Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T16:33:15.307Z Has data issue: false hasContentIssue false

3 - Diffusion Layer Properties

Published online by Cambridge University Press:  05 September 2016

William Davison
Affiliation:
Lancaster University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tanaka, T., Gels, Scient. Amer. 244 (1981 ), 124138.CrossRefGoogle ScholarPubMed
Fatin-Rouge, N., Milon, A., Buffle, J., Goulet, R. R. and Tessier, A., Diffusion and partitioning of solutes in agarose hydrogels: The relative influence of electrostatic and specific interactions, J. Phys. Chem. B 107 (2003), 1212612137.CrossRefGoogle Scholar
Scally, S., Davison, W. and Zhang, H., Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films, Anal. Chim. Acta 558 (2006 ), 222229.CrossRefGoogle Scholar
Zhang, H. and Davison, W., Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films, Anal. Chem. 72 (2000), 44474457.CrossRefGoogle ScholarPubMed
Brandl, H. and Hanselmann, K. W., Evaluation and application of dialysis porewater samplers for microbiological studies at sediment-water interfaces, Aquatic Sci. 53 (1991), 5573.CrossRefGoogle Scholar
Davison, W. and Zhang, H., Progress in understanding the use of diffusive gradients in thin-films – Back to basics, Environ. Chem. 9 (2012), 113.CrossRefGoogle Scholar
Harper, M. P., Davison, W. and Tych, W., Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET, Environ. Sci. Technol. 31 (1997), 31103119.CrossRefGoogle Scholar
Mortimer, R. J. G., Krom, M. D., Hall, P. O. J., Hall, S. and Stahl, H., Use of gel probes for the determination of high resolution solute distributions in marine and estuarine pore waters, Mar. Chem. 63 (1998), 119129.CrossRefGoogle Scholar
Zhang, H., Davison, W. and Ottley, C., Remobilisation of major ions in freshly deposited lacustrine sediment at overturn, Aquat. Sci. 61 (1999), 354361.CrossRefGoogle Scholar
Warnken, K. W.. Zhang, H. and Davison, W., Trace metal measurements in low ionic strength synthetic solutions by diffusive gradients in thin films, Anal. Chem. 77 (2005), 54405446.CrossRefGoogle ScholarPubMed
Garmo, O. A., Davison, W. and Zhang, H., Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques, Environ. Sci. Technol. 42 (2008), 56825687.CrossRefGoogle ScholarPubMed
Chang, L., Davison, W., Zhang, H. and Kelly, M., Performance characteristics for the measurement of Cs and Sr by diffusive gradients in thin films (DGT), Anal. Chim. Acta 368 (1998), 243253.CrossRefGoogle Scholar
Ernstberger, H., Zhang, H. and Davison, W., Determination of chromium speciation in natural systems using DGT, Anal. Bioanal. Chem. 373 (2002), 873879.CrossRefGoogle ScholarPubMed
Davison, W., Zhang, H. and Grime, G. W., Performance characteristics of gel probes used for measuring the chemistry of pore waters, Environ. Sci. Technol. 28 (1994), 16231632.CrossRefGoogle ScholarPubMed
Fones, G. R., Davison, W. and Grime, G. W., Development of constrained DET for measurements of dissolved iron in surface sediments at sub-mm resolution, Sci. Tot. Environ. 221 (1998), 127137.CrossRefGoogle Scholar
Cheng, H. Investigation of diffusion and binding properties for extending applications of the DGT technique, PhD Thesis, University of Lancaster, UK, 2014.Google Scholar
Krom, M. D., Davison, P., Zhang, H. and Davison, W., High resolution pore water sampling using a gel sampler, Limnol. Oceanogr. 39 (1994), 19671972.CrossRefGoogle Scholar
