Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-21T14:35:50.892Z Has data issue: false hasContentIssue false

Chapter 66 - Expanded Umbilical Cord Cells: Benefits and Limitations

from Section 17 - Novel Cell Therapies and Manipulations: Ready for Prime-Time?

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 639 - 648
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pasquini, M, Wang, Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides, 2013. Available at: http://www.cibmtr.org.Google Scholar
Gluckman, E, Broxmeyer, HA, Auerbach, AD, Friedman, HS, Douglas, GW, Devergie, A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. The New England Journal of Medicine. 1989;321(17):1174–8.CrossRefGoogle Scholar
Gluckman, E, Rocha, V, Boyer-Chammard, A, Locatelli, F, Arcese, W, Pasquini, R, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. The New England Journal of Medicine. 1997;337(6):373–81.CrossRefGoogle ScholarPubMed
Kurtzberg, J, Laughlin, M, Graham, ML, Smith, C, Olson, JF, Halperin, EC, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. The New England Journal of Medicine. 1996;335(3):157–66.CrossRefGoogle ScholarPubMed
Kurtzberg, J, Prasad, VK, Carter, SL, Wagner, JE, Baxter-Lowe, LA, Wall, D, et al. Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood. 2008;112(10):4318–27.CrossRefGoogle ScholarPubMed
Rubinstein, P, Carrier, C, Scaradavou, A, Kurtzberg, J, Adamson, J, Migliaccio, AR, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. The New England Journal of Medicine. 1998;339(22):1565–77.CrossRefGoogle ScholarPubMed
Wagner, JE, Barker, JN, DeFor, TE, Baker, KS, Blazar, BR, Eide, C, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100(5):1611–8.CrossRefGoogle Scholar
Wagner, JE, Rosenthal, J, Sweetman, R, Shu, XO, Davies, SM, Ramsay, NK, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood. 1996;88(3):795802.CrossRefGoogle ScholarPubMed
Eapen, M, Rocha, V, Sanz, G, Scaradavou, A, Zhang, MJ, Arcese, W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. The Lancet Oncology. 2010;11(7):653–60.CrossRefGoogle ScholarPubMed
Jacobson, CA, Turki, AT, McDonough, SM, Stevenson, KE, Kim, HT, Kao, G, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(4):565–74.CrossRefGoogle ScholarPubMed
Laughlin, MJ, Barker, J, Bambach, B, Koc, ON, Rizzieri, DA, Wagner, JE, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. The New England Journal of Medicine. 2001;344(24):1815–22.CrossRefGoogle ScholarPubMed
Ooi, J, Takahashi, S, Tomonari, A, Tsukada, N, Konuma, T, Kato, S, et al. Unrelated cord blood transplantation after myeloablative conditioning in adults with acute myelogenous leukemia. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2008;14(12):1341–7.Google ScholarPubMed
Arcese, W, Rocha, V, Labopin, M, Sanz, G, Iori, AP, de Lima, M, et al. Unrelated cord blood transplants in adults with hematologic malignancies. Haematologica. 2006;91(2):223–30.Google ScholarPubMed
van Heeckeren, WJ, Fanning, LR, Meyerson, HJ, Fu, P, Lazarus, HM, Cooper, BW, et al. Influence of human leucocyte antigen disparity and graft lymphocytes on allogeneic engraftment and survival after umbilical cord blood transplant in adults. British Journal of Haematology. 2007;139(3):464–74.CrossRefGoogle ScholarPubMed
Sato, A, Ooi, J, Takahashi, S, Tsukada, N, Kato, S, Kawakita, T, et al. Unrelated cord blood transplantation after myeloablative conditioning in adults with advanced myelodysplastic syndromes. Bone Marrow Transplantation. 2011;46(2):257–61.CrossRefGoogle ScholarPubMed
Barker, JN, Weisdorf, DJ, DeFor, TE, Blazar, BR, McGlave, PB, Miller, JS, et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood. 2005;105(3):1343–7.CrossRefGoogle ScholarPubMed
