Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-16T17:23:34.710Z Has data issue: false hasContentIssue false

2 - Principles of Measurements in Simple Solutions

Published online by Cambridge University Press:  05 September 2016

William Davison
Affiliation:
Lancaster University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Warnken, K. W., Zhang, H. and Davison, W., Accuracy of the diffusive gradient in thin-films technique: Diffusion boundary layer and effective sampling area considerations, Anal. Chem. 78 (2006), 37803787.CrossRefGoogle ScholarPubMed
Davison, W. and Zhang, H., Progress in understanding the use of diffusive gradients in thin-films – back to basics, Environ. Chem. 9 (2012), 113.CrossRefGoogle Scholar
Davison, W. and Zhang, H., In-situ speciation measurements of trace components in natural-waters using thin-film gels, Nature 367 (1994), 546548.CrossRefGoogle Scholar
Gundersen, J. K. and Jorgensen, B. B., Microstructure of diffusive boundary layers and oxygen uptake of the sea floor, Nature 345 (1990), 604607.CrossRefGoogle Scholar
Galceran, J., Puy, J., Salvador, J., Cecilia, J. and van Leeuwen, H. P., Voltammetric lability of metal complexes at spherical microelectrodes with various radii. Journal of Electroanal. Chem. 505 (2001), 8594.CrossRefGoogle Scholar
Garmo, O. A., Lehto, N. J., Zhang, H. et al., Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand, Environ Sci Technol. 40 (2006), 47544760.CrossRefGoogle ScholarPubMed
Garmo, O. A., Simulating the effect of lateral diffusion and the diffusive boundary layer on uptake in solution and soil type DGTs. Presented at Conference on DGT and the Environment, Lancaster, UK, July 2013.Google Scholar
Alexa, N., Zhang, H. and Lead, J., Development of a miniaturised diffusive gradients in thin films (DGT) device, Anal. Chim. Acta 655 (2009), 8085.CrossRefGoogle ScholarPubMed
Santner, J., Kreuzeder, A., Schnepf, A. and Wenzel, W. W., Numerical evaluation of lateral diffusion inside diffusive gradients in thin films samplers, Environ. Sci. Technol. 49 (2015), 61096116.CrossRefGoogle ScholarPubMed
Garmo, O. A., Naqvi, K. R., Royset, O. and Steinnes, E., Estimation of diffusive boundary layer thickness in studies involving diffusive gradients in thin films (DGT), Anal. Bioanal. Chem. 386 (2006), 22332237.CrossRefGoogle ScholarPubMed
Zhang, H. and Davison, W., Performance characteristics of the technique of diffusion gradients in thin-films (DGT) for the measurement of trace metals in aqueous solution, Anal. Chem. 67 (1995), 33913400.CrossRefGoogle Scholar
Zhang, H., Davison, W., Gade, R. and Kobayashi, T., In situ measurement of phosphate in natural waters using DGT, Anal. Chim. Acta. 370 (1998), 2938.CrossRefGoogle Scholar
Levy, J., Zhang, H., Davison, W. and Groben, R., Using diffusive gradients in thin films to probe the kinetics of metal interaction with algal exudates, Environ. Chem. 8 (2011), 517524.CrossRefGoogle Scholar
Uher, E., Tusseau-Vuillemin, M. and Gourley-France, C., DGT measurement in low flow conditions: Diffusive boundary layer and lability consideration, Environ. Sci. Process. Impacts 15 (2013), 13511358.CrossRefGoogle Scholar
Levy, J. L., Zhang, H., Davison, W., Galceran, J. and Puy, J., Kinetic signatures of metals in the presence of Suwannee River fulvic acid, Environ. Sci. Technol. 46 (2012), 33353342.CrossRefGoogle ScholarPubMed
Hutchins, C. M., Panther, J. G., Teasdale, P. R. et al., Evaluation of a titanium dioxide-based DGT technique for measuring inorganic uranium species in fresh and marine waters, Talanta 97 (2012), 550556.CrossRefGoogle ScholarPubMed
Buzier, R., Charriau, A., Carona, D. et al., DGT-labile As, Cd, Cu and Ni monitoring in freshwater: Toward a framework for interpretation of in situ deployment. Environ. Poll. 192 (2014), 5258.CrossRefGoogle Scholar
Chen, C-E., Zhang, H., Ying, G-G. and Jones, K. C., Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters, Environ. Sci. Technol. 47 (2003), 1358713593.CrossRefGoogle Scholar
