Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-25T03:40:55.495Z Has data issue: false hasContentIssue false

Chapter 65 - Strategies to Augment Graft-versus-Leukemia and -Lymphoma Effects

from Section 17 - Novel Cell Therapies and Manipulations: Ready for Prime-Time?

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 626 - 638
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, AJ. Understanding and harnessing the graft-versus-leukaemia effect. Br J Haematol. 2008;142(6):877–88.CrossRefGoogle ScholarPubMed
Gale, RP, Horowitz, MM, Ash, RC, Champlin, RE, Goldman, JM, Rimm, AA, Ringdén, O, Stone, JA, Bortin, MM.Identical-twin bone marrow transplants for leukemia. Ann Intern Med. 1994;120(8):646–52.CrossRefGoogle ScholarPubMed
Barrett, AJ, Ringdén, O, Zhang, MJ, Bashey, A, Cahn, JY, Cairo, MS, Gale, RP, Gratwohl, A, Locatelli, F, Martino, R, Schultz, KR, Tiberghien, P. Effect of nucleated marrow cell dose on relapse and survival in identical twin bone marrow transplants for leukemia. Blood. 2000;95(11):3323–7.Google ScholarPubMed
Ringdén, O, Pavletic, SZ, Anasetti, C, Barrett, AJ, Wang, T, Wang, D, Antin, JH, Di Bartolomeo, P, Bolwell, BJ, Bredeson, C, Cairo, MS, Gale, RP, Gupta, V, Hahn, T, Hale, GA, Halter, J, Jagasia, M, Litzow, MR, Locatelli, F, Marks, DI, McCarthy, PL, Cowan, MJ, Petersdorf, EW, Russell, JA, Schiller, GJ, Schouten, H, Spellman, S.The graft-versus-leukemia effect using matched unrelated donors is not superior to HLA-identical siblings for hematopoietic stem cell transplantation. Blood. 2009;113(13):3110–8.CrossRefGoogle Scholar
Vago, L, Toffalori, C, Ciceri, F, Fleischhauer, K. Genomic loss of mismatched human leukocyte antigen and leukemia immune escape from haploidentical graft-versus-leukemia. Semin Oncol. 2012;39(6):707–15.CrossRefGoogle ScholarPubMed
Weisdorf, D, Which donor or graft source should you choose for the strongest GVL? Is there really any difference. Best Pract Res Clin Haematol 2013; 26: 293–6.CrossRefGoogle ScholarPubMed
Pegram, HJ, Ritchie, DS, Smyth, MJ, Wiernik, A, Prince, HM, Darcy, PK, Kershaw, MH. Alloreactive natural killer cells in hematopoietic stem cell transplantation. Leuk Res. 2011;35(1):1421.CrossRefGoogle ScholarPubMed
Moretta, L, Locatelli, F, Pende, D, Marcenaro, E, Mingari, MC, Moretta, A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117(3):764–71.CrossRefGoogle ScholarPubMed
Davies, JO, Stringaris, K, Barrett, JA, Rezvani, K. Opportunities and limitations of natural killer cells as adoptive therapy for malignant disease. Cytotherapy. 2014;May 20. [Epub ahead of print]CrossRefGoogle Scholar
Reshef, R, Hexner, EO, Frey, NV, Stadtmauer, EA, Luger, SM, Mangan, JK, Gill, SI, Vassilev, P, Lafferty, KA, Smith, J, Van Deerlin, VM, Mick, R4, Porter, DL. Early donor chimerism levels predict relapse and survival after allogeneic stem-cell transplantation with reduced intensity conditioning. Biol Blood Marrow Transplant. 2014; Jul 9. [Epub ahead of print]CrossRefGoogle Scholar
Reisner, Y, Gur, H, Reich-Zeliger, S, Martelli, MF, Bachar-Lustig, E. Hematopoietic stem cell transplantation across major genetic barriers: tolerance induction by megadose CD34 cells and other veto cells. Ann N Y Acad Sci. 2005;1044:7083.CrossRefGoogle ScholarPubMed
Singh, AK, Savani, BN, Albert, PS, Barrett, AJ. Efficacy of CD34+ stem cell dose in patients undergoing allogeneic peripheral blood stem cell transplantation after total body irradiation.Biol Blood Marrow Transplant. 2007;13(3):339–44.CrossRefGoogle ScholarPubMed
