6.2
(i) The space Xp,q,r is the tiling space of a pseudo-self-similar tiling given by the

‘substitution with amalgamation’ rule in equation (6.5). Moreover, it is an L-PSS
tiling.

(ii) This tiling space is FLC, repetitive, and aperiodic.
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Proof. (i) For K ∈ {A, B, C} and 𝒦 ∈ {𝒜, ℬ, 𝒞} define the rescaled tiles

𝒦n = λ−nKn = λ−nωn(K).
These satisfy

ω(𝒦n) = ω(λ−nωn(Kn)) = λ−nωn+1(K) = λ−nKn+1 = λ𝒦k+1.

Taking the limit as n→∞, there is a convergence of tiles 𝒦n→𝒦 (see, e.g. [35, Lemma
7.7]) and we obtain an actual self-similar tiling [25] defined by

λ𝒜 =ℬ,

λℬ =
[ q−1⋃
j=0

ℬ − r − jλ+ pλ2
]
∪
[ r⋃
j=1

𝒞 − j + pλ2
]

, (6.6)

λ𝒞 =
[ r⋃
j=1

𝒜 − j + pλ2
]
∪
[ p−1⋃
j=0

ℬ − jλ2 + pλ2
]

.

Let X̃p,q,r be the tiling space associated to the primitive substitution in equation (6.6).
It follows by construction that T ∈ Xp,q,r if and only if there exist countable sets
	A, 	B , 	C ⊂ R2 such that

T = (A+	A) ∪ (B +	B) ∪ (C +	C) and 𝒯 = (𝒜 +	A) ∪ (ℬ +	B) ∪ (𝒞 +	C).
(6.7)

As such, T and 𝒯 are MLD, and therefore so are λT and λ𝒯. Since 𝒯 is locally derivable
from λ𝒯, T is locally derivable from λT, so T is pseudo-self-similar with expanding
map λ.

(ii) The substitution matrix from Kenyon’s construction from the polynomial x3 −
px2 + qx + r = 0, where p, q ≥ 0 and r ∈ N, is obtained from equation (6.6) and is

Sp,q,r =
⎛
⎝0 0 r

1 q p

0 r 0

⎞
⎠ , (6.8)

which has characteristic polynomial x3 − qx2 − prx − r2, with the Perron–Frobenius
eigenvalue equal to |λ|2. The FLC property is immediate by construction, and repetitivity
follows from the fact that the substitution matrix Sp,q,r is primitive. To show aperiodicity,
it is convenient to work with the self-similar tiling space X̃p,q,r . Note that if 0 �= x ∈ R2

is a period, then λ · x is a period as well, whence there is a lattice of periods and all tile
frequencies must be rational. However, the frequencies are given by the components of the
Perron eigenvector of Sp,q,r , which are irrational, since we assumed irreducibility of f (z).
This is a contradiction, and the proof is complete.

Finally, observe that all the conditions of an L-PSS tiling are satisfied, see
Definition 2.6.

PROPOSITION 6.3. Suppose that f (z) = z3 − pz2 + qz+ r is irreducible over Q and has
a complex zero λ. Then the dynamics on the tiling spaces Xp,q,r and X̃p,q,r are weakly
mixing if and only if r > p + q + 1.
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FIGURE 1. (p, q, r) = (1, 1, 1), not weak mixing, 13 collared tiles, level 13 super-tile.

Proof. By [35, Theorem 5.1] and [36], the dynamics on the tiling space X̃p,q,r are weakly
mixing if and only if λ is not a complex Pisot number. Lemma 6.1 says that this is
equivalent (provided the other assumptions hold) to r > p + q + 1. The result for Xp,q,r

then follows by MLD equivalence to X̃p,q,r .

In Figures 1–3, we show several examples of Kenyon’s tilings. The colors (in the
electronic version) correspond to distinct collared tiles.

6.1.1. Deformations. Although all deformations of the tiling space Xp,q,r are given by
an open subset of H 1(Xp,q,r ; R2) (see §3), here we focus on elementary deformations,
corresponding to perturbations of the vectors 1, λ, λ2 ∈ C which define the parallelograms.
This saves us the the work of having to compute the entire space of deformations
H 1(Xp,q,r ; R2), which may or may not have higher dimension than 6. This means that
the role of the subgroup � < H1(AP0(X), Z) in §3.4 will be played by the subgroup
Z[1, λ, λ2] < C ∼= R2.

From equations (6.5) and (6.6), it follows that the tiling spaces Xp,q,r and X̃p,q,r have
the same group generated by the return vectors �p,q,r , and this group is necessarily a
subgroup of Z[1, λ, λ2]. In fact, we have the following lemma.

LEMMA 6.4. �p,q,r = Z[1, λ, λ2].
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FIGURE 2. (p, q, r) = (1, 1, 4), weak mixing, 43 collared tiles, level 6 super-tile.

