Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-21T16:18:18.552Z Has data issue: false hasContentIssue false

8 - Measurement at High Spatial Resolution

Published online by Cambridge University Press:  05 September 2016

William Davison
Affiliation:
Lancaster University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aller, R. C., 8.11 – Sedimentary diagenesis, depositional environments, and benthic fluxes, In Treatise on geochemistry, ed. Holland, H. D. and Turekian, K. K. (Oxford: Elsevier, 2014), pp. 293334.CrossRefGoogle Scholar
Berner, R. A., Early diagenesis: A theoretical approach (Princeton: Princeton University Press, 1980).CrossRefGoogle Scholar
Blume, H.-P., Brümmer, G. W., Schwertmann, U. et al., Lehrbuch der Bodenkunde. 15th edn. (Heidelberg, Berlin: Spektrum Akademischer Verlag, 2002).Google Scholar
Kühl, M. and Revsbech, N. P., Biogeochemical microsensors for boundary layer studies, In The benthic boundary layer, ed. Boudreau, B. P. and Jørgensen, B. B. (Oxford: Oxford University Press, 2001), pp. 180210.CrossRefGoogle Scholar
Weisenseel, M. H., Dorn, A. and Jaffe, L. F., Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.), Plant Physiol. 64 (1979), 512518.CrossRefGoogle ScholarPubMed
Taillefert, M., Luther, G. W. and Nuzzio, D. B., The application of electrochemical tools for in situ measurements in aquatic systems, Electroanalysis. 12 (2000), 401412.3.0.CO;2-U>CrossRefGoogle Scholar
Wenzel, W. W., Wieshammer, G., Fitz, W. J. and Puschenreiter, M., Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution, Plant Soil. 237 (2001), 3745.CrossRefGoogle Scholar
Teasdale, P. R., Batley, G. E., Apte, S. C. and Webster, I. T., Pore water sampling with sediment peepers, TrAC-Trend Anal Chem. 14 (1995), 250256.CrossRefGoogle Scholar
Jaillard, B., Ruiz, L. and Arvieu, J. C., pH mapping in transparent gel using color indicator videodensitometry, Plant Soil. 183 (1996), 8595.CrossRefGoogle Scholar
Bhat, K. K. S. and Nye, P. H., Diffusion of phosphate to plant roots in soil – I. Quantitative autoradiography of the depletion zone, Plant Soil. 38 (1973), 161175.CrossRefGoogle Scholar
Santner, J., Larsen, M., Kreuzeder, A. and Glud, R. N., Two decades of chemical imaging of solutes in sediments and soils – A review, Anal Chim Acta. 878: (2015), 942.CrossRefGoogle ScholarPubMed
Davison, W., Grime, G. W., Morgan, J. A. W. and Clarke, K., Distribution of dissolved iron in sediment pore waters at submillimetre resolution, Nature 352 (1991), 323325.CrossRefGoogle Scholar
Dočekalová, H., Clarisse, O., Salomon, S. and Wartel, M., Use of constrained det probe for a high-resolution determination of metals and anions distribution in the sediment pore water, Talanta. 57 (2002), 145155.CrossRefGoogle ScholarPubMed
Koschorreck, M., Brookland, I. and Matthias, A., Biogeochemistry of the sediment-water interface in the littoral of an acidic mining lake studied with microsensors and gel-probes, J Exp Mar Biol Ecol. 285–286 (2003), 7184.CrossRefGoogle Scholar
Krom, M. O., Davison, P., Zhang, H. and Davison, W., High-resolution pore-water sampling with a gel sampler, Limnol Oceanogr. 39 (1994), 19671972.CrossRefGoogle Scholar
Mortimer, R. J. G., Krom, M. D., Hall, P. O. J., Hulth, S. and Stahl, H., Use of gel probes for the determination of high resolution solute distributions in marine and estuarine pore waters, Mar Chem. 63 (1998), 119129.CrossRefGoogle Scholar
Yu, K. T., Lam, M. H. W., Yen, Y. F. and Leung, A. P. K., Behavior of trace metals in the sediment pore waters of intertidal mudflats of a tropical wetland, Environ Toxicol Chem. 19 (2000), 535542.CrossRefGoogle Scholar
Palmer-Felgate, E. J., Mortimer, R. J. G., Krom, M. D. and Jarvie, H. P., Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments, Environ Sci Technol. 44 (2010), 908914.CrossRefGoogle ScholarPubMed