Ringdén, O, Barrett, AJ, Zhang, MJ, Loberiza, FR, Bolwell, BJ, Cairo, MS, Gale, RP, Hale, GA, Litzow, MR, Martino, R, Russell, JA, Tiberghien, P, Urbano-Ispizua, A, Horowitz, MM. Decreased treatment failure in recipients of HLA-identical bone marrow or peripheral blood stem cell transplants with high CD34 cell doses. Br J Haematol. 2003;121(6):874–85.CrossRefGoogle ScholarPubMed
Chang, YJ, Weng, CL, Sun, LX, Zhao, YT. Allogeneic bone marrow transplantation compared to peripheral blood stem cell transplantation for the treatment of hematologic malignancies: a meta-analysis based on time-to-event data from randomized controlled trials. Ann Hematol. 2012;91(3):427–37.CrossRefGoogle ScholarPubMed
Norkin, M, Uberti, JP, Schiffer, CA. Very late recurrences of leukemia: why does leukemia awake after many years of dormancy? Leuk Res. 2011;35(2):139–44.CrossRefGoogle ScholarPubMed
Bacigalupo, A, Vitale, V, Corvo, R, Barra, S, Lamparelli, T, Gualandi, F, Mordini, N, Berisso, G, Bregante, S, Raiola, AM, Van Lint, MT, Frassoni, F. The combined effect of total body irradiation (TBI) and cyclosporin A (CyA) on the risk of relapse in patients with acute myeloid leukaemia undergoing allogeneic bone marrow transplantation. Br J Haematol. 2000;108:99104.CrossRefGoogle ScholarPubMed
Locatelli, F, Zecca, M, Rondelli, R, Bonetti, F, Dini, G, Prete, A, Messina, C, Uderzo, C, Ripaldi, M, Porta, F, Giorgiani, G, Giraldi, E, Pession, A. Graft versus host disease prophylaxis with low-dose cyclosporine-A reduces the risk of relapse in children with acute leukemia given HLA-identical sibling bone marrow transplantation: results of a randomized trial. Blood. 2000;95:1572–9.CrossRefGoogle ScholarPubMed
Pulsipher, MA, Langholz, B, Wall, DA, Schultz, KR, Bunin, N, Carroll, WL, Raetz, E, Gardner, S, Gastier-Foster, JM, Howrie, D, Goyal, RK, Douglas, JG, Borowitz, M, Barnes, Y, Teachey, DT, Taylor, C, Grupp, SA. The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: a phase 3 Children’s Oncology Group/Pediatric Blood and Marrow Transplant Consortium trial. Blood. 2014;123(13):2017–25.CrossRefGoogle ScholarPubMed
Khouri, IF, Lee, MS, Saliba, RM, Andersson, B, Anderlini, P, Couriel, D, Hosing, C, Giralt, S, Korbling, M, McMannis, J, Keating, MJ, Champlin, RE. Nonablative allogeneic stem cell transplantation for chronic lymphocytic leukemia: impact of rituximab on immunomodulation and survival. Exp Hematol. 2004;32(1):2835.CrossRefGoogle ScholarPubMed
Champlin, RE, Passweg, JR, Zhang, MJ, Rowlings, PA, Pelz, CJ, Atkinson, KA, Barrett, AJ, Cahn, JY, Drobyski, WR, Gale, RP, Goldman, JM, Gratwohl, A, Gordon-Smith, EC, Henslee-Downey, PJ, Herzig, RH, Klein, JP, Marmont, AM, O’Reilly, RJ, Ringdén, O, Slavin, S, Sobocinski, KA, Speck, B, Weiner, RS, Horowitz, MM.T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood. 2000;95(12):39964003.Google ScholarPubMed
Sheng, Z, Ma, H, Pang, W, Niu, S, Xu, J. In vivo T-cell depletion with antithymocyte globulins improves overall survival after myeloablative allogeneic stem cell transplantation in patients with hematologic disorders. Acta Haematol. 2013;129(3):146–53. doi: 10.1159/000343604. Epub 2012 Nov 30.CrossRefGoogle ScholarPubMed
Devine, SM, Carter, S, Soiffer, RJ, Pasquini, MC, Hari, PM, Stein, A, Lazarus, HM, Linker, C, Stadtmauer, EA, Alyea, EP, Keever-Taylor, CA, O'Reilly, RJ. Low-risk of chronic graft versus host disease and relapse associated with T-cell depleted peripheral blood stem cell transplantation for acute myeloid leukemia in first remission: results of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Protocol 0303. Biol Blood Marrow Transplant. 2011;17:13431351.CrossRefGoogle Scholar