van der Veeken, L. R., Chakraborti, P. and van Leeuwen, H. P., Accumulation of humic acid in DET/DGT gels, Environ. Sci. Technol. 44 (2010), 42534257.CrossRefGoogle ScholarPubMed
Davison, W., Lin, C., Gao, Y. and Zhang, H.. Effect of gel interactions with dissolved organic matter on DGT measurements of trace metals, Aquatic Geochem. 21 (2015), 281293CrossRefGoogle Scholar
Zielinska, K., Town, R. M., Yasadi, K. and van Leeuwen, H. P., Partitioning of humic acids between aqueous solution and hydrogel: concentration profiling of humic acids in hydrogel phases, Langmuir 30 (2014), 20842092.CrossRefGoogle ScholarPubMed
Zielinska, K., Town, R. M., Yasadi, K. and van Leeuwen, H. P., Partitioning of humic acids between aqueous solution and hydrogel. 2. Impact of physicochemical conditions, Langmuir 31 (2015), 283291.CrossRefGoogle ScholarPubMed
Docekalova, H., Clarisse, O., Salomon, S. and Wartel, M., Use of constrained DET probe for a high-resolution determination of metals and anions distribution in the sediment pore water, Talanta 57 (2002), 145155.CrossRefGoogle ScholarPubMed
Puy, J., Galceran, J., Cruz-Gonzalez, S. et al., Measurements of metals using DGT: Impact of ionic strength and kinetics of dissociation of complexes in the resin domain, Anal. Chem. 86 (2014), 77407748.CrossRefGoogle ScholarPubMed
Yasadi, K., Pinheiro, J. P., Zielinska, K., Town, R. M. and van Leeuwen, H. P., Partitioning of humic acids between aqueous solution and hydrogel. 3. Dynamic speciation analysis of free and bound humic metal complex in the gel phase, Langmuir 31 (2015), 17371745.CrossRefGoogle ScholarPubMed
Yezek, L. P. and van Leeuwen, H. P., An electrokinetic characterization of low charge density cross-linked polyacrylamide gels, J. Coll. Int. Sci. 278 (2004), 243250.CrossRefGoogle ScholarPubMed
Sangi, M. R., Halstead, M. J. and Hunter, K. A., Use of the diffusion gradient thin film method to measure trace metals in fresh waters at low ionic strength, Anal. Chim. Acta 456 (2002), 241251.CrossRefGoogle Scholar
Morford, J., Kalnejais, L., Martin, W., Francois, R. and Karle, I-M., Sampling marine porewaters for Mn, Fe, U, Re, and Mo: modifications on diffusional gradients in thin film gel probes, J. Exp. Mar. Biol. Ecol. 285 (2003), 85103.CrossRefGoogle Scholar
Weltje, L., den Hollander, W. and Wolterbeek, H., Adsorption of metals to membrane filters in view of their speciation in nutrient solution, Environ. Toxicol. Chem. 22 (2003), 265271.CrossRefGoogle ScholarPubMed
Ulbricht, M., Schuster, O., Ansorge, W., Ruetering, M. and Steiger, P., Influence of strongly anisotropic cross-section morphology of a novel polyethersulfone microfiltration membranes onto filtration performance, Separ. Purif. Techn. 57 (2007), 6373.CrossRefGoogle Scholar
Chen, C., Zhang, H. and Jones, K., A novel passive water sampler for in situ sampling of antibiotics, J. Environ. Monit. 14 (2012), 15231530.CrossRefGoogle ScholarPubMed
Chen, C-E., Zhang, H., Ying, G-G. and Jones, K. C., Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters, Environ. Sci. Technol. 47 (2003), 1358713593.CrossRefGoogle Scholar
Zheng, J-L., Guan, D-X, Luo, J. et al., Activated charcoal based diffusive gradients in thin films for in situ monitoring of bisphenols in waters, Anal. Chem. 87 (2015), 801807.CrossRefGoogle ScholarPubMed
Li, Y. and Gregory, S., Diffusion of ions in seawater and in deep-sea sediments, Geochim. Cosmochim. Acta 38 (1974) 703714.Google Scholar