Proof. By construction, �p,q,r is a subgroup of Z[1, λ, λ2], invariant under multiplication
by λ. If r ≥ 2, we immediately obtain that 1 ∈ �p,q,r from equation (6.6), since the
substitution of ℬ contains two translates of 𝒞 differing by 1, and the claim follows. If
r = 1 and q ≥ 2, then λ ∈ �p,q,r by the formula for λℬ, and then {λ, λ2, λ3} ⊂ �p,q,r .
If r = 1, then the algebraic number λ is a unit, and we conclude that 1 ∈ �p,q,r by
equation (6.3). A similar argument works for r = 1 and p ≥ 2, since then λ2 ∈ �p,q,r .
The remaining cases are when (p, q, r) ∈ {(1, 0, 1), (0, 1, 1), (1, 1, 1)}, which are treated
separately. For instance, if (p, q, r) = (1, 0, 1), we obtain by iterating equation (6.6) that
λ3𝒞 contains 𝒞 − 1+ λ3 and 𝒞 − 1+ λ2 + λ3, hence λ2 ∈ �p,q,r and we conclude as
above. The remaining two cases are similar and are left to the reader.

To proceed, we need the sets Dij from the definition of self-similar tiling in equation
(2.4) to be subsets of �p,q,r , and this holds in our case. In fact, identifying the prototile
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FIGURE 3. (p, q, r) = (1, 2, 5), weak mixing, 36 collared tiles, level 7 super-tile.

labels by (𝒜, ℬ, 𝒞) ≡ (1, 2, 3), we obtain from equation (6.6):

D12 = {0}, D22 = {−r − jλ+ pλ2}q−1
j=0, D23 = {−j + pλ2}rj=1,

D31 = {−j + pλ2}rj=1, D32 = {−jλ2 + pλ2}p−1
j=0 ,

with all the remainingDij being empty.
Let αp,q,r : Z[1, λ, λ2] = �p,q,r → Z3 be the address map defined by αp,q,r (n1 +

n2λ+ n3λ
2) = (n1, n2, n3) ∈ Z3. The inverse map is explicitly given by

α−1
p,q,r (n1, n2, n3) =

(
1 �(λ) �(λ2)

0 �(λ) �(λ2)

) ⎛⎝n1
n2
n3

⎞
⎠ = Vp,q,r

⎛
⎝n1
n2
n3

⎞
⎠ = n1 + n2λ+ n3λ

2,

where Vp,q,r is the matrix with column vectors 1, λ, λ2 ∈ C.
There is a neighborhood Mp,q,r of (1, λ, λ2) ∈ C3 ∼= R6 which parameterizes

non-degenerate deformations of parallelograms A, B, C. In fact, one can check that the
deformed tiling is well defined if we let the vector a point in the positive direction of
the x-axis, and vectors b, c point into the first and second quadrant, respectively. (To this
configuration, we can of course apply a GL(2, R) map.)

We denote the deformed parallelograms by {Af, Bf, Cf}, for f ∈Mp,q,r close enough
to (1, λ, λ2) ∈ C3. This in turn defines deformed patches {Af

n, Bf
n, Cf

n} obtained by
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deforming the individual parallelograms in the patches {An, Bn, Cn} for all n ≥ 0. Given
that

TK =
⋃
n≥0

Kn,

for Kn ∈ {An, Bn, Cn}, the deformed patches define a deformation of TK by

TfK :=
⋃
n≥0

Kf
n,

for Kf
n ∈ {Af

n, Bf
n, Cf

n}. We denote by Xf
p,q,r the tiling spaces for TfK which are deforma-

tions of the tiling space Xp,q,r .
To deform Xp,q,r , we deform Vp,q,r as a natural subset of C3 ∼= R6. Let f ∈Mp,q,r be

close to (1, λ, λ2) and denote by V f
p,q,r the matrix associated with this deformation. (This

is the matrix Lf in our case.) In other words, since Vp,q,r has columns 1, λ, λ2, the matrix
V

f
p,q,r has columns vf1, vf2, and vf3 (these are the vectors a, b, c mentioned above), which

are respectively close to 1, λ, and λ2. The new group generated by the set of return vectors
is therefore

�f
p,q,r = V f

p,q,r · αp,q,r (�p,q,r ).

The expansion map ϕ for the PSS tiling is multiplied by λ on C, which induces a linear
map on Z[1, λ, λ2] ∼= Z3, given by the matrix

M = Gp,q,r :=
⎛
⎝ 0 1 0

0 0 1
−r −q p

⎞
⎠ (6.9)

which has characteristic polynomial f (z) = z3 − pz2 + qz+ r .
To write down the spectral cocycle, we recall equation (4.3) and Definition 4.1 to obtain,

denoting e(t) := exp(−2πit):

ℳ(z) =
[ ∑

x∈Djk
e(〈z, α(x)〉)

]
j ,k≤3

; ℳ(z, n)

=ℳ((MT)
n−1

z) · · · · ·ℳ(z), z ∈ T3, n ∈ N.

For example, if we take (p, q, r) = (1, 1, 1) for simplicity, thenD12 = {0},D22 = D23 =
D31 = {−1+ λ2},D32 = {λ2}, which yields

ℳ(z) =
⎡
⎣ 0 1 0

0 e(−z1 + z3) e(−z1 + z3)

e(−z1 + z3) e(z3) 0

⎤
⎦ .

We now wish to extend Proposition 6.3 in terms of both deformations and the Hölder
property for the corresponding spectral measures.