Metzger, E., Viollier, E., Simonucci, C. et al., Millimeter-scale alkalinity measurement in marine sediment using DET probes and colorimetric determination, Water Res. 47 (2013), 55755583.CrossRefGoogle ScholarPubMed
Ullah, S., Zhang, H., Heathwaite, A. L. et al., In situ measurement of redox sensitive solutes at high spatial resolution in a riverbed using diffusive equilibrium in thin films (DET), Ecol Eng. 49 (2012), 1826.CrossRefGoogle Scholar
Gregusova, M. and Docekal, B., High resolution characterization of uranium in sediments by DGT and DET techniques ACA-S-12–2197, Anal Chim Acta. 763 (2013), 5056.CrossRefGoogle ScholarPubMed
Davison, W., Zhang, H. and Grime, G. W., Performance characteristics of gel probes used for measuring the chemistry of pore waters, Environ Sci Technol. 28 (1994), 16231632.CrossRefGoogle ScholarPubMed
Shuttleworth, S. M., Davison, W. and Hamilton-Taylor, J., Two-dimensional and fine structure in the concentrations of iron and manganese in sediment pore-waters, Environ Sci Technol. 33 (1999), 41694175.CrossRefGoogle Scholar
Jézéquel, D., Brayner, R., Metzger, E. et al., Two-dimensional determination of dissolved iron and sulfur species in marine sediment pore-waters by thin-film based imaging. Thau lagoon (France), Estuar Coast Shelf Sci. 72 (2007), 420431.CrossRefGoogle Scholar
Robertson, D., Teasdale, P. R. and Welsh, D. T., A novel gel-based technique for the high resolution, two-dimensional determination of iron (II) and sulfide in sediment, Limnol Oceanogr Methods. 6 (2008), 502512.CrossRefGoogle Scholar
Pagès, A., Teasdale, P. R., Robertson, D. et al., Representative measurement of two-dimensional reactive phosphate distributions and co-distributed iron(II) and sulfide in seagrass sediment porewaters, Chemosphere. 85 (2011), 12561261.CrossRefGoogle ScholarPubMed
Kessler, A. J., Glud, R. N., Cardenas, M. B. and Cook, P. L. M., Transport zonation limits coupled nitrification-denitrification in permeable sediments, Environ Sci Technol. 47 (2013), 1340413411.CrossRefGoogle ScholarPubMed
Cesbron, F., Metzger, E., Launeau, P. et al., Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods, Environ Sci Technol. 48 (2014), 28162826.CrossRefGoogle ScholarPubMed
Bennett, W. W., Welsh, D. T., Serriere, A., Panther, J. G. and Teasdale, P. R., A colorimetric DET technique for the high-resolution measurement of two-dimensional alkalinity distributions in sediment porewaters, Chemosphere. 119 (2015), 547552.CrossRefGoogle ScholarPubMed
Pagès, A., Welsh, D. T., Teasdale, P. R. et al., Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA, Mar Chem. 167 (2014), 102112.CrossRefGoogle Scholar
Fones, G. R., Davison, W., Holby, O., Jorgensen, B. B. and Thamdrup, B., High-resolution metal gradients measured by in situ DGT/DET deployment in black sea sediments using an autonomous benthic lander, Limnol Oceanogr. 46 (2001), 982988.CrossRefGoogle Scholar
Gao, Y., Baeyens, W., De Galan, S., Poffijin, A. and Leermakers, M., Mobility of radium and trace metals in sediments of the Winterbeek: Application of sequential extraction and DGT techniques, Environ Pollut. 158 (2010), 24392445.CrossRefGoogle ScholarPubMed
Gao, Y., Leermakers, M., Elskens, M. et al., High resolution profiles of thallium, manganese and iron assessed by DET and DGT techniques in riverine sediment pore waters, Sci Total Environ. 373 (2007), 526533.CrossRefGoogle ScholarPubMed
Gillan, D. C., Baeyens, W., Bechara, R. et al., Links between bacterial communities in marine sediments and trace metal geochemistry as measured by in situ DET/DGT approaches, Mar Pollut Bull. 64 (2012), 353362.CrossRefGoogle ScholarPubMed
Leermakers, M., Gao, Y., Gabelle, C. et al., Determination of high resolution pore water profiles of trace metals in sediments of the Rupel River (Belgium) using DET (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) techniques, Water Air Soil Poll. 166 (2005), 265286.CrossRefGoogle Scholar
