Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-25T04:05:39.018Z Has data issue: false hasContentIssue false

Chapter 64 - Immune Therapy with Cytotoxic T-Lymphocytes for Treatment of Infections

from Section 17 - Novel Cell Therapies and Manipulations: Ready for Prime-Time?

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 611 - 625
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boeckh, M, Leisenring, W, Riddell, SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T cell immunity. Blood. 2003;101(2):407414.CrossRefGoogle ScholarPubMed
Brunstein, CG, Weisdorf, DJ, DeFor, T, et al. Marked increased risk of Epstein–Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood. 2006;108(8):28742880.CrossRefGoogle ScholarPubMed
Myers, GD, Krance, RA, Weiss, H, et al. Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant. 2005;36(11):10011008.CrossRefGoogle ScholarPubMed
Neofytos, D, Horn, D, Anaissie, E, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis. 2009;48(3):265273.CrossRefGoogle ScholarPubMed
Avery, R. Update in management of Ganciclovir-resistant cytomegalovirus infection. Curr Opin Infect Dis. 2008;21:433437.CrossRefGoogle ScholarPubMed
Biron, KK. Antiviral drugs for cytomegalovirus diseases. Antiviral Res. 2006;71(2–3):154163.CrossRefGoogle ScholarPubMed
Nichols, WG, Corey, L, Gooley, T, et al. Rising pp65 antigenemia during preemptive anticytomegalovirus therapy after allogeneic hematopoietic stem cell transplantation: risk factors, correlation with DNA load, and outcomes. Blood. 2001;97(4):867874.CrossRefGoogle ScholarPubMed
Ljungman, P, Deliliers, GL, Platzbecker, U, et al. Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2001;97(2):388392.CrossRefGoogle ScholarPubMed
Kuehnle, I, Huls, MH, Liu, Z, et al. CD20 monoclonal antibody (rituximab) for therapy of Epstein–Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood. 2000;95(4):15021505.CrossRefGoogle ScholarPubMed
Papadopoulos, EB, Ladanyi, M, Emanuel, D, et al. Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330(17):11851191.CrossRefGoogle ScholarPubMed
Slezak, SL, Bettinotti, M, Selleri, S, Adams, S, Marincola, FM, Stroncek, DF. CMV pp65 and IE-1 T cell epitopes recognized by healthy subjects. J Transl Med. 2007;5:17.CrossRefGoogle ScholarPubMed
Leen, AM, Christin, A, Khalil, M, et al. Identification of hexon-specific CD4 and CD8 T cell epitopes for vaccine and immunotherapy. J Virol. 2008;82(1):546554.CrossRefGoogle ScholarPubMed
Bollard, CM, Rooney, CM, Heslop, HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9(9):510519.CrossRefGoogle ScholarPubMed
Hanley, PJ, Cruz, CR, Savoldo, B, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114(9):19581967.CrossRefGoogle Scholar
Leen, AM, Myers, GD, Sili, U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):11601166.CrossRefGoogle ScholarPubMed
Sili, U, Huls, MH, Davis, AR, et al. Large-scale expansion of dendritic cell-primed polyclonal human cytotoxic T-lymphocyte lines using lymphoblastoid cell lines for adoptive immunotherapy. J Immunother. 2003;26(3):241256.CrossRefGoogle ScholarPubMed
Kern, F, Faulhaber, N, Frommel, C, et al. Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur J Immunol. 2000;30(6):16761682.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Hanley, PJ, Shaffer, DR, Cruz, CR, et al. Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein–Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy. 2011;13(8):976986.CrossRefGoogle ScholarPubMed
Kalos, M, June, CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):4960.CrossRefGoogle ScholarPubMed
Sellar, RS, Peggs, KS. The role of virus-specific adoptive T-cell therapy in hematopoietic transplantation. Cytotherapy. 2012;14(4):391400.CrossRefGoogle ScholarPubMed
Hansen, SG, Powers, CJ, Richards, R, et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science. 2010;328(5974):102106.CrossRefGoogle ScholarPubMed
Neudorfer, J, Schmidt, B, Huster, KM, et al. Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods. 2007;320(1–2):119131.CrossRefGoogle ScholarPubMed