Broxmeyer, HE, Douglas, GW, Hangoc, G, Cooper, S, Bard, J, English, D, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. 1989;86(10):3828–32.Google ScholarPubMed
Broxmeyer, HE, Gluckman, E, Auerbach, A, Douglas, GW, Friedman, H, Cooper, S, et al. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. International Journal of Cell Cloning. 1990;8 Suppl 1:7689; discussion 91.CrossRefGoogle ScholarPubMed
Hao, QL, Shah, AJ, Thiemann, FT, Smogorzewska, EM, Crooks, GM. A functional comparison of CD34 + CD38- cells in cord blood and bone marrow. Blood. 1995;86(10):3745–53.CrossRefGoogle ScholarPubMed
Cardoso, AA, Li, ML, Batard, P, Hatzfeld, A, Brown, EL, Levesque, JP, et al. Release from quiescence of CD34+ CD38- human umbilical cord blood cells reveals their potentiality to engraft adults. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(18):8707–11.Google ScholarPubMed
Doubrovina, E, Oflaz-Sozmen, B, Prockop, SE, Kernan, NA, Abramson, S, Teruya-Feldstein, J, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–56.CrossRefGoogle ScholarPubMed
Leen, AM, Myers, GD, Sili, U, Huls, MH, Weiss, H, Leung, KS, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Medicine. 2006;12(10):1160–6.CrossRefGoogle ScholarPubMed
Heslop, HE, Slobod, KS, Pule, MA, Hale, GA, Rousseau, A, Smith, CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.CrossRefGoogle ScholarPubMed
Peggs, KS, Thomson, K, Samuel, E, Dyer, G, Armoogum, J, Chakraverty, R, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2011;52(1):4957.CrossRefGoogle ScholarPubMed
Lazzari, L, Lucchi, S, Porretti, L, Montemurro, T, Giordano, R, Lopa, R, et al. Comparison of different serum-free media for ex vivo expansion of HPCs from cord blood using thrombopoietin, Flt-3 ligand, IL-6, and IL-11. Transfusion. 2001;41(5):718–9.CrossRefGoogle ScholarPubMed
Lazzari, L, Lucchi, S, Rebulla, P, Porretti, L, Puglisi, G, Lecchi, L, et al. Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system. British Journal of Haematology. 2001;112(2):397404.CrossRefGoogle Scholar
McNiece, I, Jones, R, Cagnoni, P, Bearman, S, Nieto, Y, Shpall, EJ. Ex-vivo expansion of hematopoietic progenitor cells: preliminary results in breast cancer. Hematology and Cell Therapy. 1999;41(2):82–6.CrossRefGoogle ScholarPubMed
McNiece, I, Kubegov, D, Kerzic, P, Shpall, EJ, Gross, S. Increased expansion and differentiation of cord blood products using a two-step expansion culture. Experimental Hematology. 2000;28(10):1181–6.CrossRefGoogle ScholarPubMed
Mohamed, AA, Ibrahim, AM, El-Masry, MW, Mansour, IM, Khroshied, MA, Gouda, HM, et al. Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Laboratory Hematology: Official Publication of the International Society for Laboratory Hematology. 2006;12(2):8693.CrossRefGoogle ScholarPubMed
Piacibello, W, Sanavio, F, Garetto, L, Severino, A, Dane, A, Gammaitoni, L, et al. Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation. Leukemia. 1998;12(5):718–27.CrossRefGoogle ScholarPubMed
Purdy, MH, Hogan, CJ, Hami, L, McNiece, I, Franklin, W, Jones, RB, et al. Large volume ex vivo expansion of CD34-positive hematopoietic progenitor cells for transplantation. Journal of Hematotherapy. 1995;4(6):515–25.CrossRefGoogle ScholarPubMed
Yao, CL, Chu, IM, Hsieh, TB, Hwang, SM. A systematic strategy to optimize ex vivo expansion medium for human hematopoietic stem cells derived from umbilical cord blood mononuclear cells. Experimental Hematology. 2004;32(8):720–7.CrossRefGoogle ScholarPubMed
Yao, CL, Feng, YH, Lin, XZ, Chu, IM, Hsieh, TB, Hwang, SM. Characterization of serum-free ex vivo-expanded hematopoietic stem cells derived from human umbilical cord blood CD133(+) cells. Stem Cells and Development. 2006;15(1):70–8.CrossRefGoogle ScholarPubMed