PROPOSITION 6.5. Suppose that f (z) = z3 − pz2 + qz+ r is irreducible over Q and has
a complex zero λ. If r > p + q + 1, then:
(i) for every admissible deformation parameter f ∈Mp,q,r outside of a set of codimen-

sion 1, the uniquely ergodic dynamics on Xf
p,q,r is weakly mixing;
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(ii) for Lebesgue almost every deformation parameter f ∈Mp,q,r , the spectral measures
for TLC functions associated to the uniquely ergodic dynamics on X

f
p,q,r have

positive local dimension.

Proof sketch. (i) We can apply Theorem 5.1 and Proposition 5.2. For recurrence
vector v in equation (5.2), we can take e1 = (1, 0, 0)T, representing 1 ∈ �p,q,r in
the basis {1, λ, λ2}. These results say that if λ ∈ R2 is an eigenvalue (topological or
measure-theoretic), then 〈LT

f λ, Mne1〉 → 0 (mod 1) as n→∞, where LT = V f
p,q,r in our

case. Since all the eigenvalues of M are greater than one in modulus, a standard argument
(see, e.g. [14]) implies that for λ �= 0, this can happen only when 〈LT

f λ, Mne1〉 = 0 for

all n sufficiently large. However, then the columns of V f
p,q,r must be rationally dependent,

and such f form a countable union of subspaces of codimension 1.
(ii) This is a special case of Corollary 5.7, in view of Lemma 6.1.

Remark 6.6. If f (z) = z3 − pz2 + qz+ r is irreducible over Q, has a complex zero
λ, and r < p + q + 1, then λ is a complex Pisot number. Then it follows from [14],
see Proposition 5.13, that all admissible deformations of the tiling space result in a
topologically conjugate system.

6.2. Square tilings. This class of examples is obtained when all tiles are unit cubes
(located at the vertices of Zd ), but with different labels, and the expansion map is a
diagonal map qI , where q ∈ N, q ≥ 2. This is essentially a d-dimensional generalization
of symbolic substitutions of constant length.

Example 6.7. All the tiles have the unit square as its support and are distinguished only by
the labels. LetA = { 0 , 1 , 2 }; the expansion is pure dilation by a factor of 6:

0 →

2 2 2 2 2 2
2 2 2 2 2 2
1 0 1 0 0 1
1 0 0 1 0 1
2 2 2 2 2 2
2 2 2 2 2 2

, 1 →

2 2 2 2 2 2
2 2 2 2 2 2
1 0 1 0 0 1
1 0 1 1 0 1
2 2 2 2 2 2
2 2 2 2 2 2

,

2 →

0 1 0 0 0 1
0 0 1 1 0 0
2 2 2 2 2 2
2 2 2 2 2 2
1 0 0 1 0 0
1 0 0 1 0 1

The substitution ω was chosen in such a way that every tiling in the tiling space has
two periodic rows, consisting entirely of 2’s, followed by two rows consisting entirely
of 0’s and 1’s, again followed by two periodic rows, consisting entirely of 2’s, etc., ad
infinitum. The substitution is clearly primitive. Although it has periodic rows, there are
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FIGURE 4. Square tiling and its deformation.

no global translational periods. This can be seen, e.g. by observing that the substitution is

recognizable: the pattern
1 0
1 1

can only occur in ω( 1 ) at the center of a super-tile.

Moreover, it is easy to see that the substitution ‘forces the border’ [1].
We consider elementary deformations (see Figure 4). Namely, we deform the

vectors-edges in a way consistent with the Anderson–Putnam complex AP 0(X), so that
the sum of the vectors around each tile is zero. It is easy to see that all horizontal edges
are identified in the AP-complex, but there are two kinds of vertical edges: those of the
tiles labeled 2, and those of the tiles labeled 0 or 1. For each tile edge e, the deformation
of the edge opposite to e must be the opposite of the deformation of e; this will ensure
consistency and all the deformed tiles will be parallelograms.

However, working with recurrence will lead to the same conclusion. There are
recurrences with return vectors (1, 0) and (0, 1). All ‘horizontal’ recurrences project to
a multiple of the same cycle , whereas the ‘vertical ones’ are of two types, similarly to the
above. These recurrences form a basis for the lattice of all recurrences. It is not hard to
compute the linear map induced by the expansion—it is a block matrix, with the blocks
corresponding to ‘side substitutions’:

⎡
⎣2 4 0

4 2 0
0 0 6

⎤
⎦.

The eigenvalues are 6, 6, 2, so now dim E+ = 3, and we conclude that a.e. deformation
has quantitative weak mixing.
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7. Proofs
7.1. Spectral estimate. The bounds for local dimension for spectral measures are based
on growth estimates of twisted ergodic integrals. The following lemma, which essentially
goes back to Hof [20], will be used in the proof of Theorem 4.2.

LEMMA 7.1. [40, Lemma 1.1] Let (Y , μ, ht )t∈Rd be an ergodic probability-preserving Rd

action and φ ∈ L2(Y , μ). For λ ∈ Rd and y ∈ Y , the twisted ergodic integral is

S
y
R(φ, λ) :=

∫
QR

e−2πi〈λ,τ 〉φ ◦ ht (y) dτ ,

where QR = [−R, R]d . Suppose that for some λ ∈ Rd , R0 > 0, φ ∈ L2(Y , μ) and α ∈
(0, d),

‖SyR(φ, λ)‖L2 ≤ C1R
d−α for all R ≥ R0.

