Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-24T07:31:20.529Z Has data issue: false hasContentIssue false

6 - Applications in Natural Waters

Published online by Cambridge University Press:  05 September 2016

William Davison
Affiliation:
Lancaster University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, H. and Davison, W., Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solutions, Anal. Chem. 67 (1995), 33913400.CrossRefGoogle Scholar
Garmo, Ø. A., Røyset, O., Stiennes, E. and Flaten, T. P., Performance study of diffusive gradients in thin films for 55 elements, Anal. Chem. 75 (2003), 35733580.CrossRefGoogle ScholarPubMed
Garmo, Ø. A., Lehto, N. J., Zhang, H. et al., Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand, Environ. Sci. Technol. 40 (2006), 47544760.CrossRefGoogle ScholarPubMed
Zhang, H., Davison, W.., Gadi, R. and Kobayashi, T., In situ measurement of dissolved phosphorus in natural waters using DGT, Anal. Chim. Acta. 370 (1998), 2938.CrossRefGoogle Scholar
Luo, J., Zhang, H., Santner, J. and Davison, W., Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V), and antimony(V), Anal. Chem. 82 ( 2010), 89038909.CrossRefGoogle ScholarPubMed
Österlund, H., Chlot, S, Faarinen, M. et al., Simultaneous measurements of As, Mo, Sb, V and W, Anal. Chim. Acta 682 (2010), 5965.CrossRefGoogle Scholar
Panther, J. G., Stewart, R. R., Teasdale, P. R. et al., Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water, Talanta 105 (2013), 8086.CrossRefGoogle Scholar
Price, H. L., Teasdale, P. R. and Jolley, D. F., An evaluation of ferrihydrite- and Metsorb™-DGT techniques for measuring oxyanion species (As, Se, V, P): Effective capacity, competition and diffusion coefficients, Anal. Chim. Acta 803 (2013), 5665.CrossRefGoogle Scholar
Turner, G. S. C., Mills, G. A., Bowes, M. J. et al., Evaluation of DGT as a long-term water quality monitoring tool in natural waters, Uranium as a case study, Environ. Sci.: Processes Impacts 16 (2014), 393403.Google ScholarPubMed
Su, Q., Chen, J., Zhang, H. et al., Improved diffusive gradients in thin films (DGT) measurement of total dissolved inorganic arsenic in waters and soils using a hydrous zirconium oxide binding layer, Anal. Chem. 86 (2014), 30603067.Google Scholar
Dočekalová, H. and Diviš, P., Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems, Talanta 65 (2005), 11741178.CrossRefGoogle ScholarPubMed
Clarisse, O. and Hintelmann, H., Measurements of dissolved methylmercury in natural waters using diffusive gradients in thin film (DGT), J. Environ. Monit. 8 (2006), 12421247.CrossRefGoogle ScholarPubMed
French, M. A., Zhang, H., Pates, J. M., Bryan, S. E. and Wilson, R. C., Development and performance of the diffusive gradients in thin-films technique for the measurement of technetium-99 in seawater, Anal. Chem. 77 (2005), 135139.CrossRefGoogle ScholarPubMed
Murdock, C., Kelly, M., Chang, L.-Y., Davison, W. and Zhang, H., DGT as an in situ tool for measuring radiocesium in natural waters, Environ. Sci. Technol. 35 (2001), 45304535.CrossRefGoogle Scholar
Zhang, H. and Davison, W., Progress in understanding the use of diffusive gradients in thin films (DGT) back to basics, Environ. Chem. 9 (2012), 113.Google Scholar
Warnken, K. W., Lawlor, A. J., Lofts, S. et al., In situ speciation measurements of trace metals in headwater streams, Environ. Sci. Technol. 43 (2009), 72307236.CrossRefGoogle ScholarPubMed
Scally, S., Davison, W. and Zhang, H., Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films, Anal. Chim. Acta 558 (2006), 222229.CrossRefGoogle Scholar
Zhang, H. and Davison, W., Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films, Anal. Chem. 72 (2000), 44474457.CrossRefGoogle ScholarPubMed
Warnken, K. W., Davison, W. and Zhang, H., Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT, Environ. Sci. Technol. 42 (2008), 69036909.CrossRefGoogle ScholarPubMed
Österlund, H., Gelting, J., Nordblad, F., Baxter, D. C. and Ingri, J., Copper and nickel in ultrafiltered brackish water: Labile or non-labile?, Mar. Chem. 132–133 (2012), 3443.CrossRefGoogle Scholar
van der Veeken, P. L. R., Pinheiro, J. P. and van Leeuwen, H. P., Metal speciation by DGT/DET in colloidal complex systems, Environ. Sci. Technol. 42 (2008), 88358840.CrossRefGoogle ScholarPubMed