Shpall, EJ, Quinones, R, Giller, R, Zeng, C, Baron, AE, Jones, RB, et al. Transplantation of ex vivo expanded cord blood. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2002;8(7):368–76.CrossRefGoogle ScholarPubMed
Jaroscak, J, Goltry, K, Smith, A, Waters-Pick, B, Martin, PL, Driscoll, TA, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood. 2003;101(12):5061–7.CrossRefGoogle ScholarPubMed
Koller, MR, Palsson, MA, Manchel, I, Palsson, BO. Long-term culture-initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects. Blood. 1995;86(5):1784–93.CrossRefGoogle ScholarPubMed
Peled, T, Landau, E, Mandel, J, Glukhman, E, Goudsmid, NR, Nagler, A, et al. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Experimental Hematology. 2004;32(6):547–55.CrossRefGoogle ScholarPubMed
Peled, T, Mandel, J, Goudsmid, RN, Landor, C, Hasson, N, Harati, D, et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy. 2004;6(4):344–55.CrossRefGoogle ScholarPubMed
de Lima, M, McMannis, J, Gee, A, Komanduri, K, Couriel, D, Andersson, BS, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplantation. 2008;41(9):771–8.CrossRefGoogle ScholarPubMed
Stiff, PJ, Montesinos, P, Peled, T, Landau, E, Rosenheimer, N, Mandel, J, et al. StemEx®(copper chelation based) ex vivo expanded umbilical cord blood stem cell transplantation (UCBT) accelerates engraftment and improves 100 day survival in myeloablated patients compared to a registry cohort undergoing double unit UCBT: results of a multicenter study of 101 patients with hematologic malignancies. Blood 2013;122(21):295.CrossRefGoogle Scholar
Peled, T, Shoham, H, Aschengrau, D, Yackoubov, D, Frei, G, Rosenheimer, GN, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Experimental Hematology. 2012;40(4):342–55 e1.CrossRefGoogle ScholarPubMed
Peled, T, Adi, S, Peleg, I, Rosenheimer, NG, Daniely, Y, Nagler, A, et al. Nicotinamide modulates ex-vivo expansion of cord blood derived CD34+ cells cultured with cytokines and promotes their homing and engraftment in SCID mice. Blood. 2006;108(Abstract 725):Oral Session, ASH December 12, 2006.CrossRefGoogle Scholar
Horwitz, ME, Chao, NJ, Rizzieri, DA, Long, GD, Sullivan, KM, Gasparetto, C, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. The Journal of Clinical Investigation. 2014;124(7):3121–8.CrossRefGoogle ScholarPubMed
Milner, LA, Kopan, R, Martin, DI, Bernstein, ID. A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood. 1994;83(8):2057–62.CrossRefGoogle ScholarPubMed
Varnum-Finney, B, Xu, L, Brashem-Stein, C, Nourigat, C, Flowers, D, Bakkour, S, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Medicine. 2000;6(11):1278–81.CrossRefGoogle ScholarPubMed
Delaney, C, Heimfeld, S, Brashem-Stein, C, Voorhies, H, Manger, RL, Bernstein, ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature Medicine. 2010;16(2):232–6.CrossRefGoogle ScholarPubMed
Deans, RJ, Moseley, AB. Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology. 2000;28(8):875–84.CrossRefGoogle ScholarPubMed
Robinson, SN, Simmons, PJ, Yang, H, Alousi, AM, Marcos de Lima, J, Shpall, EJ. Mesenchymal stem cells in ex vivo cord blood expansion. Best Practice & Research Clinical Haematology. 2011;24(1):8392.CrossRefGoogle ScholarPubMed
Simmons, PJ, Torok-Storb, B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78(1):5562.CrossRefGoogle ScholarPubMed
de Lima, M, McNiece, I, Robinson, SN, Munsell, M, Eapen, M, Horowitz, M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. The New England Journal of Medicine. 2012;367(24):2305–15.CrossRefGoogle ScholarPubMed
Ruggeri, A, Peffault de Latour, R, Carmagnat, M, Clave, E, Douay, C, Larghero, J, et al. Outcomes, infections, and immune reconstitution after double cord blood transplantation in patients with high-risk hematological diseases. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2011;13(5):456–65.CrossRefGoogle ScholarPubMed