Then

σφ(Br(λ)) ≤ Cr2α for all r < 1/(2R0),

for some C > 0. In particular, the lower local dimension of the spectral measure satisfies

d−(σφ , λ) ≥ 2α.

7.2. Twisted ergodic integrals over deformed super-tiles. Recall that we are working
with an L-PSS tiling space Xω with expansion map ϕ, where ω is a combinatorial
substitution, or ‘substitution-with-amalgamation,’ for which a pseudo-self-similar tiling T
is a fixed point. The prototiles {Tj }j≤m are actual specific tiles of T. Let f be an admissible
deformation. To consider deformed tiles and super-tiles, we fixed a vertex v of T and
defined T f

j := (Tj − v)f and T f,n
j = (ωn(Tj )− v)f for j ≤ m, see equations (3.5) and

(3.6).
Below, when writing

∫
T
f,n
j

and the like, we mean integration over the support of the

corresponding patch.
Let φ be a TLC function of level 0 on Xf

ω of the form in equation (4.11). Let j ≤ m and
Tf ∈ Xf

ω be such that (T f,n
j ) ⊂ Tf for all n ≥ 0. Then, in view of equation (3.10),

∫
T
f,1
j

e−2πi〈λ,t〉φ(Tf − t) dt =
m∑
k=1

∑
x∈f(Djk)

e−2πi〈λ,x〉 · ψ̂k(λ)

=
m∑
k=1

∑
x∈Djk

e
−2πi〈LT

f λ,α(x)〉
Rs · ψ̂k(λ)

= [ℳ(LT
f λ) · �̂(λ)](j) = [ℳ(z) · �̂(λ)](j),

where

�̂(λ) =
⎡
⎢⎣
ψ̂1
...
ψ̂m

⎤
⎥⎦ (λ).

https://doi.org/10.1017/etds.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.64


38 B. Solomyak and R. Treviño

Iterating this, we obtain, in view of equation (3.11),∫
T
f,2
j

e−2πi〈λ,t〉φ(Tf − t) dt

=
m∑
s=1

m∑
k=1

( ∑
x∈LfMα(Djk)+Lfα(Dks)

e−2πi〈λ,x〉
)
ψ̂s(λ)

=
m∑
k=1

m∑
s=1

( ∑
x∈Djk

e
−2πi〈MTLT

f λ,α(x)〉
Rs ·

∑
x∈Dks

e
−2πi〈LT

f λ,α(x)〉
Rs

)
ψ̂s(λ),

and hence∫
T
f,2
j

e−2πi〈λ,t〉φ(Tf − t) dt = [ℳ(MTz)ℳ(z) · �̂(λ)](j) = [ℳ(z, 2) · �̂(λ)](j),

and similarly, by induction, for all n ≥ 1,∫
T
f,n
j

e−2πi〈λ,t〉φ(Tf − t) dt = [ℳ(z, n) · �̂(λ)](j). (7.1)

This immediately implies the following.

LEMMA 7.2. Suppose that Sf ∈ Xf
ω and T f,n

j + y is a super-tile of Sf. Then∫
T
f,n
j +y

e−2πi〈λ,t〉φ(Sf − t) dt = e−2πi〈λ,y〉 · [ℳ(z, n) · �̂(λ)](j). (7.2)

7.3. Decomposition of patches. The next lemma provides an efficient decomposition
of a large patch of a tiling in Xf

ω into the union of super-tiles of different levels for an
arbitrary Lipschitz domain G. It is analogous to the construction in [7, Lemma 3.2]. In the
self-similar (undeformed), but non-stationary setting, it also appeared in [34, Lemma 8.1],
with G = [−R, R]d . Denote by U(∂G, r) the r-neighborhood of ∂G, and let Ld−1(∂G)

be the usual surface measure of the boundary (e.g. the Hausdorff measure).

LEMMA 7.3. Let G be a Lipschitz domain in Rd such that Ld(U(∂G, r)) ≤ CG ·
Ld−1(∂G) · r for r > 0. Let Xω be an L-PSS tiling space in Rd with expansion ϕ and
an elementary admissible deformation f, and letXf

ω be the deformed tiling space. Then for
any Sf ∈ Xf

ω, there exists an integer n = n(G) and a decomposition

O−
Sf
(G) =

n⋃
i=0

m⋃
j=1

κ
(i)
j⋃
k=1

T
f,i
j ,k , (7.3)

where T f,i
j ,k is a level-i super-tile of Sf of type j, such that:

(i) κ
(n)
j �= 0 for some j;

(ii)
∑m
j=1 κ

(i)
j ≤ CfCG ·Ld−1(∂G) · θi−id for i = 0, . . . , n.