Baeyens, W., Bowie, A. R., Buesseler, K. et al. Size-fractionated labile trace elements in the Northwest Pacific and Southern Oceans, Mar. Chem. 126 (2011), 108113.CrossRefGoogle Scholar
Pelcova, P., Docekalova, H. and Kleckerova, A., Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters, Anal. Chim. Acta 819 (2014), 4248.CrossRefGoogle ScholarPubMed
Zheng, J.-L., Guan, D.-X., Luo, J. et al., Activated charcoal based diffusive gradients in thin films for in situ monitoring of bisphenols in waters, Anal. Chem. 87 (2015), 801807.CrossRefGoogle ScholarPubMed
Garmo, O. A., Davison, W. and Zhang, H., Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique, Anal. Chem. 80 (2008), 92209225.CrossRefGoogle Scholar
Warnken, K. W., Zhang, H. and Davison, W., Accuracy of the diffusive gradients in thin-films technique: Diffusive boundary layer and effective sampling area considerations. Anal. Chem. 78 (2006), 37803787.CrossRefGoogle ScholarPubMed
Warnken, K. W., Davison, W., Zhang, H., Galceran, J. and Puy, J., In situ measurements of metal complex exchange kinetics in freshwater, Environ. Sci. Technol. 41 (2007), 31793185.CrossRefGoogle ScholarPubMed
Arvajeh, M. R. S., Lehto, N., Garmo, O. A. and Zhang, H., Kinetic studies of Ni organic complexes using diffusive gradients in thin films (DGT) with double binding layers and a dynamic numerical model, Environ. Sci. Technol. 47 (2013), 463470.CrossRefGoogle Scholar
Gimpel, J., Zhang, H., Hutchinson, W. and Davison, W., Effect of solution composition, flow and deployment time on the measurement of trace metals by the diffusive gradient in thin films technique, Anal. Chim. Acta. 448 (2001), 93103.CrossRefGoogle Scholar
Kreuzeder, A., Santner, J., Zhang, H., Prohaska, T. and Wenzel, W. W., Uncertainty evaluation of the diffusive gradients in thin films technique, Environ. Sci. Technol. 49 (2015), 15941602.CrossRefGoogle ScholarPubMed
Bio-Rad Laboratories, Chelex 100 and Chelex 20 chelating ion exchange resin instruction manual (2005).Google Scholar
Tankéré-Muller, S., Davison, W. and Zhang, H., Effect of competitive cation binding on the measurement of Mn in marine waters and sediments by diffusive gradients in thin films, Anal. Chim. Acta 716 (2012), 138144.CrossRefGoogle ScholarPubMed
Dahlqvist, R., Zhang, H., Ingri, J. and Davison, W.. Performance of the diffusive gradients in thin films technique for measuring Ca and Mg in freshwater, Anal. Chim. Acta 460 (2002), 247256.CrossRefGoogle Scholar
Levy, J. L., Zhang, H., Davison, W., Puy, J. and Galceran, J., Assessment of trace metal binding kinetics in the resin phase of diffusive gradients in thin films, Anal. Chim. Acta 717 (2012), 143150.CrossRefGoogle ScholarPubMed
Uher, E., Zhang, H., Santos, S., Tusseau-Vuillemin, M.-H. and Gourlay-Francé, C., Impact of biofouling on diffusive gradient in thin film measurements in water, Anal. Chem. 84 (2012), 31113118.CrossRefGoogle ScholarPubMed
Pitchette, C., Zhang, H., Davison, W. and Sauvé, S., Preventing biofilm development on DGT devices using metals and antibiotics, Talanta 72 (2007), 716722.CrossRefGoogle Scholar
Chlot, S., Widerlund, A. and Öhlander, B., Interaction between nitrogen and phosphorus cycles in mining-affected aquatic systems – Experiences from field and laboratory measurements, Environ. Sci. Pollut. Res. 20 (2013), 57225736.CrossRefGoogle ScholarPubMed
Forsberg, J., Dahlqvist, R., Gelting-Nyström, J. and Ingri, J., Trace metal speciation in brackish water using diffusive gradients in thin films and ultrafiltration: Comparison of techniques, Environ. Sci. Technol. 40 (2006), 39013905.CrossRefGoogle ScholarPubMed
Wallner-Kersanach, M., de Andrade, C. F. F, Zhang, H., Milani, M. R. and Niencheski, L. F. H., In situ measurement of trace metals in estuarine waters of Patos Lagoon using diffusive gradients in thin films (DGT), J. Braz. Chem. Soc. 20 (2009), 333340.CrossRefGoogle Scholar
Zhang, H. and Davison, W., Diffusional characteristics of hydrogels used in DGT and DET techniques, Anal. Chim. Acta. 398 (1999), 329340.CrossRefGoogle Scholar
Sangi, M. R., Halstead, M. J. and Hunter, K. A., Use of the diffusion gradient thin film method to measure trace metals in fresh waters at low ionic strength, Anal. Chim. Acta. 456 (2002), 241251.CrossRefGoogle Scholar