Hanley, PJ, Cruz, CR, Savoldo, B, Leen, AM, Stanojevic, M, Khalil, M, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114(9):1958–67.CrossRefGoogle Scholar
Park, KD, Marti, L, Kurtzberg, J, Szabolcs, P. In vitro priming and expansion of cytomegalovirus-specific Th1 and Tc1 T cells from naive cord blood lymphocytes. Blood. 2006;108(5):1770–3.CrossRefGoogle ScholarPubMed
Sun, Q, Burton, RL, Pollok, KE, Emanuel, DJ, Lucas, KG. CD4(+) Epstein–Barr virus-specific cytotoxic T-lymphocytes from human umbilical cord blood. Cellular Immunology. 1999;195(2):81–8.CrossRefGoogle ScholarPubMed
Hanley, P, Leen, A, Gee, AP, Leung, K, Martinez, C, Krance, RA, et al. Multi-virus-specific T-cell therapy for patients after hematopoietic stem cell and cord blood transplantation. Blood. 2013;122(21):140.CrossRefGoogle Scholar
Chang, YJ, Huang, XJ. Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Reviews. 2013;27(1):5562.CrossRefGoogle Scholar
Parmar, S, Robinson, SN, Komanduri, K, St John, L, Decker, W, Xing, D, et al. Ex vivo expanded umbilical cord blood T cells maintain naive phenotype and TCR diversity. Cytotherapy. 2006;8(2):149–57.CrossRefGoogle ScholarPubMed
Ramsay, AG, Xing, D, Decker, WK, Burks, JK, Wierda, WG, Gribben, JG, et al. Compared to adult peripheral blood t cells, cord blood T cells show enhanced immunological recognition of chronic lymphocytic leukemia tumor cells. Blood. 2008;112(Abstract 2333).CrossRefGoogle Scholar
Decker, WK, Shah, N, Xing, D, Lapushin, R, Li, S, Robinson, SN, et al. Generation of functional CLL-specific cord blood CTL using CD40-ligated CLL APC. PLoS One. 2012;7(12):e51390.CrossRefGoogle ScholarPubMed
Anguille, S, Van Tendeloo, VF, Berneman, ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012;26(10):2186–96.CrossRefGoogle Scholar
Weber, G, Gerdemann, U, Caruana, I, Savoldo, B, Hensel, NF, Rabin, KR, et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013;27(7):1538–47.CrossRefGoogle ScholarPubMed
Rosenberg, SA, Aebersold, P, Cornetta, K, Kasid, A, Morgan, RA, Moen, R, et al. Gene transfer into human – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. The New England Journal of Medicine. 1990;323(9):570–8.CrossRefGoogle ScholarPubMed
Till, BG, Jensen, MC, Wang, J, Chen, EY, Wood, BL, Greisman, HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–71.CrossRefGoogle ScholarPubMed
Birkholz, K, Hombach, A, Krug, C, Reuter, S, Kershaw, M, Kampgen, E, et al. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Therapy. 2009;16(5):596604.CrossRefGoogle ScholarPubMed
Savoldo, B, Ramos, CA, Liu, E, Mims, MP, Keating, MJ, Carrum, G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. The Journal of Clinical Investigation. 2011;121(5):1822–6.CrossRefGoogle ScholarPubMed
Hosing, C, Kebriaei, P, Wierda, W, Jena, B, Cooper, LJ, Shpall, E. CARs in chronic lymphocytic leukemia – ready to drive. Current Hematologic Malignancy Reports. 2013;8(1):6070.CrossRefGoogle ScholarPubMed
Kohn, DB, Sadelain, M, Glorioso, JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nature Reviews Cancer. 2003;3(7):477–88.Google ScholarPubMed
Scholler, J, Brady, TL, Binder-Scholl, G, Hwang, WT, Plesa, G, Hege, KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Science Translational Medicine. 2012;4(132):132ra53.CrossRefGoogle ScholarPubMed
Kebriaei, P, Huls, H, Singh, H, Olivares, S, Figliola, M, Kumar, PR, et al. First clinical trials employing Sleeping Beauty gene transfer system and artificial antigen presenting cells to generate and infuse T cells expressing CD19-specific chimeric antigen receptor. Blood. 2013;122(21):166.CrossRefGoogle Scholar
Huls, MH, Figliola, MJ, Dawson, MJ, Olivares, S, Kebriaei, P, Shpall, EJ, et al. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. Journal of Visualized Experiments. 2013(72):e50070.Google Scholar