Wu, Z., He, M., Wang, S. and Ni, Z., The assessment of localized remobilization and geochemical process of 14 metals at sediment/water interface (SWI) of Yingkou coast (China) by diffusive gradients in thin films (DGT), Environmental Earth Sciences. 73 (2015), 60816090.CrossRefGoogle Scholar
Zhang, H., Davison, W., Miller, S. and Tych, W., In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT, Geochim. Cosmochim. Acta. 59 (1995), 41814192.CrossRefGoogle Scholar
Ding, S., Xu, D., Sun, Q., Yin, H. and Zhang, C., Measurement of dissolved reactive phosphorus using the diffusive gradients in thin films technique with a high-capacity binding phase, Environ. Sci. Technol. 44 (2010), 81698174.CrossRefGoogle ScholarPubMed
Zhang, H., Davison, W., Gadi, R. and Kobayashi, T., In situ measurement of dissolved phosphorus in natural waters using DGT, Anal. Chim. Acta. 370 (1998), 2938.CrossRefGoogle Scholar
Bennett, W. W., Teasdale, P. R., Panther, J. G. et al., Investigating arsenic speciation and mobilization in sediments with DGT and DET: A mesocosm evaluation of oxic-anoxic transitions, Environ. Sci. Technol. 46 (2012), 39813989.CrossRefGoogle ScholarPubMed
Zhang, H., Davison, W., Mortimer, R. J. G. et al., Localised remobilization of metals in a marine sediment, Sci. Total Environ. 296 (2002), 175187.CrossRefGoogle Scholar
Diviš, P., Leermakers, M., Dočekalová, H. and Gao, Y., Mercury depth profiles in river and marine sediments measured by the diffusive gradients in thin films technique with two different specific resins, Anal. Bioanal. Chem. 382 (2005), 17151719.Google ScholarPubMed
Clarisse, O., Dimock, B., Hintelmann, H. and Best, E. P. H., Predicting net mercury methylation in sediments using diffusive gradient in thin films measurements, Environ. Sci. Technol. 45 (2011), 15061512.CrossRefGoogle ScholarPubMed
Liu, J., Feng, X., Qiu, G. et al., Intercomparison and applicability of some dynamic and equilibrium approaches to determine methylated mercury species in pore water, Environ. Toxicol. Chem. 30 (2011), 17391744.CrossRefGoogle ScholarPubMed
Docekal, B. and Gregusova, M., Segmented sediment probe for diffusive gradient in thin films technique, Analyst. 137 (2012), 502507.CrossRefGoogle ScholarPubMed
Widerlund, A., Nowell, G. M., Davison, W. and Pearson, D. G., High-resolution measurements of sulphur isotope variations in sediment pore-waters by laser ablation multicollector inductively coupled plasma mass spectrometry, Chem Geol. 291 (2012), 278285.CrossRefGoogle Scholar
Davison, W., Fones, G. R. and Grime, G. W., Dissolved metals in surface sediment and microbial mat at 100-µm resolution, Nature 387 (1997), 885888.CrossRefGoogle Scholar
Fones, G. R., Davison, W. and Hamilton-Taylor, J., The fine-scale remobilization of metals in the surface sediment of the North-East Atlantic, Cont. Shelf Res. 24 (2004), 14851504.CrossRefGoogle Scholar
Warnken, K. W., Zhang, H. and Davison, W., Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry, Anal. Chem. 76 (2004), 60776084.CrossRefGoogle ScholarPubMed
Devries, C. R. and Wang, F., In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters, Environ. Sci. Technol. 37 (2003), 792797.CrossRefGoogle ScholarPubMed
Teasdale, P. R., Hayward, S. and Davison, W., In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry, Anal. Chem. 71 (1999), 21862191.CrossRefGoogle ScholarPubMed
Santner, J., Prohaska, T., Luo, J. and Zhang, H., Ferrihydrite containing gel for chemical imaging of labile phosphate species in sediments and soils using diffusive gradients in thin films, Anal. Chem. 82 (2010), 76687674.CrossRefGoogle ScholarPubMed
Stockdale, A., Davison, W. and Zhang, H., High-resolution two-dimensional quantitative analysis of phosphorus, vanadium and arsenic, and qualitative analysis of sulfide, in a freshwater sediment, Env. Chem. 5 (2008), 143149.CrossRefGoogle Scholar