Schmitt, A, Tonn, T, Busch, DH, et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion. 2011;51(3):591599.CrossRefGoogle ScholarPubMed
Bollard, CM, Kuehnle, I, Leen, A, Rooney, CM, Heslop, HE. Adoptive immunotherapy for posttransplantation viral infections. Biol Blood Marrow Transplant. 2004;10(3):143155.CrossRefGoogle ScholarPubMed
Gattinoni, L, Klebanoff, CA, Palmer, DC, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T-cells. J Clin Invest. 2005;115(6):16161626.CrossRefGoogle ScholarPubMed
Heslop, HE, Slobod, KS, Pule, MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925935.CrossRefGoogle ScholarPubMed
Melenhorst, JJ, Leen, AM, Bollard, CM, et al. Allogeneic virus-specific T-cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010;116(22):47004702.CrossRefGoogle Scholar
Peggs, KS, Verfuerth, S, Pizzey, A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. The Lancet. 2003;362(9393):13751377.CrossRefGoogle ScholarPubMed
Rooney, CM, Smith, CA, Ng, CY, et al. Infusion of cytotoxic T-cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92(5):15491555.CrossRefGoogle ScholarPubMed
Walter, EA, Greenberg, PD, Gilbert, MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):10381044.CrossRefGoogle ScholarPubMed
Trivedi, D, Williams, RY, O’Reilly, RJ, Koehne, G. Generation of CMV-specific T lymphocytes using protein-spanning pools of pp65-derived overlapping pentadecapeptides for adoptive immunotherapy. Blood. 2005;105(7):27932801.CrossRefGoogle ScholarPubMed
Gerdemann, U, Keirnan, JM, Katari, UL, et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther. 2012;20(8):16221632.CrossRefGoogle ScholarPubMed
Hanley, PJC, Melenhorst, J, Scheinberg, P, et al. Naïve T-cell-derived CTL recognize atypical epitopes of CMVpp65 with higher avidity than CMV-seropositive donor-derived CTL – a basis for treatment of post-transplant viral infection by adoptive transfer of T-cells from virus-naïve donors. ISCT 2013 Annual Meeting (Abstract); 2013.CrossRefGoogle Scholar
Berger, C, Jensen, MC, Lansdorp, PM, Gough, M, Elliott, C, Riddell, SR. Adoptive transfer of effector CD8+ T-cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118(1):294305.CrossRefGoogle ScholarPubMed
Willinger, T, Freeman, T, Hasegawa, H, McMichael, AJ, Callan, MF. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immunol. 2005;175(9):58955903.CrossRefGoogle ScholarPubMed
Janeway, C. Immunobiology: The Immune System in Health and Disease. 6th ed. New York: Garland Science; 2005.Google Scholar
Leen, AM, Rooney, CM, Foster, AE. Improving T cell therapy for cancer. Ann Rev Immunol. 2007;25:243265.CrossRefGoogle ScholarPubMed
Eshhar, Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother. 1997;45(3–4):131136.CrossRefGoogle ScholarPubMed
Schub, A, Schuster, IG, Hammerschmidt, W, Moosmann, A. CMV-specific TCR-transgenic T cells for immunotherapy. J Immunol. 2009;183(10):68196830.CrossRefGoogle ScholarPubMed
Scholten, KB, Turksma, AW, Ruizendaal, JJ, et al. Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer. J Transl Med. 2011;9:147.CrossRefGoogle ScholarPubMed
Gehring, AJ, Xue, SA, Ho, ZZ, et al. Engineering virus-specific T-cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J Hepatol. 2011;55(1):103110.CrossRefGoogle ScholarPubMed
Zhang, Y, Liu, Y, Moxley, KM, et al. Transduction of human T-cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathogens. 2010;6(7):e1001018.CrossRefGoogle ScholarPubMed
Luo, W, Zhang, XB, Huang, YT, et al. Development of genetically engineered CD4+ and CD8+ T cells expressing TCRs specific for a M. tuberculosis 38-kDa antigen. J Mol Med (Berl). 2011;89(9):903913.CrossRefGoogle ScholarPubMed
Oh, HL, Chia, A, Chang, CX, et al. Engineering T-cells specific for a dominant severe acute respiratory syndrome coronavirus CD8 T cell epitope. J Virol. 2011;85(20):1046410471.CrossRefGoogle ScholarPubMed
Roan, NR, Starnbach, MN. Antigen-specific CD8+ T cells respond to Chlamydia trachomatis in the genital mucosa. J Immunol. 2006;177(11):79747979.CrossRefGoogle ScholarPubMed