Torre, M. C. A.-D. L., Beaulieu, P.-Y. and Tessier, A., In situ measurement of trace metals in lakewater using the dialysis and DGT techniques, Anal. Chim. Acta 418 (2000), 5368.CrossRefGoogle Scholar
Peters, A. J., Zhang, H. and Davison, W., Performance of the diffusive gradients in thin films technique for measurement of trace metals in low ionic strength freshwaters, Anal. Chim. Acta 478 (2003), 237244.CrossRefGoogle Scholar
Warnken, K. W., Zhang, H. and Davison, W., Trace metal measurements in low ionic strength synthetic solutions by diffusive gradients in thin films, Anal. Chem. 77 (2005), 54405446.CrossRefGoogle ScholarPubMed
Puy, J., Galceran, J., Cruz-Gonzalez, S. et al., Metal accumulation in DGT: Impact of ionic strength and kinetics of dissociation of complexes in the resin domain, Anal. Chem. 86 (2014), 77407748.CrossRefGoogle ScholarPubMed
Søndergaard, J., In situ measurements of labile Al and Mn in acid mine drainage using diffusive gradients in thin films, Anal. Chem. 79 (2007), 64196423.CrossRefGoogle ScholarPubMed
Mason, S., Hamon, R., Nolan, A., Zhang, H. and Davison, W., Performance of a mixed binding layer for measuring anions and cations in a single assay using the diffusive gradient in thin films technique. Anal. Chem. 77 (2005), 63396346.CrossRefGoogle Scholar
Buzier, R., Charriau, A., Corona, D. et al., DGT-labile As, Cd, Cu and Ni monitoring in freshwater: Toward a framework for interpretation of in situ deployment, Environ. Poll. 192 (2014), 5258.CrossRefGoogle Scholar
Sigg, L., Black, F., Buffle, J. et al., Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters, Environ. Sci. Technol. 40 (2006), 19341941.CrossRefGoogle ScholarPubMed
Minkkinen, P., Monitoring precision of routine analyses by using duplicate determinations, Anal. Chim. Acta 191 (1986), 369376.CrossRefGoogle Scholar
DGT Research Ltd, DGT – for measurements in waters, soils and sediments, (n.d.) Available at www.dgtresearch.com.Google Scholar
Österlund, H., Faarinen, M., Ingri, J. and Baxter, D. C., Contribution of organic arsenic species to total arsenic measurements using ferrihydrite-backed diffusive gradients in thin films (DGT), Environ. Chem. 9 (2012), 5562.CrossRefGoogle Scholar
Gimpel, J., Zhang, H., Davison, W. and Edwards, A., In situ trace metal speciation in lake surface waters using DGT, Environ. Sci. Technol. 37 (2003), 138146.CrossRefGoogle ScholarPubMed
Unsworth, E. R., Warnken, K. W., Zhang, H. et al., Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques, Environ. Sci. Technol. 40 (2006), 19421949.CrossRefGoogle ScholarPubMed
Zhang, H. and Davison, W., Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability, Environ. Chem. 12 (2015), 85101.CrossRefGoogle Scholar
Diviš, P., Machát, J., Szkandera, R. and Dočekalová, H., In situ measurement of bioavailable metal concentrations at the downstream on the Morava River using transplanted aquatic mosses and DGT technique, Int. J. Environ. Res. 6 (2012), 8794.Google Scholar
Öhlander, B., Forsberg, J., Österlund, H. et al., Fractionation of trace metals in a contaminated freshwater stream using membrane filtration, ultrafiltration, DGT and transplanted aquatic moss, Geochem.: Exploration, Environ., Anal. 12 (2012), 303312.Google Scholar
Dahlqvist, R., Andersson, P. S. and Ingri, J., The concentration and isotopic composition of diffusible Nd in fresh and marine waters, Earth Planet. Sci. Lett. 233 (2005), 916.CrossRefGoogle Scholar
Rodushkin, I., Stenberg, A., Andrén, H., Malinovsky, D. and Baxter, D. C., Isotopic fractionation during diffusion of transition metal ions in solution, Anal. Chem. 76 (2004), 21482151.CrossRefGoogle ScholarPubMed
Malinovsky, D., Dahlqvist, R., Baxter, D. C., Ingri, J. and Rodushkin, I., Performance of diffusive gradients in thin films for measurement of the isotopic composition of soluble Zn, Anal. Chim. Acta 537 (2005), 401405.CrossRefGoogle Scholar
Desaulty, A.-M., Bodard, C., Laurioux, T. et al., Using DGT passive samplers and MC-ICP-MS to determine Pb and Zn isotopic signature of natural water, Proced.: Earth Planet. Sci. 13 (2015), 7679.Google Scholar
Widerlund, A., Nowell, G. M., Davison, W. and Pearson, D. G., High-resolution measurements of sulphur isotope variations in sediment pore-waters by laser ablation multicollector inductively coupled plasma mass spectrometry, Chem. Geol. 291 (2012), 278285.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×