Stockdale, A., Davison, W. and Zhang, H., 2D simultaneous measurement of the oxyanions of P, V, As, Mo, Sb, W and U, J. Environ. Monit. 12 (2010), 981984.CrossRefGoogle Scholar
Guan, D.-X., Williams, P. N., Luo, J. et al., Novel precipitated zirconia-based DGT technique for high-resolution imaging of oxyanions in waters and sediments, Environ. Sci. Technol. 49 (2015), 36533661.CrossRefGoogle ScholarPubMed
Ding, S., Jia, F., Xu, D. et al., High-resolution, two-dimensional measurement of dissolved reactive phosphorus in sediments using the diffusive gradients in thin films technique in combination with a routine procedure, Environ. Sci. Technol. 45 (2011), 96809686.CrossRefGoogle ScholarPubMed
Ding, S., Wang, Y., Xu, D., Zhu, C. and Zhang, C., Gel-based coloration technique for the submillimeter-scale imaging of labile phosphorus in sediments and soils with diffusive gradients in thin films, Environ. Sci. Technol. 47 (2013), 78217829.CrossRefGoogle ScholarPubMed
Ding, S., Sun, Q., Xu, D. et al., High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide: The first observation of their simultaneous release in sediments, Environ. Sci. Technol. 46 (2012), 82978304.CrossRefGoogle ScholarPubMed
Kreuzeder, A., Santner, J., Prohaska, T. and Wenzel, W., Gel for simultaneous chemical imaging of anionic and cationic solutes using diffusive gradients in thin films, Anal. Chem. 85 (2013), 1202812036.CrossRefGoogle ScholarPubMed
Davison, W. and Zhang, H., In situ speciation measurements of trace components in natural waters using thin-film gels, Nature 367 (1994), 546548.CrossRefGoogle Scholar
Harper, M. P., Davison, W. and Tych, W., Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: Dialysis and DET, Environ. Sci. Technol. 31 (1997), 31103119.CrossRefGoogle Scholar
Harper, M. P., Davison, W. and Tych, W., Estimation of pore water concentrations from DGT profiles: A modelling approach, Aquat. Geochem. 5 (1999), 337355.CrossRefGoogle Scholar
Sochaczewski, Ł., Davison, W., Zhang, H. and Tych, W., Understanding small-scale features in DGT measurements in sediments, Env. Chem. 6 (2009), 477485.CrossRefGoogle Scholar
Luo, J., Zhang, H., Davison, W. et al., Localised mobilisation of metals, as measured by diffusive gradients in thin-films, in soil historically treated with sewage sludge, Chemosphere 90 (2013), 464470.CrossRefGoogle ScholarPubMed
Tankéré-Muller, S., Zhang, H., Davison, W. et al., Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sediment, Mar. Chem. 106 (2007), 192207.CrossRefGoogle Scholar
Williams, P. N., High resolution 2D imaging of trace elements in soil and sediments by DGT and LA-ICP-MS. Thermo Fisher Scientific ICP-MS user group meeting, Hemel Hempstead, UK, 2014.Google Scholar
Fabricius, A. L., Duester, L., Ecker, D. and Teres, T. A., New microprofiling and micro sampling system for water saturated environmental boundary layers, Environ. Sci. Technol. 48 (2014), 80538061.CrossRefGoogle ScholarPubMed
Widerlund, A. and Davison, W., Size and density distribution of sulfide-producing microniches in lake sediments, Environ. Sci. Technol. 41 (2007), 80448049.CrossRefGoogle ScholarPubMed
Motelica-Heino, M., Naylor, C., Zhang, H. and Davison, W., Simultaneous release of metals and sulfide in lacustrine sediment, Environ. Sci. Technol. 37 (2003), 43744381.CrossRefGoogle ScholarPubMed
Naylor, C., Davison, W., Motelica-Heino, M., Van Den Berg, G. A. and Van Der Heijdt, L. M., Simultaneous release of sulfide with Fe, Mn, Ni and Zn in marine harbour sediment measured using a combined metal/sulfide DGT probe, Sci. Total Environ. 328 (2004), 275286.CrossRefGoogle ScholarPubMed
Robertson, D., Welsh, D. T. and Teasdale, P. R., Investigating biogenic heterogeneity in coastal sediments with two-dimensional measurements of iron(II) and sulfide, Env. Chem. 6 (2009), 6069.CrossRefGoogle Scholar