Ueno, T, Fujiwara, M, Tomiyama, H, Onodera, M, Takiguchi, M. Reconstitution of anti-HIV effector functions of primary human CD8 T lymphocytes by transfer of HIV-specific alphabeta TCR genes. Eur J Immunol. 2004;34(12):33793388.CrossRefGoogle ScholarPubMed
Masiero, S, Del Vecchio, C, Gavioli, R, et al. T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120. Gene Ther. 2005;12(4):299310.CrossRefGoogle ScholarPubMed
Sahu, GK, Sango, K, Selliah, N, Ma, Q, Skowron, G, Junghans, RP. Anti-HIV designer T-cells progressively eradicate a latently infected cell line by sequentially inducing HIV reactivation then killing the newly gp120-positive cells. Virology. 2013;446(1–2):268275.CrossRefGoogle ScholarPubMed
Bitton, N, Verrier, F, Debre, P, Gorochov, G. Characterization of T cell-expressed chimeric receptors with antibody-type specificity for the CD4 binding site of HIV-1 gp120. Eur J immunol. 1998;28(12):41774187.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Joseph, A, Zheng, JH, Follenzi, A, et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in-vitro and in vivo HIV-1-specific inhibitory activity. J Virol. 2008;82(6):30783089.CrossRefGoogle ScholarPubMed
Kumaresan, PR, Manuri, PR, Albert, ND, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci USA. 2014;111(29):1066010665.CrossRefGoogle ScholarPubMed
Cobbold, M, Khan, N, Pourgheysari, B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379386.CrossRefGoogle ScholarPubMed
Feuchtinger, T, Opherk, K, Bethge, WA, et al. Adoptive transfer of pp65-specific T-cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116(20):43604367.CrossRefGoogle ScholarPubMed
Peggs, KS, Thomson, K, Samuel, E, et al. Directly selected cytomegalovirus-reactive donor T-cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52(1):4957.CrossRefGoogle ScholarPubMed
Uhlin, M, Okas, M, Gertow, J, Uzunel, M, Brismar, TB, Mattsson, J. A novel haplo-identical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation. Cancer Immunol Immunother. 2010;59(3):473477.CrossRefGoogle ScholarPubMed
Moosmann, A, Bigalke, I, Tischer, J, et al. Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood. 2010;115(14):29602970.CrossRefGoogle ScholarPubMed
Uhlin, M, Gertow, J, Uzunel, M, et al. Rapid salvage treatment with virus-specific T-cells for therapy-resistant disease. Clin Infect Dis. 2012;55(8):10641073.CrossRefGoogle ScholarPubMed
Leen, AM, Christin, A, Myers, GD, et al. Cytotoxic T lymphocyte therapy with donor T-cells prevents and treats adenovirus and Epstein–Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114(19):42834292.CrossRefGoogle ScholarPubMed
Micklethwaite, KP, Clancy, L, Sandher, U, et al. Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood. 2008;112(10):39743981.CrossRefGoogle ScholarPubMed
Feuchtinger, T, Matthes-Martin, S, Richard, C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):6476.CrossRefGoogle ScholarPubMed
Qasim, W, Derniame, S, Gilmour, K, et al. Third-party virus-specific T-cells eradicate adenoviraemia but trigger bystander graft-versus-host disease. Br J Haematol. 2011;154(1):150153.CrossRefGoogle ScholarPubMed
Blyth, E, Clancy, L, Simms, R, et al. Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood. 2013;121(18):37453758.CrossRefGoogle ScholarPubMed
Vera, JF, Brenner, LJ, Gerdemann, U, et al. Accelerated production of antigen-specific T-cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother. 2010;33(3):305315.CrossRefGoogle ScholarPubMed
Papadopoulou, A, Gerdemann, U, Katari, UL, et al. Activity of broad-spectrum T cells as treatment for Adv, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med. 2014;6(242):242ra283.CrossRefGoogle ScholarPubMed
Lam, S, Bollard, C. T-cell therapies for HIV. Immunotherapy. 2013;5(4):407414.CrossRefGoogle ScholarPubMed
Lieberman, J, Skolnik, PR, Parkerson, GR, 3rd, et al. Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood. 1997;90(6):21962206.CrossRefGoogle ScholarPubMed
Deeks, SG, Wagner, B, Anton, PA, et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther. 2002;5(6):788797.CrossRefGoogle ScholarPubMed
