Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-26T13:35:00.116Z Has data issue: false hasContentIssue false

Chapter 63 - NK Cells for Cancers

from Section 17 - Novel Cell Therapies and Manipulations: Ready for Prime-Time?

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 602 - 610
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Raulet, DH, Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol. 2009;9(8):568–80. Epub 2009/07/25.CrossRefGoogle ScholarPubMed
Almeida-Oliveira, A, Smith-Carvalho, M, Porto, LC, Cardoso-Oliveira, J, Ribeiro Ados, S, Falcao, RR, et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol. 2011;72(4):319–29. Epub 2011/01/26.CrossRefGoogle ScholarPubMed
Kiessling, R, Klein, E, Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5(2):112–7. Epub 1975/02/01.Google ScholarPubMed
Herberman, RB, Nunn, ME, Lavrin, DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975;16(2):216–29. Epub 1975/08/15.Google ScholarPubMed
Murphy, WJ, Koh, CY, Raziuddin, A, Bennett, M, Longo, DL. Immunobiology of natural killer cells and bone marrow transplantation: merging of basic and preclinical studies. Immunol Rev. 2001;181:279–89. Epub 2001/08/22.CrossRefGoogle ScholarPubMed
Ljunggren, HG, Karre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today. 1990;11(7):237–44.CrossRefGoogle ScholarPubMed
Raulet, DH, Correa, I, Corral, L, Dorfman, J, Wu, MF. Inhibitory effects of class I molecules on murine NK cells: speculations on function, specificity and self-tolerance. Semi Immunol. 1995;7(2):103–7. Epub 1995/04/01.Google Scholar
Farag, SS, Caligiuri, MA. Human natural killer cell development and biology. Blood Rev. 2006;20(3):123–37. Epub 2005/12/21.CrossRefGoogle ScholarPubMed
Uhrberg, M, Valiante, NM, Shum, BP, Shilling, HG, Lienert-Weidenbach, K, Corliss, B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7(6):753–63. Epub 1998/01/16.CrossRefGoogle ScholarPubMed
Zhao, XY, Chang, YJ, Xu, LP, Zhang, XH, Liu, KY, Li, D, et al. HLA and KIR genotyping correlates with relapse after T-cell-replete haploidentical transplantation in chronic myeloid leukaemia patients. Br J Cancer. 2014;111(6):1080–8. Epub 2014/08/01.CrossRefGoogle ScholarPubMed
Shilling, HG, McQueen, KL, Cheng, NW, Shizuru, JA, Negrin, RS, Parham, P. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood. 2003;101(9):3730–40. Epub 2003/01/04.CrossRefGoogle ScholarPubMed
Giebel, S, Dziaczkowska, J, Czerw, T, Wojnar, J, Krawczyk-Kulis, M, Nowak, I, et al. Sequential recovery of NK cell receptor repertoire after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2010;45(6):1022–30. Epub 2010/02/02.CrossRefGoogle ScholarPubMed
Beziat, V, Liu, LL, Malmberg, JA, Ivarsson, MA, Sohlberg, E, Bjorklund, AT, et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood. 2013;121(14):2678–88. Epub 2013/01/18.CrossRefGoogle ScholarPubMed
Foley, B, Cooley, S, Verneris, MR, Pitt, M, Curtsinger, J, Luo, X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012;119(11):2665–74. Epub 2011/12/20.CrossRefGoogle ScholarPubMed
Foley, B, Cooley, S, Verneris, MR, Curtsinger, J, Luo, X, Waller, EK, et al. Human cytomegalovirus (CMV)-induced memory-like NKG2C(+) NK cells are transplantable and expand in vivo in response to recipient CMV antigen. J Immunol. 2012;189(10):5082–8. Epub 2012/10/19.CrossRefGoogle ScholarPubMed
Ruggeri, L, Mancusi, A, Capanni, M, Urbani, E, Carotti, A, Aloisi, T, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110(1):433–40. Epub 2007/03/21.CrossRefGoogle ScholarPubMed
Symons, HJ, Leffell, MS, Rossiter, ND, Zahurak, M, Jones, RJ, Fuchs, EJ. Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2010;16(4):533–42. Epub 2009/12/08.CrossRefGoogle ScholarPubMed