Stephens, F. C., Louchard, E. M., Reid, R. P. and Maffione, R. A., Effects of microalgal communities on reflectance spectra of carbonate sediments in subtidal optically shallow marine environments, Limnol Oceanogr. 48 (2003), 535546.CrossRefGoogle Scholar
Manley, M., Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials, Chem. Soc. Rev. 43 (2014), 82008214.CrossRefGoogle ScholarPubMed
Arrowsmith, P. and Hughes, S. K., Entrainment and transport of laser ablated plumes for subsequent elemental analysis, Appl. Spectrosc. 42 (1988), 12311239.CrossRefGoogle Scholar
Gray, A. L., Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry, Analyst. 110 (1985), 551556.CrossRefGoogle Scholar
Becker, J., Matusch, A. and Wu, B., Bioimaging mass spectrometry of trace elements – Recent advance and applications of LA-ICP-MS: A review, Anal. Chim. Acta. 835 (2014), 118.CrossRefGoogle Scholar
Kindness, A., Sekaran, C. N. and Feldmann, J., Two-dimensional mapping of copper and zinc in liver sections by laser ablation – Inductively coupled plasma mass spectrometry, Clin. Chem. 49 (2003), 19161923.CrossRefGoogle ScholarPubMed
Koch, J. and Günther, D., Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry, Appl. Spectrosc. 65 (2011), 155A162A.CrossRefGoogle ScholarPubMed
Motelica-Heino, M. and Davison, W., In situ trace metals distribution in lake sediment pore waters: High spatial resolution depth profiling an 2D-mapping, Goldschmidt Abstracts. 5 (2000), 724.Google Scholar
Pisonero, J., Fliegel, D. and Günther, D., High efficiency aerosol dispersion cell for laser ablation-ICP-MS, J. Anal. Atom. Spectrom. 21 (2006), 922931.CrossRefGoogle Scholar
Kivel, N., Potthast, H. D., Günther-Leopold, I., Vanhaecke, F. and Günther, D., Modeling of the plasma extraction efficiency of an inductively coupled plasma-mass spectrometer interface using the direct simulation Monte Carlo method, Spectrochim Acta B. 93 (2014), 3440.CrossRefGoogle Scholar
Caumette, G., Ouypornkochagorn, S., Scrimgeour, C. M., Raab, A. and Feldmann, J., Monitoring the arsenic and iodine exposure of seaweed-eating North Ronaldsay sheep from the gestational and suckling periods to adulthood by using horns as a dietary archive, Environ. Sci. Technol. 41 (2007), 26732679.CrossRefGoogle ScholarPubMed
Kreuzeder, A., Santner, J., Zhang, H., Prohaska, T. and Wenzel, W. W., Uncertainty evaluation of the diffusive gradients in thin films technique, Environ. Sci. Technol. 49 (2015), 15941602.CrossRefGoogle ScholarPubMed
Austin, C., Fryer, F., Lear, J. et al., Factors affecting internal standard selection for quantitative elemental bio-imaging of soft tissues by LA-ICP-MS, J. Anal. Atom. Spectrom. 26 (2011), 14941501.CrossRefGoogle Scholar
Hu, Z., Gao, S., Liu, Y. et al., Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas, J. Anal. Atom. Spectrom. 23 (2008), 10931101.CrossRefGoogle Scholar
Santner, J., Zhang, H., Leitner, D. et al., High-resolution chemical imaging of labile phosphorus in the rhizosphere of Brassica napus L. cultivars, Environ. Exp. Bot. 77 (2012), 219226.CrossRefGoogle Scholar
Liu, Y., Hu, Z., Yuan, H., Hu, S. and Cheng, H., Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to fiber analyses, J. Anal. Atom. Spectrom. 22 (2007), 582585.CrossRefGoogle Scholar
Hoefer, C., Santner, J., Puschenreiter, M. and Wenzel, W. W., Localized metal solubilization in the rhizosphere of Salix smithiana upon sulfur application, Environ. Sci. Technol. 49 (2015), 45224529.CrossRefGoogle Scholar
Williams, P. N., Santner, J., Larsen, M. et al., Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice, Environ. Sci. Technol. 48 (2014), 84988506.CrossRefGoogle ScholarPubMed
Gao, Y. and Lehto, N., A simple laser ablation ICPMS method for the determination of trace metals in a resin gel, Talanta. 92 (2012), 7883.CrossRefGoogle Scholar
Bennett, W. W., Teasdale, P. R., Welsh, D. T. et al., Inorganic arsenic and iron(II) distributions in sediment porewaters investigated by a combined DGT colourimetric DET technique, Env. Chem. 9 (2012), 3140.CrossRefGoogle Scholar