Bayraktar, UD, de Lima, M, Saliba, RM, Maloy, M, Castro-Malaspina, HR, Chen, J, Rondon, G, Chiattone, A, Jakubowski, AA, Boulad, F, Kernan, NA, O’Reilly, RJ, Champlin, RE, Giralt, S, Andersson, BS, Papadopoulos, EB.Ex vivo T cell-depleted versus unmodified allografts in patients with acute myeloid leukemia in first complete remission. Biol Blood Marrow Transplant. 2013;19(6):898903.CrossRefGoogle ScholarPubMed
Aversa, F, Martelli, MF, Velardi, A. Haploidentical hematopoietic stem cell transplantation with a megadose T-cell-depleted graft: harnessing natural and adaptive immunity. Semin Oncol. 2012;39(6):643–52.CrossRefGoogle ScholarPubMed
Bleakley, M, Heimfeld, S, Jones, LA, Turtle, C, Krause, D, Riddell, SR, Shlomchik, W. Engineering human peripheral blood stem cell grafts that are depleted of naïve T cells and retain functional pathogen-specific memory T cells. Biol Blood Marrow Transplant. 2014;20(5):705–16.CrossRefGoogle ScholarPubMed
Mielke, S, Solomon, SR, Barrett, AJ. Selective depletion strategies in allogeneic stem cell transplantation. Cytotherapy. 2005;7(2):109–15.CrossRefGoogle ScholarPubMed
Bastien, JP, Roy, J, Roy, DC.Donor selective T-cell depletion for haplotype-mismatched allogeneic stem cell transplantation. Semin Oncol. 2012;39(6):674–82.CrossRefGoogle ScholarPubMed
Amrolia, PJ, Muccioli-Casadei, G, Huls, H, Adams, S, Durett, A, Gee, A, Yvon, E, Weiss, H, Cobbold, M, Gaspar, HB, Rooney, C, Kuehnle, I, Ghetie, V, Schindler, J, Krance, R, Heslop, HE, Veys, P, Vitetta, E, Brenner, MK. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108(6):1797–808.CrossRefGoogle ScholarPubMed
Fuchs, EJ. Human leukocyte antigen-haploidentical stem cell transplantation using T-cell-replete bone marrow grafts. Curr Opin Hematol. 2012;19:440–7.CrossRefGoogle ScholarPubMed
Kanakry, CG, Ganguly, S, Zahurak, M, Bolaños-Meade, J, Thoburn, C, Perkins, B, Fuchs, EJ, Jones, RJ, Hess, AD, Luznik, L. Aldehyde dehydrogenase expression drives human regulatory T cell resistance toposttransplantation cyclophosphamide. Sci Transl Med. 2013;5(211):211ra157.CrossRefGoogle ScholarPubMed
Baron, F, Beguin, Y. Preemptive cellular immunotherapy after T-cell-depleted allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2002;8:351–9.CrossRefGoogle ScholarPubMed
Chang, YJ, Huang, XJ.Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Rev. 2013;27:5562.CrossRefGoogle Scholar
Kolb, HJ, Rank, A, Chen, X, Woiciechowsky, A, Roskrow, M, Schmid, C, Tischer, J, Ledderose, G.In-vivo generation of leukaemia-derived dendritic cells. Best Pract Res Clin Haematol. 2004;17:439–51.CrossRefGoogle ScholarPubMed
Martino, M, Fedele, R, Moscato, T, Ronco, F.Optimizing outcomes following allogeneic hematopoietic progenitor cell transplantation in AML: the role of hypomethylating agents. Curr Cancer Drug Targets. 2013;13:661–9.CrossRefGoogle ScholarPubMed
Joks, M, Jurczyszyn, A, Machaczka, M, Skotnicki, AB, Komarnicki, M. The roles of consolidation and maintenance therapy with novel agents after autologous stem cell transplantation in patients with multiple myeloma. Eur J Haematol. 2015;94(2):109–14.CrossRefGoogle ScholarPubMed
Neelapu, SS, Munshi, NC, Jagannath, S, Watson, TM, Pennington, R, Reynolds, C, Barlogie, B, Kwak, LW.Tumor antigen immunization of sibling stem cell transplant donors in multiple myeloma. Bone Marrow Transplant. 2005;36:315–23.CrossRefGoogle ScholarPubMed