Brunstein, CG, Wagner, JE, Weisdorf, DJ, Cooley, S, Noreen, H, Barker, JN, et al. Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. Blood. 2009;113(22):5628–34. Epub 2009/03/31.CrossRefGoogle ScholarPubMed
Miller, JS, Cooley, S, Parham, P, Farag, SS, Verneris, MR, McQueen, KL, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007;109(11):5058–61.CrossRefGoogle ScholarPubMed
Horowitz, A, Strauss-Albee, DM, Leipold, M, Kubo, J, Nemat-Gorgani, N, Dogan, OC, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med. 2013;5(208):208ra145. Epub 2013/10/25.CrossRefGoogle ScholarPubMed
Bertaina, A, Merli, P, Rutella, S, Pagliara, D, Bernardo, ME, Masetti, R, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124(5):822–6. Epub 2014/05/30.CrossRefGoogle Scholar
Kanakry, CG, O’Donnell, PV, Furlong, T, de Lima, MJ, Wei, W, Medeot, M, et al. Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J Clin Oncol. 2014;32(31):3497–505. Epub 2014/10/01.CrossRefGoogle ScholarPubMed
Derniame, S, Perazzo, J, Lee, F, Domogala, A, Escobedo-Cousin, M, Alnabhan, R, et al. Differential effects of mycophenolate mofetil and cyclosporine A on peripheral blood and cord blood natural killer cells activated with interleukin-2. Cytotherapy. 2014;16(10):1409–18.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Inaba, H, Ribeiro, RC, Pounds, S, Rooney, B, Bell, T, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955–9. Epub 2010/01/21.CrossRefGoogle ScholarPubMed
Choi, I, Yoon, SR, Park, SY, Kim, H, Jung, SJ, Jang, YJ, et al. Donor-derived natural killer cells infused after human leukocyte antigen-haploidentical hematopoietic cell transplantation: a dose-escalation study. Biol Blood Marrow Transplant. 2014;20(5):696704. Epub 2014/02/15.CrossRefGoogle ScholarPubMed
Shah, NN, Baird, K, Delbrook, CP, Fleisher, TA, Kohler, ME, Rampertaap, S, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T cell depleted stem cell transplantation. Blood. 2015;125(5):784–92.CrossRefGoogle ScholarPubMed
Fujisaki, H, Kakuda, H, Shimasaki, N, Imai, C, Ma, J, Lockey, T, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010–7. Epub 2009/04/23.CrossRefGoogle ScholarPubMed
Denman, CJ, Senyukov, VV, Somanchi, SS, Phatarpekar, PV, Kopp, LM, Johnson, JL, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One. 2012;7(1):e30264. Epub 2012/01/27.CrossRefGoogle ScholarPubMed
Spanholtz, J, Preijers, F, Tordoir, M, Trilsbeek, C, Paardekooper, J, de Witte, T, et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One. 2011;6(6):e20740. Epub 2011/06/24.CrossRefGoogle ScholarPubMed
Berg, M, Lundqvist, A, McCoy, P Jr., Samsel, L, Fan, Y, Tawab, A, et al. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy. 2009;11(3):341–55. Epub 2009/03/25.CrossRefGoogle ScholarPubMed
Ruggeri, L, Capanni, M, Urbani, E, Perruccio, K, Shlomchik, WD, Tosti, A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.CrossRefGoogle ScholarPubMed
Giebel, S, Locatelli, F, Lamparelli, T, Velardi, A, Davies, S, Frumento, G, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003;102(3):814–9.CrossRefGoogle ScholarPubMed
Beelen, DW, Ottinger, HD, Ferencik, S, Elmaagacli, AH, Peceny, R, Trenschel, R, et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood. 2005;105(6):2594–600. Epub 2004/11/13.CrossRefGoogle ScholarPubMed
Elmaagacli, AH, Ottinger, H, Koldehoff, M, Peceny, R, Steckel, NK, Trenschel, R, et al. Reduced risk for molecular disease in patients with chronic myeloid leukemia after transplantation from a KIR-mismatched donor. Transplantation. 2005;79(12):1741–7. Epub 2005/06/24.CrossRefGoogle ScholarPubMed
Lang, P, Pfeiffer, M, Teltschik, HM, Schlegel, P, Feuchtinger, T, Ebinger, M, et al. Natural killer cell activity influences outcome after T cell depleted stem cell transplantation from matched unrelated and haploidentical donors. Best Pract Res Clin Haematol. 2011;24(3):403–11. Epub 2011/09/20.CrossRefGoogle Scholar