Ding, S., Han, C., Wang, Y. et al., In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake, Water Res. 74 (2015), 100109.CrossRefGoogle ScholarPubMed
Pagès, A., Grice, K., Vacher, M. et al., Characterizing microbial communities and processes in a modern stromatolite (Shark Bay) using lipid biomarkers and two-dimensional distributions of porewater solutes, Environ. Microbiol. 16 (2014), 24582474.CrossRefGoogle Scholar
Fones, G. R., Davison, W. and Grime, G. W., Development of constrained DET for measurements of dissolved iron in surface sediments at sub-mm resolution, Sci. Total Environ. 221 (1998), 127137.CrossRefGoogle Scholar
Stahl, H., Warnken, K. W., Sochaczewski, L. et al., A combined sensor for simultaneous high resolution 2-D imaging of oxygen and trace metals fluxes, Limnol Oceanogr. Meth. 10 (2012), 389401.CrossRefGoogle Scholar
Lehto, N. J., Davison, W. and Zhang, H., The use of ultra-thin diffusive gradients in thin-films (DGT) devices for the analysis of trace metal dynamics in soils and sediments: a measurement and modelling approach, Env. Chem. 9 (2012), 415423.CrossRefGoogle Scholar
Spohn, M. and Kuzyakov, Y., Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – Coupling soil zymography with 14C imaging, Soil Biol. Biochem. 67 (2013), 106113.CrossRefGoogle Scholar
Spohn, M. and Kuzyakov, Y., Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots-a soil zymography analysis, Plant Soil. 379 (2014), 6777.CrossRefGoogle Scholar
Zhang, H. and Davison, W., Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution, Anal. Chem. 67 (1995), 33913400.CrossRefGoogle Scholar
Mortimer, R. J. G., Krom, M. D., Harris, S. J. et al., Evidence for suboxic nitrification in recent marine sediments, Mar. Ecol. Prog. Ser. 236 (2002), 3135.CrossRefGoogle Scholar
Wegener, J. W. M., van den Berg, G. A., Stroomberg, G. J. and van Velzen, M. J. M., The role of sediment-feeding oligochaete Tubifex on the availability of trace metals in sediment pore waters as determined by diffusive gradients in thin films (DGT), J. Soils Sed. 2 (2002), 7176.CrossRefGoogle Scholar
Warnken, K. W., Zhang, H. and Davison, W., Performance characteristics of suspended particulate reagent- iminodiacetate as a binding agent for diffusive gradients in thin films, Anal. Chim. Acta. 508 (2004), 4151.CrossRefGoogle Scholar
Monbet, P., McKelvie, I. D. and Worsfold, P. J., Combined gel probes for the in situ determination of dissolved reactive phosphorus in porewaters and characterization of sediment reactivity, Environ. Sci. Technol. 42 (2008), 51125117.CrossRefGoogle ScholarPubMed
Luo, J., Zhang, H., Santner, J. and Davison, W., Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V), and antimony(V), Anal. Chem. 82 (2010), 89038909.CrossRefGoogle ScholarPubMed
Santner, J., Mannel, M., Burrell, L. D. et al., Phosphorus uptake by Zea mays L. is quantitatively predicted by infinite sink extraction of soil P, Plant Soil. 386 (2015), 371383.CrossRefGoogle Scholar
Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T. and Jolley, D. F., New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent, Anal. Chem. 82 (2010), 74017407.CrossRefGoogle Scholar
Panther, J. G., Bennett, W. W., Teasdale, P. R., Welsh, D. T. and Zhao, H., DGT measurement of dissolved aluminum species in waters: Comparing Chelex-100 and titanium dioxide-based adsorbents, Environ. Sci. Technol. 46 (2012), 22672275.CrossRefGoogle ScholarPubMed
Panther, J. G., Stewart, R. R., Teasdale, P. R. et al., Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water, Talanta 105 (2013), 8086.CrossRefGoogle Scholar
Panther, J. G., Teasdale, P. R., Bennett, W. W., Welsh, D. T. and Zhao, H., Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters, Environ. Sci. Technol. 44 (2010), 94199424.CrossRefGoogle ScholarPubMed