Mitsuyasu, RT, Anton, PA, Deeks, SG, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T-cells in human immunodeficiency virus-infected subjects. Blood. 2000;96(3):785793.CrossRefGoogle ScholarPubMed
Tebas, P, Stein, D, Binder-Scholl, G, et al. Antiviral effects of autologous CD4 T-cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood. 2013;121(9):15241533.CrossRefGoogle ScholarPubMed
Tebas, P, Stein, D, Tang, WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. New Engl J Med. 2014;370(10):901910.CrossRefGoogle ScholarPubMed
Didigu, CA, Wilen, CB, Wang, J, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T-cells from HIV-1 infection. Blood. 2014;123(1):6169.CrossRefGoogle Scholar
Balduzzi, A, Lucchini, G, Hirsch, HH, et al. Polyomavirus JC-targeted T-cell therapy for progressive multiple leukoencephalopathy in a hematopoietic cell transplantation recipient. Bone Marrow Transplant. 2011;46(7):987992.CrossRefGoogle Scholar
Ramos, CA, Narala, N, Vyas, GM, et al. Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes for adoptive immunotherapy of HPV-associated malignancies. J Immunother. 2013;36(1):6676.CrossRefGoogle ScholarPubMed
Cruz, CR, Hanley, PJ, Liu, H, et al. Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy. 2010;12(6):743749.CrossRefGoogle ScholarPubMed
Haque, T, Taylor, C, Wilkie, GM, et al. Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T-cells. Transplantation. 2001;72(8):13991402.CrossRefGoogle ScholarPubMed
Haque, T, Wilkie, GM, Taylor, C, et al. Treatment of Epstein–Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T-cells. Lancet. 2002;360(9331):436442.CrossRefGoogle ScholarPubMed
Haque, T, Wilkie, GM, Jones, MM, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):11231131.CrossRefGoogle ScholarPubMed
Barker, JN, Doubrovina, E, Sauter, C, et al. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood. 2010;116(23):50455049.CrossRefGoogle ScholarPubMed
Leen, AM, Bollard, CM, Mendizabal, AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):51135123.CrossRefGoogle ScholarPubMed
Wy Ip, W, Qasim, W. Management of adenovirus in children after allogeneic hematopoietic stem cell transplantation. Adv Hematol. 2013;2013:176418.CrossRefGoogle ScholarPubMed
Schub, A, Schuster, IG, Hammerschmidt, W, Moosmann, A. CMV-specific TCR-transgenic T-cells for immunotherapy. J Immunol. 2009;183(10):68196830.CrossRefGoogle ScholarPubMed
Xue, SA, Gao, L, Ahmadi, M, et al. Human MHC Class I-restricted high avidity CD4 T-cells generated by co-transfer of TCR and CD8 mediate efficient tumor rejection in vivo. Oncoimmunology. 2013;2(1):e22590.CrossRefGoogle ScholarPubMed
Frumento, G, Zheng, Y, Aubert, G, et al. Cord blood T cells retain early differentiation phenotype suitable for immunotherapy after TCR gene transfer to confer EBV specificity. Am J Transplant. 2013;13(1):4555.CrossRefGoogle ScholarPubMed
Basso, S, Zecca, M, Calafiore, L, et al. Successful treatment of a classic Hodgkin lymphoma-type post-transplant lymphoproliferative disorder with tailored chemotherapy and Epstein–Barr virus-specific cytotoxic T lymphocytes in a pediatric heart transplant recipient. Pediatr Transplant. 2013;17(7):E168–173.CrossRefGoogle Scholar
Haque, T, Amlot, PL, Helling, N, et al. Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J Immunol. 1998;160(12):62046209.CrossRefGoogle ScholarPubMed
Savoldo, B, Goss, J, Liu, Z, et al. Generation of autologous Epstein–Barr virus-specific cytotoxic T-cells for adoptive immunotherapy in solid organ transplant recipients. Transplantation. 2001;72(6):10781086.CrossRefGoogle ScholarPubMed
Romani, L. Immunity to fungal infections. Nat Rev Immunol. 2004;4(1):123.CrossRefGoogle ScholarPubMed
Groll, AH, McNeil, Grist L. Current challenges in the diagnosis and management of invasive fungal infections: report from the 15th International Symposium on Infections in the Immunocompromised Host: Thessaloniki, Greece, 22–25 June 2008. Int J Antimicrob Agents. 2009;33(2):101104.CrossRefGoogle ScholarPubMed