Henry, V. K. (Ed.) CRC handbook of thermophysical and thermochemical data (Boca Raton: CRC Press Inc., 1994).Google Scholar
Buffle, J., Zhang, Z. and Startchev, K., Metal flux and dynamic speciation at (bio) interfaces. Part 1: Critical evaluation and compilation of physico-chemical parameters for complexes with simple ligands and fulvic/humic substances, Environ. Sci. Technol. 41 (2007), 76097620.CrossRefGoogle Scholar
Shiva, A. H., Teasdale, P. R., Bennett, W. W. and Welsh, D. T., A systematic determination of diffusion coefficients of trace elements in open and restricted diffusive layers used by diffusive gradients in thin film technique, Anal. Chim. Acta 888 (2015), 146154.CrossRefGoogle Scholar
Panther, J. G., Stillwell, K. P., Powell, K. J. and Downard, A. J., Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters, Anal. Chim. Acta 622 (2008), 132142.CrossRefGoogle ScholarPubMed
Price, H. L., Teasdale, P. R. and Jolley, D. F., An evaluation of ferrihydrite- and Metsorb- DGT techniques for measuring oxyanion species (As, Se, V, P): Effective capacity, competition and diffusion coefficients, Anal. Chim. Acta 803 (2013), 5665.CrossRefGoogle Scholar
Luo, J., Zhang, H., Santner, J. and Davison, W., Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(v), selenium(vi), vanadium(v), and antimony(v), Anal. Chem. 82 (2010), 89038909.CrossRefGoogle ScholarPubMed
Osterlund, H., Chlot, S., Faarinen, M. et al., Simultaneous measurements of As, Mo, Sb, V and W using a ferrihydrite diffusive gradients in thin films (DGT) device, Anal. Chim. Acta 682 (2010), 5965.CrossRefGoogle Scholar
Panther, J. G., Stewart, R. R., Teasdale, P. R. et al., Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water, Talanta 105 (2013), 8086.CrossRefGoogle Scholar
Unsworth, E., Zhang, H. and Davison, W., Use of DGT to measure cadmium speciation in solutions with synthetic and natural ligands: Comparison with model predictions, Environ. Sci. Technol. 39 (2005), 624630.CrossRefGoogle ScholarPubMed
Pan, Y., Guan, D-X., Zhao, D. et al., Novel speciation method based on diffusive gradients in thin-films for in situ measurement of Cr(VI) in aquatic systems, Environ. Sci. Technol. in press DOI: 10.1021/acs.est.Sb03742.Google Scholar
Scally, S., Davison, W. and Zhang, H., In situ measurements of dissociation kinetics and labilities of metal complexes in synthetic solutions using DGT, Environ. Sci. Technol. 37 (2003), 13791384.CrossRefGoogle Scholar
Fenandez-Gomeza, C., Dimock, B., Hintelmann, H. and Diez, S., Development of the DGT technique for Hg measurement in water: Comparison of three different types of samplers in laboratory assays, Chemosphere 85 (2011) 14521457.CrossRefGoogle Scholar
Clarisse, O. and Hintelmann, H., Measurements of dissolved methylmercury in natural waters using diffusive gradients in thin-film (DGT), J. Environ. Monit. 8 (2006), 12421247.CrossRefGoogle ScholarPubMed
Mason, S., Hamon, R., Nolan, A., Zhang, H. and Davison, W., Performance of a mixed binding layer for measuring anions and cations in a single assay using the diffusive gradients in thin films technique, Anal. Chem. 77 (2005), 63396346.CrossRefGoogle Scholar
Zhang, H., Davison, W., Gade, R. and Kobayashi, T., In situ measurement of phosphate in natural waters using DGT, Anal. Chim. Acta 370 (1998), 2938.CrossRefGoogle Scholar