Here, θ = ‖ϕ‖ and Cf is a generic constant which depends only on the substitution rule.
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Proof. Recall that O−
Sf
(G) denotes the patch of Sf-tiles contained in G. Consider Sf

with the higher-order deformed super-tiles composed of its tiles. (We do not even need
recognizability: it is always possible to ‘de-substitute,’ by the definition of the tiling space.)
Let n be maximal such that an n-level f-deformed Sf-super-tile is contained in G, so that
condition (i) is satisfied. Let R(n)(G) be the set of all n-level f-deformed Sf-super-tiles
contained in G. Next, for i = n− 1, . . . , 0, we inductively define R(i)(G) to be the set of
i-level f-deformed super-tiles, contained in G, but not contained in one of the super-tiles of
the higher level in G (that is, those which are contained in G \ supp(R(i+1)(G))). Let κ(i)j
be the number of super-tiles of level i of type j in R(i)(G); these super-tiles are denoted
T
f,i
j ,k , for k = 1, . . . , κ(i)j .

By construction, the super-tiles of R(i)(G) lie in super-tiles of level (i + 1) which
intersect the boundary ∂G, hence by equation (3.13), all the super-tiles of R(i)(G) are
contained in the Cf · θi+1-neighborhood of ∂G. By assumption, the volume of this
neighborhood is at most CG ·Ld−1(∂G) · θi+1. However, by equation (3.12), the volume
of an i-level f-deformed Tf-super-tile is at leastOf(1) · θid . This implies the desired upper
bound in condition (ii).

7.4. Proof of Theorem 4.2

Proof. We start with equation (4.12). The proof is essentially contained as a step in the
proof of [40, Theorem 1.1]. We obtain upper bounds for the ergodic integrals |SSfR (φ, λ)|,
which are uniform in Sf ∈ Xf

ω, which imply L2-bounds, used in Lemma 7.1. Split
the integral over QR into the sum over super-tiles of levels i = 0, . . . , n, using the
decomposition from Lemma 7.3 for QR = [−R, R]d , plus the integral over the ‘left-over’
part of QR , where the integral is estimated by ‖φ‖∞ times the volume, resulting in a
CRd−1 term (here and below, C, C′, . . . , are generic constants).

To be more precise, let φ be a TLC function of level 0 of the form in equation (4.11).
By Lemma 7.2 and Lemma 7.3, for any Sf ∈ Xf

ω,

|SSfR (φ, λ)| ≤ CRd−1 + C
n∑
i=0

m∑
j=1

κ
(i)
j∑
k=1

‖ℳ(z, i)�ζ‖ where z = LT
f λ and �ζ = �̂(λ).

(7.4)

By the definition of the pointwise upper Lyapunov exponent, for any ε > 0, there exists
Cε > 0 such that

‖ℳ(z, i)�ζ‖ ≤ Cε exp[(χ+(z, �ζ )+ ε)i] for all i ≥ 0. (7.5)

If χ+(z, �ζ ) = d log θ , the estimate in equation (4.12) is trivial, so we we can assume
χ+(z, �ζ ) < d log θ . Choose ε > 0 so that χ+(z, �ζ )+ ε < d log θ , and if χ+(z, �ζ ) <
(d − 1) log θ , so that χ+(z, �ζ )+ ε < (d − 1) log θ , by equation (7.4) and Lemma 7.3,
applied to QR = [−R, R]d , and writing χ+ = χ+(z, �ζ ) for simplicity, we obtain

|SSfR (φ, λ)| ≤ CRd−1 + CRd−1
n∑
i=0

θi−ide(χ++ε)i . (7.6)
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There are two cases. If (d − 1) log θ ≤ χ+ < d log θ , then we continue

|SSfR (φ, λ)| ≤ CRd−1 + C′Rd−1θn(1−d)e(χ++ε)n

≤ C′′e(χ++ε)n

≤ C′′′R(χ++ε)/ log θ ,

where we used that θn � R. If χ+(z, �ζ )+ ε < (d − 1) log θ , then equation (7.6) yields

|SSfR (φ, λ)| ≤ C̃Rd−1.

By Lemma 7.1, we obtain that d−(σφ , λ) ≥ 2 min{d − χ+ + ε/log θ , 1}, and taking
ε→ 0 implies the desired inequality in equation (4.12).

To deduce equation (4.13) from equation (4.12), it suffices to show that

χ+(0, �ζ ) = log ϑ2 where �ζ = �̂(0), � = (ψ1, . . . , ψm)T,

and φ(Sf) =∑m
k=1
∑
x∈ℒk(Sf) δx ∗ ψk(0) has mean zero on (Xf

ω, μf), where supp(ψk) ⊂
int(T f

k ). Since ℳ(0, n) = (ST
ω)
n, we have

χ+(0, �ζ ) = lim sup
n→∞

1
n

log ‖(ST
ω )
n · �̂(0)‖.