Milner, JD, Holland, SM. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat Rev Immunol. 2013;13(9):635648.CrossRefGoogle ScholarPubMed
Kim, CJ, McKinnon, LR, Kovacs, C, et al. Mucosal Th17 cell function is altered during HIV infection and is an independent predictor of systemic immune activation. J Immunol. 2013;191(5):21642173.CrossRefGoogle ScholarPubMed
Cruz, CR, Lam, S, Hanley, PJ, et al. Robust T cell responses to aspergillosis in chronic granulomatous disease: implications for immunotherapy. Clin Exp Immunol. 2013;174(1):8996.CrossRefGoogle Scholar
Beck, O, Topp, MS, Koehl, U, et al. Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood. 2006;107(6):25622569.CrossRefGoogle ScholarPubMed
Tramsen, L, Schmidt, S, Boenig, H, et al. Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy. 2013;15(3):344351.CrossRefGoogle ScholarPubMed
Khanna, N, Stuehler, C, Conrad, B, et al. Generation of a multipathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD154. Blood. 2011;118(4):11211131.CrossRefGoogle ScholarPubMed
Gomez, MJ, Maras, B, Barca, A, La Valle, R, Barra, D, Cassone, A. Biochemical and immunological characterization of MP65, a major mannoprotein antigen of the opportunistic human pathogen Candida albicans. Infect Immun. 2000;68(2):694701.CrossRefGoogle Scholar
Jolink, H, Meijssen, IC, Hagedoorn, RS, et al. Characterization of the T-cell-mediated immune response against the Aspergillus fumigatus proteins Crf1 and catalase 1 in healthy individuals. J Infect Dis. 2013;208(5):847856.CrossRefGoogle ScholarPubMed
Schmidt, S, Tramsen, L, Perkhofer, S, et al. Characterization of the cellular immune responses to Rhizopus oryzae with potential impact on immunotherapeutic strategies in hematopoietic stem cell transplantation. J Infect Dis. 2012;206(1):135139.CrossRefGoogle ScholarPubMed
Tramsen, L, Beck, O, Schuster, FR, et al. Generation and characterization of anti-Candida T-cells as potential immunotherapy in patients with Candida infection after allogeneic hematopoietic stem-cell transplant. J Infect Dis. 2007;196(3):485492.CrossRefGoogle ScholarPubMed
Goodridge, HS, Wolf, AJ, Underhill, DM. Beta-glucan recognition by the innate immune system. Immunol Rev. 2009;230(1):3850.CrossRefGoogle ScholarPubMed
Perruccio, K, Tosti, A, Burchielli, E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106(13):43974406.CrossRefGoogle ScholarPubMed
De Angelis, B, Dotti, G, Quintarelli, C, et al. Generation of Epstein–Barr virus-specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood. 2009;114(23):47844791.CrossRefGoogle Scholar
Brewin, J, Mancao, C, Straathof, K, et al. Generation of EBV-specific cytotoxic T cells that are resistant to calcineurin inhibitors for the treatment of posttransplantation lymphoproliferative disease. Blood. 2009;114(23):47924803.CrossRefGoogle ScholarPubMed
Vera, JF, Brenner, LJ, Gerdemann, U, et al. Accelerated production of antigen-specific T-cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother. 2010;33(3):305315.CrossRefGoogle ScholarPubMed
Gattinoni, L, Lugli, E, Ji, Y, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):12901297.CrossRefGoogle ScholarPubMed
Williams, DM, Weiner, MH, Drutz, DJ. Immunologic studies of disseminated infection with Aspergillus fumigatus in the nude mouse. J Infect Dis. 1981;143(5):726733.CrossRefGoogle ScholarPubMed
Holding, KJ, Dworkin, MS, Wan, PC, et al. Aspergillosis among people infected with human immunodeficiency virus: incidence and survival. Adult and Adolescent Spectrum of HIV Disease Project. Clin Infect Dis. 2000;31(5):12531257.CrossRefGoogle ScholarPubMed
Zelante, T, De Luca, A, Bonifazi, P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37(10):26952706.CrossRefGoogle ScholarPubMed
Werner, JL, Gessner, MA, Lilly, LM, et al. Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infect Immun. 2011;79(10):39663977.CrossRefGoogle Scholar
Marr, KA, Carter, RA, Boeckh, M, Martin, P, Corey, L. Invasive aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and risk factors. Blood. 2002;100(13):43584366.CrossRefGoogle ScholarPubMed