Garmo, Ø. A., Lehto, N. J., Zhang, H., Davison, W., Røyset, O. and Steinnes, E., Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand, Environ. Sci. Technol. 40 (2006), 47544760.CrossRefGoogle ScholarPubMed
Pelcova, P., Docekalova, H. and Kleckerova, A., Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters, Anal. Chim. Acta 819 (2014), 4248.CrossRefGoogle ScholarPubMed
Gao, Y., De Canck, E., Leermakers, M., Baeyens, W. and van der Voort, P., Synthesized mercaptopropyl nanoporous resins in DGT probes for determining dissolved mercury concentrations, Talanta 87 (2011), 262267.CrossRefGoogle ScholarPubMed
Gao, Y., De Craemer, S. and Baeyens, W., A novel method for the determination of dissolved methylmercury concentrations using diffusive gradients in thin films technique, Talanta 120 (2014), 470474.CrossRefGoogle ScholarPubMed
Lead, J. R., Wilkinson, K. J., Startchev, K. and Canonica, S., Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: Role of solution conditions, Environ. Sci. Technol. 34 (2000), 13651369.CrossRefGoogle Scholar
Warnken, K. W., Zhang, H. and Davison, W., Accuracy of the diffusive gradient in thin-films technique: Diffusion boundary layer and effective sampling area considerations, Anal. Chem. 78 (2006), 37803787.CrossRefGoogle ScholarPubMed
Garmo, O. A., Roysett, O., Steinnes, E. and Flaten, T. P., Performance study of diffusive gradients in thin films for 55 elements, Anal. Chem. 75 (2003), 35733580.CrossRefGoogle ScholarPubMed
Zhang, H. and Davison, W., Diffusional characteristics of hydrogels used in DGT and DET techniques, Anal. Chem. Acta 398 (1999), 329340.CrossRefGoogle Scholar
Warnken, K. W., Davison, W., Zhang, H., Galceran, J. and Puy, J., In situ measurements of metal complex exchange kinetics in freshwater, Environ. Sci. Technol. 41 (2007), 31793185.CrossRefGoogle ScholarPubMed
Li, W., Zhao, J., Li, C., Kiser, S. and Cornett, R. J., Speciation measurements of uranium in alkaline waters using diffusive gradients in thin films technique, Anal. Chim. Acta 575 (2006), 274280.CrossRefGoogle ScholarPubMed
Turner, G. S. C., Mills, G. A., Teasdale, P. R. et al., Evaluation of the DGT technique for measuring inorganic uranium species in natural waters: Interferences, deployment time and speciation, Anal. Chim. Acta 739 (2012), 3746.CrossRefGoogle ScholarPubMed
Hutchins, C. M., Panther, J. G., Teasdale, P. R. et al., Evaluation of a titanium dioxide-based DGT technique for measuring inorganic uranium species in fresh and marine waters, Talanta 97 (2012), 550556.CrossRefGoogle Scholar
Fatin-Rouge, N., Startchev, K. and Buffle, J., Size effects on diffusion processes within agarose gels, Biophysical J. 86 (2004), 27102719.CrossRefGoogle ScholarPubMed
Labille, J., Fatin-Rouge, N. and Buffle, J., Local and average diffusion of nanosolutes in agarose gel: The effect of the gel/solution interface structure, Langmuir 23 (2007), 20832090.CrossRefGoogle ScholarPubMed
Yezek, L. P. and van Leeuwen, H. P., Donnan effects in the steady-state diffusion of metal ions through charged thin films, Langmuir 21 (2005), 1034210347.CrossRefGoogle ScholarPubMed
Yesek, L. P., van der Veeken, L. R. and van Leeuwen, H. P., Donnan effects in metal speciation analysis by DET/DGT, Environ. Sci. Technol. 42 (2008), 92509254.CrossRefGoogle Scholar
Garmo, O. A., Davison, W. and Zhang, H., Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique, Anal. Chem. 80 (2008), 92209225.CrossRefGoogle Scholar