Weng, J, Cha, SC, Matsueda, S, Alatrash, G, Popescu, MS, Yi, Q, Molldrem, JJ, Wang, M, Neelapu, SS, Kwak, LW. Targeting human B-cell malignancies through Ig light chain-specific cytotoxic T lymphocytes. Clin Cancer Res. 2011;17(18):5945–52.CrossRefGoogle ScholarPubMed
Rezvani, K, Barrett, AJ. Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol. 2008;21:437–53.CrossRefGoogle ScholarPubMed
Falkenburg, JH, Willemze, R.Minor histocompatibility antigens as targets of cellular immunotherapy in leukaemia. Best Pract Res Clin Haematol. 2004;17:415–25.CrossRefGoogle ScholarPubMed
Riddell, SR, Bleakley, M, Nishida, T, Berger, C, Warren, EH. Adoptive transfer of allogeneic antigen-specific T cells. Biol Blood Marrow Transplant. 2006;12 (Suppl 1):912CrossRefGoogle ScholarPubMed
Bleakley, M, Otterud, BE, Richardt, JL, Mollerup, AD, Hudecek, M, Nishida, T, Chaney, CN, Warren, EH, Leppert, MF, Riddell, SR. Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood. 2010;115(23):4923–33.CrossRefGoogle ScholarPubMed
Warren, EH, Fujii, N, Akatsuka, Y, Chaney, CN, Mito, JK, Loeb, KR, Gooley, TA, Brown, ML, Koo, KK, Rosinski, KV, Ogawa, S, Matsubara, A, Appelbaum, FR, Riddell, SR. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood. 2010;115(19):3869–78.CrossRefGoogle Scholar
Nagai, K, Ochi, T, Fujiwara, H, An, J, Shirakata, T, Mineno, J, Kuzushima, K, Shiku, H, Melenhorst, JJ, Gostick, E, Price, DA, Ishii, E, Yasukawa, M. Aurora kinase A-specific T-cell receptor gene transfer redirects T lymphocytes to display effective antileukemia reactivity. Blood. 2012;119:368–76.CrossRefGoogle ScholarPubMed
Linette, GP, Stadtmauer, EA, Maus, MV, Rapoport, AP, Levine, BL, Emery, L, Litzky, L, Bagg, A, Carreno, BM, Cimino, PJ, Binder-Scholl, GK, Smethurst, DP, Gerry, AB, Pumphrey, NJ, Bennett, AD, Brewer, JE, Dukes, J, Harper, J, Tayton-Martin, HK, Jakobsen, BK, Hassan, NJ, Kalos, M, June, CH. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71.CrossRefGoogle ScholarPubMed
Weber, G, Gerdemann, U, Caruana, I, Savoldo, B, Hensel, NF, Rabin, KR, Shpall, EJ, Melenhorst, JJ, Leen, AM, Barrett, AJ, Bollard, CM. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013;27:1538–47.CrossRefGoogle ScholarPubMed
Weber, G, Caruana, I, Rouce, RH, Barrett, AJ, Gerdemann, U, Leen, AM, Rabin, KR, Bollard, CM.Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia–implications for immunotherapy. Clin Cancer Res. 2013;19:5079–91.CrossRefGoogle ScholarPubMed
Duong, CP, Yong, CS, Kershaw, MH, Slaney, CY, Darcy, PK. Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic.Mol Immunol. 2015;67(2 Pt A):4657.CrossRefGoogle ScholarPubMed
Hoffman, LM, Gore, L. Blinatumomab, a bi-specific anti-CD19/CD3 BiTE(®) antibody for the treatment of acute lymphoblastic leukemia: perspectives and current pediatric applications. Front Oncol. 2014; 4:63.CrossRefGoogle ScholarPubMed
Oliveira, G, Greco, R, Lupo-Stanghellini, MT, Vago, L, Bonini, C. Use of TK-cells in haploidentical hematopoietic stem cell transplantation. Curr Opin Hematol. 2012;19:427–33.CrossRefGoogle ScholarPubMed
Tey, SK, Dotti, G, Rooney, CM, Heslop, HE, Brenner, MK. Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 2007;13:913–24.CrossRefGoogle ScholarPubMed
Karadimitris, A, Chaidos, A. The role of invariant NKT cells in allogeneic hematopoietic stem cell transplantation. Crit Rev Immunol. 2012;32:157–71.CrossRefGoogle ScholarPubMed
Locatelli, F, Merli, P, Rutella, S. At the bedside: innate immunity as an immunotherapy tool for hematological malignancies. J Leuk Biol. 2013;94:1141–57.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×