The claim will follow if we show that �̂(0) is orthogonal to the PF eigenvector of Sω. By
Birkhoff’s ergodic theorem and the definition of φ, we have for a.e. Sf ∈ Xf

ω:∫
X

f
ω

φ dμf = lim
R→∞(2R)

−d
∫
QR

φ(Sf − t) dt

=
m∑
k=1

( ∫
T
f
k

ψk

)
· freq(T f

k , Sf)

=
m∑
k=1

ψ̂k(0) · freq(T f
k , Sf),

where we also used the existence of uniform patch frequencies. Thus it suffices to check
that (freq(T f

k , Sf))k≤m is a PF eigenvector for Sω. However, since uniform frequencies
exist, for any j ≤ m,

freq(T f
k , Sf) = #{t ∈ Rd : T f

k + t ⊂ T f,n
j }

Ld(supp(T f,n
j ))

= lim
n→∞

Snω(k, j)∑m
i=1 Snω(i, j) ·Ld(T f

i )
.

By the Perron–Frobenius theorem, Snω(i, j) ∼ ϑn1 ri�j , where (ri)i≤m and (�j )j≤m are
the (normalized) right and left PF eigenvectors of Sω respectively. It follows that
freq(T f

k , Sf) = rk , as claimed.

7.5. Proof of Proposition 5.2

Proof. Every continuous eigenfunction is certainly measurable, so it suffices to show that
if λ ∈ Rd is a ‘measurable eigenvalue,’ then equation (5.2) holds.
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Let v be an elementary recurrence vector in Xω. This implies, by equation (3.7), that
there exist a tile Tj ∈ T and x ∈ Rd such that Tj + x ∈ T, with v = α(z1, z2) for z1 ∈ Tj
and x = z2 − z1.

Then Tj ∪ (Tj + x) ⊂ T, and applying a power of the tile substitution ωn, we obtain

ωn(Tj ) ∪ (ωn(Tj )+ ϕnx) ⊂ ωn(T) ⊂ T.

Now fix a vertex v of T and apply the deformation f to the patch

(ωn(Tj )− v) ∪ ((ωn(Tj )+ ϕnx)− v) ⊂ T− v,

which yields
T
f,n
j ∪ (T f,n

j + xn) ⊂ (T− v)f,
for some xn ∈ Rd , see equation (3.6). To compute xn, note that (ϕnz1, ϕnz2) is a recurrence
in T, and the corresponding recurrence vector is given by αϕn(z1, z2) = Mnv, and hence

xn = LfM
nv,

in view of equation (3.9).
Let P be any Xf

ω-patch and U ⊂ Rd a Borel set of diameter less than η(Xf
ω) (the

diameter of the largest ball contained in every Tf prototile). Consider the cylinder set
X

f
P,U := ϒ(P)+ U ⊂ Xf

ω.

LEMMA 7.4. There exists δ = δ(f, x) > 0 such that

μ(X
f
P,U ∩ (Xf

P,U + xn)) ≥ δ · μ(Xf
P,U) for all n ≥ n(P). (7.7)

Assuming equation (7.7) is verified, the proof of equation (5.2) proceeds exactly as in
the proof of [35, Theorem 4.3]. In fact, in [35, Lemma 1.6], it is shown that any finite local
complexity and repetitive tiling space can be partitioned into a finite union of cylinder
sets of arbitrarily small radius. Let Xf

ω =∐� X
f
P�,V� be such a partition in our case.

A measurable eigenfunction f for (Xf
ω, Rd , μf) (which can be assumed equal to one in

modulus a.e. by ergodicity), corresponding to an eigenvalue λ ∈ Rd , can be approximated
uniformly on a set of full measure by a linear combination g of characteristic functions
of the cylinder sets Xf

P�,V� . Suppose ‖f − g‖∞ < ε, where ε can be made arbitrarily
small. Let

An,ε :=
∐
�

(X
f
P�,V� ∩ (X

f
P�,V� + xn)),

and note that μf(An,ε) ≥ δ by Lemma 7.4. Thus,

J :=
∫
An,ε

|f (Sf − xn)− f (Sf)| dμf = |e−2πi〈λ,xn〉 − 1| · μf(An,ε) ≥ δ · |e−2πi〈λ,xn〉 − 1|,

for n ≥ n0 = n0(ε) by the eigenvalue equation. (Note that n0 depends on the partition,
which in turn depends on ε.) However,

J ≤ 2‖f − g‖∞ +
∫
An,ε

|g(Sf − xn)− g(Sf)| dμf < 2ε,
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since g(Sf − xn) = g(Sf) on An,ε by construction. It follows that

|e−2πi〈λ,xn〉 − 1| ≤ 2ε
δ

, n ≥ n0(ε) where xn = LfM
nv,

which is equivalent to equation (5.2). Thus it remains to prove the lemma.

Proof of Lemma 7.4. For n sufficiently large, such that P does not intersect P+ xn, we
have

X
f
P,U ∩ (Xf

P,U + xn) ⊃ Xf
P∪(P+xn),U .

Hence by Proposition 2.2, it suffices to show that

freq(P ∪ (P+ xn), Tf) ≥ δ · freq(P, Tf), (7.8)

for some δ > 0, independent of n ∈ N. For the undeformed, self-similar tiling T, the
analogous inequality is proved in [35, Lemma 4.2], and for the deformation, it follows by
the quasi-isometry in equation (3.15). More precisely, by repetitivity, there exists k0 ∈ N

and a deformed super-tile T f,k0
i such that

T
f
j ∪ (T f

j + x) ⊂ T f,k0
i ,

where we replace the prototile T f
j by its translate, if necessary. Then

T
f,n
j ∪ (T f,n

j + xn) ⊂ T f,n+k0
i , n ≥ 1.