Sun, Q., Chen, J., Zhang, H. et al., Improved diffusive gradients in thin films (DGT) measurement of total dissolved inorganic arsenic in waters and soils using a hydrous zirconium oxide binding layer, Anal. Chem. 86 (2014), 30603067.CrossRefGoogle ScholarPubMed
Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T. and Jolley, D. F., Speciation of dissolved inorganic arsenic by diffusive gradients in thin films: Selective binding of As III by 3-mercaptopropyl-functionalized silica gel, Anal. Chem. 83 (2011), 82938299.CrossRefGoogle ScholarPubMed
Clarisse, O. and Hintelmann, H., Measurements of dissolved methylmercury in natural waters using diffusive gradients in thin film (DGT), J. Environ. Monit. 8 (2006), 12421247.CrossRefGoogle ScholarPubMed
Kannan, K., Smith, R. G., Lee, R. F. et al., Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries, Arch. Environ. Contam. Toxicol. 34 (1998), 109118.CrossRefGoogle ScholarPubMed
Gregusova, M. and Docekal, B., New resin gel for uranium determination by diffusive gradient in thin films technique, Anal. Chim. Acta. 684 (2011), 142146.CrossRefGoogle ScholarPubMed
Morford, J., Kalnejais, L., Martin, W., Francois, R. and Karle, I. M., Sampling marine pore waters for Mn, Fe, U, Re and Mo: Modifications on diffusional equilibration thin film gel probes, J. Exp. Mar. Biol. Ecol. 285–286 (2003), 85103.CrossRefGoogle Scholar
Tankéré-Muller, S., Davison, W. and Zhang, H., Effect of competitive cation binding on the measurement of Mn in marine waters and sediments by diffusive gradients in thin films, Anal. Chim. Acta. 716 (2012), 138144.CrossRefGoogle ScholarPubMed
Kreuzeder, A., Santner, J., Scharsching, V. et al. In situ investigation of localized plant induced rhizosphere processes related to phosphorus deficiency. In preparation.Google Scholar
Gao, Y., van de Velde, S., Williams, P. N., Baeyens, W. and Zhang, H., Two-dimensional images of dissolved sulfide and metals in anoxic sediments by a novel diffusive gradients in thin film probe and optical scanning techniques, TrAC-Trend Anal. Chem. 66 (2015), 6371.CrossRefGoogle Scholar
Sochaczewski, Ł., Tych, W., Davison, B. and Zhang, H., 2D DGT induced fluxes in sediments and soils (2D DIFS), Environ. Modell. Softw. 22 (2007), 1423.CrossRefGoogle Scholar
Harper, M. P., Davison, W. and Tych, W., DIFS – A modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils, Environ. Modell. Softw. 15 (2000), 5566.CrossRefGoogle Scholar
Harper, M. P., Davison, W., Zhang, H. and Tych, W., Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes, Geochim. Cosmochim. Acta. 62 (1998), 27572770.CrossRefGoogle Scholar
Sochaczewski, Ł., Stockdale, A., Davison, W., Tych, W. and Zhang, H., A three-dimensional reactive transport model for sediments, incorporating microniches, Env. Chem. 5 (2008), 218225.CrossRefGoogle Scholar
Stumm, W. and Morgan, J. J., Aquatic chemistry. Chemical equilibria and rates in natural waters (New York: Wiley, 1996).Google Scholar
McLaughlin, M. J., Smolders, E. and Merckx, R., Soil-root interface: Physicochemical processes, In Soil chemistry and ecosystem health, ed. Huang, P. M. (Madison: Soil Science Society of America, 1998), pp. 233277.Google Scholar
Li, W., Zhao, H., Teasdale, P. R., John, R. and Wang, F., Metal speciation measurement by diffusive gradients in thin films technique with different binding phases, Anal. Chim. Acta. 533 (2005), 193202.CrossRefGoogle Scholar
Warnken, K. W., Zhang, H. and Davison, W., Trace metal measurements in low ionic strength synthetic solutions by diffusive gradients in thin films, Anal. Chem. 77 (2005), 54405446.CrossRefGoogle ScholarPubMed
Garmo, Ø. A., Davison, W. and Zhang, H., Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques, Environ. Sci. Technol. 42 (2008), 56825687.CrossRefGoogle ScholarPubMed
Garmo, Ø. A., Davison, W. and Zhang, H., Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique, Anal. Chem. 80 (2008), 92209225.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×