Oevermann, L, Michaelis, SU, Mezger, M, Lang, P, Toporski, J, Bertaina, A, et al. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood. 2014;124(17):2744–7. Epub 2014/08/15.CrossRefGoogle Scholar
Michaelis, SU, Mezger, M, Bornhauser, M, Trenschel, R, Stuhler, G, Federmann, B, et al. KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol. 2014;93(9):1579–86. Epub 2014/04/29.CrossRefGoogle ScholarPubMed
Yamasaki, S, Henzan, H, Ohno, Y, Yamanaka, T, Iino, T, Itou, Y, et al. Influence of transplanted dose of CD56+ cells on development of graft-versus-host disease in patients receiving G-CSF-mobilized peripheral blood progenitor cells from HLA-identical sibling donors. Bone Marrow Transplant. 2003;32(5):505–10. Epub 2003/08/28.CrossRefGoogle ScholarPubMed
Verheyden, S, Schots, R, Duquet, W, Demanet, C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia. 2005;19(8):1446–51. Epub 2005/06/24.CrossRefGoogle ScholarPubMed
Hsu, KC, Keever-Taylor, CA, Wilton, A, Pinto, C, Heller, G, Arkun, K, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood. 2005;105(12):4878–84.CrossRefGoogle ScholarPubMed
Kim, DH, Sohn, SK, Lee, NY, Baek, JH, Kim, JG, Won, DI, et al. Transplantation with higher dose of natural killer cells associated with better outcomes in terms of non-relapse mortality and infectious events after allogeneic peripheral blood stem cell transplantation from HLA-matched sibling donors. Eur J Haematol. 2005;75(4):299308. Epub 2005/09/09.CrossRefGoogle ScholarPubMed
Hsu, KC, Gooley, T, Malkki, M, Pinto-Agnello, C, Dupont, B, Bignon, JD, et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12(8):828–36. Epub 2006/07/26.CrossRefGoogle ScholarPubMed
Savani, BN, Mielke, S, Adams, S, Uribe, M, Rezvani, K, Yong, AS, et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia. 2007;21(10):2145–52. Epub 2007/08/04.CrossRefGoogle Scholar
Willemze, R, Rodrigues, CA, Labopin, M, Sanz, G, Michel, G, Socie, G, et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia. 2009;23(3):492500. Epub 2009/01/20.CrossRefGoogle ScholarPubMed
Cooley, S, Trachtenberg, E, Bergemann, TL, Saeteurn, K, Klein, J, Le, CT, et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009;113(3):726–32. Epub 2008/10/24.CrossRefGoogle Scholar
Cooley, S, Weisdorf, DJ, Guethlein, LA, Klein, JP, Wang, T, Le, CT, et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood. 2010;116(14):2411–9. Epub 2010/06/29.CrossRefGoogle ScholarPubMed
Tomblyn, M, Young, JA, Haagenson, MD, Klein, JP, Trachtenberg, EA, Storek, J, et al. Decreased infections in recipients of unrelated donor hematopoietic cell transplantation from donors with an activating KIR genotype. Biol Blood Marrow Transplant. 2010;16(8):1155–61. Epub 2010/03/04.CrossRefGoogle ScholarPubMed
Yamamoto, W, Ogusa, E, Matsumoto, K, Maruta, A, Ishigatsubo, Y, Kanamori, H. Recovery of natural killer cells and prognosis after cord blood transplantation. Leuk Res. 2013;37(11):1522–6. Epub 2013/10/08.CrossRefGoogle ScholarPubMed
Leung, W, Handgretinger, R, Iyengar, R, Turner, V, Holladay, MS, Hale, GA. Inhibitory KIR-HLA receptor-ligand mismatch in autologous haematopoietic stem cell transplantation for solid tumour and lymphoma. Br J Cancer. 2007;97(4):539–42. Epub 2007/08/02.CrossRefGoogle ScholarPubMed
Venstrom, JM, Zheng, J, Noor, N, Danis, KE, Yeh, AW, Cheung, IY, et al. KIR and HLA genotypes are associated with disease progression and survival following autologous hematopoietic stem cell transplantation for high-risk neuroblastoma. Clin Cancer Res. 2009;15(23):7330–4. Epub 2009/11/26.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×