It follows that

#{t : [P ∪ (P+ xn)]+ t ⊂ T f,n+k0
i } ≥ #{t : P+ t ⊂ T f,n

j },
which implies (since uniform patch frequencies exist) that

freq(P ∪ (P+ xn), Tf) ≥ δ · freq(P, Tf),

where

δ = lim inf
n→∞

Ld(T f,n
j )

Ld(T f,n+k0
i )

.

It remains to note that δ > 0 by the quasi-isometry claim in equation (3.15).

Acknowledgements. We are grateful to Lorenzo Sadun for patiently explaining to us
the subtleties of the AP-complex for PSS tilings and their deformations. The images for
Kenyon’s tilings in §6 were constructed using Sage code developed by Mark Van Selous
for the Laboratory of Experimental Mathematics at Maryland. The research of B.S. was
supported in part by the Israel Science Foundation grant 911/19. R.T. acknowledges support
from the Simons Collaboration Grant #712227.

REFERENCES

[1] J. E. Anderson and I. F. Putnam. Topological invariants for substitution tilings and their associated
C∗-algebras. Ergod. Th. & Dynam. Sys. 18(3) (1998), 509–537.

https://doi.org/10.1017/etds.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.64


Spectral cocycle for substitution tilings 43

[2] A. Avila and G. Forni. Weak mixing for interval exchange transformations and translation flows. Ann. of
Math. (2) 165 (2007), 637–664.

[3] M. Baake, N. Frank, U. Grimm and E. A. Robinson Jr. Geometric properties of a binary non-Pisot inflation
and absence of absolutely continuous diffraction. Studia Math. 247(2) (2019), 109–154.

[4] M. Baake, F. Gähler and N. Mañibo. Renormalisation of pair correlation measures for primitive inflation
rules and absence of absolutely continuous diffraction. Comm. Math. Phys. 370(2) (2019), 591–635.

[5] M. Baake and U. Grimm. Aperiodic Order I (Encyclopedia of Mathematics and Its Applications, 149).
Cambridge University Press, Cambridge, 2013.

[6] M. Baake and U. Grimm. Renormalisation of pair correlations and their Fourier transforms for primitive
block substitutions. Substitution and Tiling Dynamics: Introduction to Self-Inducing Structures (Lecture
Notes in Mathematics, 2273). Eds. S. Akiyama and P. Arnoux. Springer, Cham, 2020, 359–395.

[7] A. I. Bufetov and B. Solomyak. Limit theorems for self-similar tilings. Comm. Math. Phys. 319(3) (2013),
761–789.

[8] A. I. Bufetov and B. Solomyak. On the modulus of continuity for spectral measures in substitution dynamics.
Adv. Math. 260 (2014), 84–129.

[9] A. I. Bufetov and B. Solomyak. The Hölder property for the spectrum of translation flows in genus two.
Israel J. Math. 223(1) (2018), 205–259.

[10] A. I. Bufetov and B. Solomyak. On ergodic averages for parabolic product flows. Bull. Soc. Math. France
146(4) (2018), 675–690.

[11] A. I. Bufetov and B. Solomyak. A spectral cocycle for substitution systems and translation flows. J. Anal.
Math. 141(1) (2020), 165–205.

[12] A. I. Bufetov and B. Solomyak. Hölder regularity for the spectrum of translation flows. J. Éc. Polytech.
Math. 8 (2021), 279–310; Corrigendum. J. Éc. Polytech. Math. 9 (2022), 1513–1514.

[13] A. Clark and L. Sadun. When size matters: subshifts and their related tiling spaces. Ergod. Th. & Dynam.
Sys. 23 (2003), 1043–1057.

[14] A. Clark and L. Sadun. When shape matters: deformation of tiling spaces. Ergod. Th. & Dynam. Sys. 26(1)
(2006), 69–86.

[15] J. Emme. Spectral measure at zero for self-similar tilings. Mosc. Math. J. 17(1) (2017), 35–49.
[16] G. Forni. Twisted translation flows and effective weak mixing. J. Eur. Math. Soc. (JEMS) 24(12) (2022),

4225–4276.
[17] N. P. Frank. Towards a characterization of self-similar tilings in terms of derived Voronoi tessellations.

Geom. Dedicata 79(3) (2000), 239–265.
[18] N. P. Frank and L. Sadun. Fusion: a general framework for hierarchical tilings of Rd . Geom. Dedicata 171

(2014), 149–186.
[19] N. P. Frank and B. Solomyak. Characterization of planar pseudo-self-similar tilings. Discrete Comput.

Geom. 26(3) (2001), 289–306.
[20] A. Hof. On scaling in relation to singular spectra. Comm. Math. Phys. 184(3) (1997), 567–577.
[21] B. Host. Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergod.