Warnken, K. W., Davison, W., Zhang, H., Galceran, J. and Puy, J., In situ measurements of metal complex exchange kinetics in freshwater, Environ. Sci. Technol. 41 (2007), 31793185.CrossRefGoogle ScholarPubMed
Warnken, K. W., Davison, W. and Zhang, H., Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT, Environ. Sci. Technol. 42 (2008), 69036909.CrossRefGoogle ScholarPubMed
Alfaro-De la Torre, M. C., Beaulieu, P. Y. and Tessier, A., In situ measurement of trace metals in lakewater using the dialysis and DGT techniques, Anal. Chim. Acta 418 (2000), 5368.CrossRefGoogle Scholar
Turner, G. S. C., Mills, G. A., Teasdale, P. R. et al., Evaluation of the DGT technique for measuring inorganic uranium species in natural waters: interferences, deployment time and speciation. Anal. Chim. Acta 739 (2012), 3746.CrossRefGoogle ScholarPubMed
Turner, G. S. C., Mills, G. A., Bowes, M. J. et al., Evaluation of DGT as a long term water quality monitoring tool in natural waters; uranium as a case study. Environ. Sci. Process. Impacts 16 (2014), 393403.CrossRefGoogle ScholarPubMed
Webb, A. W. and Keough, M. J., Quantification of copper doses to settlement plates in the field using diffusive gradients in thin films, Sci. Total Environ. 298 (2002), 207217.CrossRefGoogle ScholarPubMed
Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T. and Jolley, D. F., New diffusive gradients in thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide adsorbent, Anal. Chem. 82 (2010), 74017407.CrossRefGoogle ScholarPubMed
Panther, J. D., Teasdale, P. R., Bennett, W. M., Welsh, D. T. and Zhao, H. J., Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters, Environ. Sci. Technol. 44 (2010), 94199424.CrossRefGoogle ScholarPubMed
van Leeuwen, H. P. and Galceran, J., Biointerfaces and mass transfer, In Physicochemical kinetics and transport at chemical-biological surfaces, ed. van Leeuwen, H. P. and Köster, W., IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Chichester: Wiley, 2004).Google Scholar
Gimpel, J., Zhang, H., Hutchinson, W. and Davison, W., Effect of solution composition, flow and deployment time on the measurement of trace metals by the diffusive gradients in thin films technique, Anal. Chim. Acta 448 (2001), 93103.CrossRefGoogle Scholar
Pichette, C., Zhang, H. and Sauve, S., Using diffusive gradients in thin-films for in situ monitoring of dissolved phosphate emissions from freshwater aquaculture, Aquaculture 286 (2009), 198202.CrossRefGoogle Scholar
Harper, M. P., Davison, W. and Tych, W., Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET, Environ. Sci. and Technol. 31 (1997), 31103119.CrossRefGoogle Scholar
van Leeuwen, H. P., Dynamic aspects of in situ speciation processes and techniques, In In situ monitoring of aquatic systems: Chemical analysis and speciation, ed. Buffle, J., Horvai, G. and van Leeuwen, H. P., vol. 6, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Chichester: Wiley, 2000), pp. 253277.Google Scholar
Lehto, N. J., Davison, W., Zhang, H. and Tych, W., An evaluation of DGT performance using a dynamic numerical model, Environ. Sci. Technol. 40 (2006), 63686376.CrossRefGoogle ScholarPubMed
Simpson, J. H. and Carr, H. Y., Diffusion and nuclear spin relaxation in water, Phys. Rev. 111 (1958), 12011202.CrossRefGoogle Scholar
Atkins, P. W. and de Paula, J., Atkins’ physical chemistry, 8th edn. (Oxford: Oxford University Press, 2006).Google Scholar
Murdock, C., Kelly, M., Chang, L. Y., Davison, W. and Zhang, H., DGT as an in situ tool for measuring radiocesium in natural waters, Environ. Sci. Technol. 35 (2001), 45304535.CrossRefGoogle Scholar
Cheng, H. Investigation of diffusion and binding properties for extending applications of the DGT technique, PhD Thesis, University of Lancaster, UK, 2014.Google Scholar
Harman, C., Allan, I. J. and Vermeirssen, E. L. M., Calibration and use of a polar organic integrative sampler – A critical review, Environ. Toxicol. Chem. 31 (2012), 27242738.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×