Zimmerli, W, Zarth, A, Gratwohl, A, Speck, B. Neutrophil function and pyogenic infections in bone marrow transplant recipients. Blood. 1991;77(2):393399.CrossRefGoogle ScholarPubMed
Cobbold, M, Khan, N, Pourgheysari, B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379386.CrossRefGoogle ScholarPubMed
Peggs, KS, Thomson, K, Samuel, E, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52(1):4957.CrossRefGoogle ScholarPubMed
Uhlin, M, Okas, M, Gertow, J, Uzunel, M, Brismar, TB, Mattsson, J. A novel haplo-identical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation. Cancer Immunol Immunother. 2010;59(3):473477.CrossRefGoogle ScholarPubMed
Qasim, W, Derniame, S, Gilmour, K, et al. Third-party virus-specific T-cells eradicate adenoviraemia but trigger bystander graft-versus-host disease. Br J Haematol. 2011;154(1):150153.CrossRefGoogle ScholarPubMed
Feuchtinger, T, Matthes-Martin, S, Richard, C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):6476.CrossRefGoogle ScholarPubMed
Balduzzi, A, Lucchini, G, Hirsch, HH, et al. Polyomavirus JC-targeted T-cell therapy for progressive multiple leukoencephalopathy in a hematopoietic cell transplantation recipient. Bone Marrow Transplant. 2011;46(7):987992.CrossRefGoogle Scholar
Uhlin, M, Gertow, J, Uzunel, M, et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis. 2012;55(8):10641073.CrossRefGoogle ScholarPubMed
Leen, AM, Myers, GD, Sili, U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):11601166.CrossRefGoogle ScholarPubMed
Gerdemann, U, Katari, UL, Papadopoulou, A, et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T-cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther. 2013;21(11):21132121.CrossRefGoogle ScholarPubMed
Tramsen, L, Koehl, U, Tonn, T, et al. Clinical-scale generation of human anti-Aspergillus T-cells for adoptive immunotherapy. Bone Marrow Transplant. 2009;43(1):1319.CrossRefGoogle ScholarPubMed
Gaundar, SS, Clancy, L, Blyth, E, Meyer, W, Gottlieb, DJ. Robust polyfunctional T-helper 1 responses to multiple fungal antigens from a cell population generated using an environmental strain of Aspergillus fumigatus. Cytotherapy. 2012;14(9):11191130.CrossRefGoogle ScholarPubMed
Stuehler, C, Khanna, N, Bozza, S, et al. Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood. 2011;117(22):58815891.CrossRefGoogle ScholarPubMed
Jolink, H, Meijssen, IC, Hagedoorn, RS, et al. Characterization of the T-cell-mediated immune response against the Aspergillus fumigatus proteins Crf1 and catalase 1 in healthy individuals. J Infect Dis. 2013;208(5):847856.CrossRefGoogle ScholarPubMed
Feng, CG, Britton, WJ. CD4+ and CD8+ T cells mediate adoptive immunity to aerosol infection of Mycobacterium bovis bacillus Calmette-Guerin. J Infect Dis. 2000;181(5):18461849.CrossRefGoogle ScholarPubMed
Stemberger, C, Graef, P, Odendahl, M, et al. Lowest numbers of primary CD8(+) T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood. 2014;124(4):628637.CrossRefGoogle ScholarPubMed
Bhadra, R, Cobb, DA, Khan, IA. Donor CD8+ T cells prevent Toxoplasma gondii de-encystation but fail to rescue the exhausted endogenous CD8+ T cell population. Infect Immun. 2013;81(9):34143425.CrossRefGoogle ScholarPubMed
Polley, R, Stager, S, Prickett, S, et al. Adoptive immunotherapy against experimental visceral leishmaniasis with CD8+ T cells requires the presence of cognate antigen. Infect Immun. 2006;74(1):773776.CrossRefGoogle ScholarPubMed
Naik, S, Nicholas, SK, Martinez, CA, et al., Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol. 2016;137(5):1498–505.CrossRefGoogle ScholarPubMed
Henrickson, KJ. Parainfluenza viruses. Clin Microbiol Rev. 2003;16(2):242–64.CrossRefGoogle ScholarPubMed
Nichols, WG, Corey, L, Gooley, T, et al. Parainfluenza virus infections after hematopoietic stem cell transplantation: risk factors, response to antiviral therapy, and effect on transplant outcome. Blood. 2001;98(3):573–8.CrossRefGoogle ScholarPubMed
McLaughlin, L, Lang, H, Williams, E, et al. Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy. 2016;18(12):1515–24.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×