Micklethwaite, KP, Savoldo, B, Hanley, PJ, Leen, AM, Demmler-Harrison, GJ, Cooper, LJ, et al. Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood. 2010;115(13):2695–703.CrossRefGoogle Scholar
Baron, F, Petersdorf, EW, Gooley, T, Sandmaier, BM, Malkki, M, Chauncey, TR, et al. What is the role for donor natural killer cells after nonmyeloablative conditioning? Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009;15(5):580–8.CrossRefGoogle ScholarPubMed
Ruggeri, L, Capanni, M, Urbani, E, Perruccio, K, Shlomchik, WD, Tosti, A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.CrossRefGoogle ScholarPubMed
Spanholtz, J, Tordoir, M, Eissens, D, Preijers, F, van der Meer, A, Joosten, I, et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One. 2010;5(2):e9221.CrossRefGoogle ScholarPubMed
Xing, D, Ramsay, AG, Gribben, JG, Decker, WK, Burks, JK, Munsell, M, et al. Cord blood natural killer cells exhibit impaired lytic immunological synapse formation that is reversed with IL-2 exvivo expansion. Journal of Immunotherapy. 2010;33(7):684–96.CrossRefGoogle ScholarPubMed
Shah, N, Martin-Antonio, B, Yang, H, Ku, S, Lee, DA, Cooper, LJ, et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One. 2013;8(10):e76781.CrossRefGoogle ScholarPubMed
Di Ianni, M, Falzetti, F, Carotti, A, Terenzi, A, Castellino, F, Bonifacio, E, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.CrossRefGoogle ScholarPubMed
Godfrey, WR, Spoden, DJ, Ge, YG, Baker, SR, Liu, B, Levine, BL, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8.CrossRefGoogle ScholarPubMed
Hippen, KL, Harker-Murray, P, Porter, SB, Merkel, SC, Londer, A, Taylor, DK, et al. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood. 2008;112(7):2847–57.CrossRefGoogle ScholarPubMed
Parmar, S, Liu, X, Tung, SS, Robinson, SN, Rodriguez, G, Cooper, LJ, et al. Third-party umbilical cord blood-derived regulatory T cells prevent xenogenic graft-versus-host disease. Cytotherapy. 2014;16(1):90100.CrossRefGoogle ScholarPubMed
Brunstein, CG, Miller, JS, Cao, Q, McKenna, DH, Hippen, KL, Curtsinger, J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.CrossRefGoogle ScholarPubMed
Brunstein, CG, Blazar, BR, Miller, JS, Cao, Q, Hippen, KL, McKenna, DH, et al. Adoptive transfer of umbilical cord blood-derived regulatory T cells and early viral reactivation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(8):1271–3.CrossRefGoogle ScholarPubMed
Xia, L, McDaniel, JM, Yago, T, Doeden, A, McEver, RP. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood. 2004;104(10):3091–6.CrossRefGoogle ScholarPubMed
Robinson, SN, Simmons, PJ, Thomas, MW, Brouard, N, Javni, JA, Trilok, S, et al. Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rgamma(null) mice. Experimental Hematology. 2012;40(6):445–56.CrossRefGoogle ScholarPubMed
Robinson, SN, Thomas, MW, Simmons, PJ, Lu, J, Yang, H, Parmar, S, et al. Fucosylation with fucosyltransferase VI or fucosyltransferase VII improves cord blood engraftment. Cytotherapy. 2014;16(1):84–9.CrossRefGoogle ScholarPubMed
Hoggatt, J, Singh, P, Sampath, J, Pelus, LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113(22):5444–55.CrossRefGoogle ScholarPubMed
Cutler, C, Multani, P, Robbins, D, Kim, HT, Le, T, Hoggatt, J, et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood. 2013;122(17):3074–81.CrossRefGoogle ScholarPubMed
Christopherson, KW 2nd, Hangoc, G, Broxmeyer, HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. Journal of Immunology. 2002;169(12):7000–8.Google ScholarPubMed
Christopherson, KW 2nd, Hangoc, G, Mantel, CR, Broxmeyer, HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305(5686):1000–3.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×