Th. & Dynam. Sys. 6 (1986), 529–540.
[22] A. Julien and L. Sadun. Tiling deformations, cohomology, and orbit equivalence of tiling spaces. Ann. Henri

Poincaré 19(10) (2018), 3053–3088.
[23] J. Kellendonk. Pattern equivariant functions, deformations and equivalence of tiling spaces. Ergod. Th. &

Dynam. Sys. 28(4) (2008), 1153–1176.
[24] J. Kellendonk and I. F. Putnam. The Ruelle–Sullivan map for actions of Rd . Math. Ann. 334(3) (2006),

693–711.
[25] R. Kenyon. The construction of self-similar tilings. Geom. Funct. Anal. 6(3) (1966), 471–488.
[26] J. C. Lagarias and P. A. B. Pleasants. Repetitive Delone sets and quasicrystals. Ergod. Th. & Dynam. Sys.

23(3) (2003), 831–867.
[27] J. C. Lagarias and Y. Wang. Substitution Delone sets. Discrete Comput. Geom. 29 (2003), 175–209.
[28] J.-Y. Lee, R. V. Moody and B. Solomyak. Pure point dynamical and diffraction spectra. Ann. Henri Poincaré

3(5) (2002), 1003–1018.
[29] J.-Y. Lee and B. Solomyak. Pure point diffractive substitution Delone sets have the Meyer property. Discrete

Comput. Geom. 39(1–3) (2008), 319–338.
[30] J.-Y. Lee and B. Solomyak. Pisot family self-affine tilings, discrete spectrum, and the Meyer property.

Discrete Contin. Dyn. Syst. 32(3) (2012), 935–959.
[31] J. Marshall-Maldonaldo. Módulo de continuidad para las medidas de correlación en sistemas substitutivos

de tilings. Masters Thesis, Universidad de Chile, Facultad de ciencias físicas y matemáticas, 2017.
[32] K. Petersen. Factor maps between tiling dynamical systems. Forum Math. 11 (1999), 503–512.
[33] C. Radin and L. Sadun. Isomorphism of hierarchical structures. Ergod. Th. & Dynam. Sys. 21(4) (2001),

1239–1248.

https://doi.org/10.1017/etds.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.64


44 B. Solomyak and R. Treviño

[34] S. Schmieding and R. Treviño. Random substitution tilings and deviation phenomena. Discrete Contin.
Dyn. Syst. 41(8) (2021), 3869–3902.

[35] B. Solomyak. Dynamics of self-similar tilings. Ergod. Th. & Dynam. Sys. 17(3) (1997), 695–738; Erratum
Ergod. Th. & Dynam. Sys. 19 (1999), 1685.

[36] B. Solomyak. Nonperiodicity implies unique composition for self-similar translationally finite tilings.
Discrete Comput. Geom. 20(2) (1998), 265–279.

[37] B. Solomyak. Pseudo-self-affine tilings in Rd . Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI) 326 (2005), 198–213; reprinted in J. Math. Sci. (N.Y.) 140(3) (2007), 452–460.

[38] B. Solomyak. Delone sets and dynamical systems. Substitution and Tiling Dynamics: Introduction to
Self-inducing Structures (Lecture Notes in Mathematics, 2273). Eds. S. Akiyama and P. Arnoux. Springer,
Cham, 2020, pp. 1–32.

[39] W. P. Thurston. Groups, tilings, and finite state automata. Lecture Notes Distributed in Conjunction with the
Colloquium Series. AMS Colloquium lectures, 1989.

[40] R. Treviño. Quantitative weak mixing for random substitution tilings. Israel J. Math., to appear.
[41] W. Veech. The metric theory of interval exchange transformations. I. Generic spectral properties. Amer. J.

Math. 106(6) (1984), 1331–1359.
[42] R. Yaari. Uniformly distributed orbits in T d and singular substitution dynamical systems. Monatsh. Math.

201(1) (2023), 289–306.

https://doi.org/10.1017/etds.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.64

	1 Introduction
	2 Background
	2.1 Tilings and tiling spaces
	2.1.1 Functions
	2.1.2 Mutual local derivability
	2.1.3 Frequency of patches and unique ergodicity

	2.2 Self-similar tilings
	2.2.1 Aperiodicity and recognizability; hierarchical structure
	2.2.2 Substitution Delone set associated with a self-similar tiling

	2.3 Pseudo-self-similar (PSS) tilings

	3 Cohomology and deformations
	3.1 Pattern equivariant cohomology
	3.2 Čech cohomology
	3.2.1 The Anderson–Putnam complex
	3.2.2 Cohomology for PSS tilings

	3.3 Deformations
	3.4 Recurrences, return vectors, and recurrence vectors
	3.5 Geometric properties of deformed tilings and consequences

	4 The spectral cocycle; statement of result on local dimension
	5 Eigenvalues, quantitative Host–Veech criterion, and Hölder regularity of spectral measures
	5.1 Eigenvalues
	5.2 Hölder regularity
	5.3 Quantitative Veech criterion
	5.4 One-dimensional substitution tilings revisited

	6 Examples
	6.1 Kenyon's (pseudo-) self-similar tilings
	6.1.1 Deformations

	6.2 Square tilings

	7 Proofs
	7.1 Spectral estimate
	7.2 Twisted ergodic integrals over deformed super-tiles
	7.3 Decomposition of patches
	7.4 Proof of Theorem theorem24.2
	7.5 Proof of Proposition proposition45.2

	Acknowledgements
	References