Docekalova, H. and Divis, P., Application of diffusive gradient in thin films technique (DGT) to the measurement of mercury in aquatic systems, Talanta 65 (2005), 11741178.CrossRefGoogle Scholar
Mongin, S., Uribe, R., Puy, J. et al., Key role of the resin layer thickness in the lability of complexes measured by DGT, Environ. Sci. Technol. 45 (2011), 48694875.CrossRefGoogle ScholarPubMed
Tusseau-Vuillemin, M. H., Gilbin, R., Bakkaus, E. and Garrie, J., Performance of diffusion gradient in thin films to evaluate the toxic fraction of copper to Daphnia magna, Environ. Toxicol. Chem. 23 (2004), 21542161.CrossRefGoogle ScholarPubMed
Oporto, C., Smolders, E., Degryse, F., Verheyen, L. and Vandecasteele, C., DGT-measured fluxes explain the chloride-enhanced cadmium uptake by plants at low but not at high Cd supply, Plant Soil 318 (2009), 127135.CrossRefGoogle Scholar
Ernstberger, H., Zhang, H., Tye, A., Young, S. and Davison, W., Desorption kinetics of Cd, Zn and Ni measured in intact soils by DGT, Environ. Sci. Technol. 39 (2005), 15911597.CrossRefGoogle Scholar
van Leeuwen, H. P., Revisited: DGT speciation analysis of metal-humic acid complexes, Environ. Chem. 13 (2016), 8488.CrossRefGoogle Scholar
Warnken, K. W., Davison, W. and Zhang, H., Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT, Environ. Sci. Technol. 42 (2008), 69036909.CrossRefGoogle ScholarPubMed
Alfaro-Del la Torre, M. C., Beaulieu, P. Y. and Tessier, A., In situ measurement of trace metals in lakewater using the dialysis and DGT techniques, Anal. Chim. Acta 418 (2000), 5368.CrossRefGoogle Scholar
Forsberg, J., Dahlqvist, R., Gelting-Nyström, J. and Ingri, J, Trace metal speciation in brackish water using diffusive gradients in thin films and ultrafiltration: Comparison of techniques, Environ. Sci. Technol. 40 (2006), 39013905.CrossRefGoogle ScholarPubMed
Ohlander, B., Fosberg, J., Osterlund, H. et al., Fractionation of trace metals in a contaminated freshwater stream using membrane filtration, ultrafiltration, DGT and transplanted aquatic moss, Geochem. Explor. Environ. Anal. 12 (2012), 303312.CrossRefGoogle Scholar
Montalvo, D., Degryse, F. and McLaughlin, M. J., Natural colloidal P and its contribution to plant P uptake, Environ. Sci. Technol. 49 (2015), 34273434.CrossRefGoogle ScholarPubMed
Odzak, N., Kistler, D., Behra, R. and Sigg, L., Dissolution of metal and metal oxide nano particles under natural freshwater conditions, Environ. Chem. 12 (2015), 138148.CrossRefGoogle Scholar
Santner, J., Smolders, E., Wenzel, W. W. and Degryse, F., First observation of diffusion-limited plant root phosphorus uptake from nutrient solution, Plant Cell Environ. 35 (2012), 15581566.CrossRefGoogle ScholarPubMed
Odzak, N., Kistler, D., Behra, R. and Sigg, L., Dissolution of metal and metal oxide nanoparticles in aqueous media, Environ. Pollut. 191 (2014), 132138.CrossRefGoogle ScholarPubMed
van der Veeken, P. L. R., Pinheiro, J. P. and van Leeuwen, H. P., Metal speciation by DGT/DET in colloidal complex systems, Environ. Sci. Technol. 42 (2008), 88358840.CrossRefGoogle ScholarPubMed
Navarro, E., Piccapietra, F., Wagner, B. et al., Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol. 42 (2008 ), 89598964.CrossRefGoogle ScholarPubMed
Pouran, H. M., Martin, F. L. and Zhang, H., Measurement of ZnO nanoparticles using diffusive gradients in thin films: binding and diffusional characteristics, Anal. Chem. 86 (2014), 59065913.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×