Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T17:23:50.986Z Has data issue: false hasContentIssue false

7 - Principles and Application in Soils and Sediments

Published online by Cambridge University Press:  05 September 2016

William Davison
Affiliation:
Lancaster University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davison, W. and Zhang, H., In situ speciation measurements of trace components in natural waters using thin-film gels, Nature 367 (1994), 546548.CrossRefGoogle Scholar
Davison, W., Grime, G. W., Morgan, J. A. W. and Clarke, K., Distribution of dissolved iron in sediment pore waters at submillimetre resolution, Nature 352 (1991), 323325.CrossRefGoogle Scholar
Zhang, H., Davison, W., Miller, S. and Tych, W., In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT, Geochim. Cosmochim. Acta 59 (1995), 41814192.CrossRefGoogle Scholar
Zhang, H., Davison, W., Knight, B. and McGrath, S., In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT, Environ. Sci. Technol. 3 (1998), 704710.CrossRefGoogle Scholar
Harper, M. P., Davison, W., Zhang, H. and Tych, W., Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes, Geochim. Cosmochim. Acta 62 (1998), 27572770.CrossRefGoogle Scholar
Sochaczewski, Ł., Tych, W., Davison, B. and Zhang, H., 2D DGT induced fluxes in sediments and soils (2D DIFS), Environ. Modell. Softw. 22 (2007), 1423.CrossRefGoogle Scholar
Harper, M. P., Davison, W. and Tych, W., DIFS – A modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils, Environ. Modell. Softw. 15 (2000), 5566.CrossRefGoogle Scholar
Bielders, C. L., De Backer, L. W. and Delvaux, B., Particle density of volcanic soils as measured with a gas pycnometer, Soil Sci. Soc. Am. J. 54 (1990), 822826.CrossRefGoogle Scholar
McBride, R. A., Slessor, R. L. and Joosse, P. J., Estimating the particle density of clay-rich soils with diverse mineralogy, Soil Sci. Soc. Am. J. 76 (2012), 569574.CrossRefGoogle Scholar
Scally, S., Davison, W. and Zhang, H., Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films, Anal. Chim. Acta. 558 (2006), 222229.CrossRefGoogle Scholar
Boudreau, B. P.. Diagenetic models and their implementation (Berlin: Springer Verlag, 1997).CrossRefGoogle Scholar
Honeyman, B. D. and Santschi, P. H., Metals in aquatic systems, Environ. Sci. Technol. 22 (1988), 862871.CrossRefGoogle ScholarPubMed
Ernstberger, H., Zhang, H., Tye, A., Young, S. and Davison, W., Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT, Environ. Sci. Technol. 39 (2005), 15911597.CrossRefGoogle ScholarPubMed
Zhang, H., Davison, W., Tye, A. M., Crout, N. M. and Young, S. D., Kinetics of zinc and cadmium release in freshly contaminated soils, Environ. Toxicol. Chem. 25 (2006), 664670.CrossRefGoogle ScholarPubMed
Ernstberger, H., Davison, W., Zhang, H., Tye, A. and Young, S., Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS, Environ. Sci. Technol. 36 (2002), 349354.CrossRefGoogle ScholarPubMed
Lehto, N. J., Sochaczewski, Ł., Davison, W., Tych, W. and Zhang, H., Quantitative assessment of soil parameter (KD and TC) estimation using DGT measurements and the 2D DIFS model, Chemosphere 71 (2008), 795801.CrossRefGoogle ScholarPubMed
Zhang, H., Lombi, E., Smolders, E. and McGrath, S., Kinetics of Zn release in soils and prediction of Zn concentration in plants using diffusive gradients in thin films, Environ. Sci. Technol. 38 (2004), 36083613.CrossRefGoogle ScholarPubMed
Fitz, W. J., Wenzel, W. W., Zhang, H., et al., Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency, Environ. Sci. Technol. 37 (2003), 50085014.CrossRefGoogle ScholarPubMed
Muhammad, I., Puschenreiter, M. and Wenzel, W. W., Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants, Sci. Total Environ. 416 (2012), 490500.CrossRefGoogle ScholarPubMed
Rachou, J., Hendershot, W. and Sauvé, S., Effects of pH on fluxes of cadmium in soils measured by using diffusive gradients in thin films, Comm. Soil Sci. Plant Anal. 35 (2005), 26552673.CrossRefGoogle Scholar
Lombi, E., Zhao, F.-J., Zhang, G., et al., In situ fixation of metals in soils using bauxite residue: chemical assessment, Environ. Pollut. 118 (2002), 435443.CrossRefGoogle ScholarPubMed
Kovaříková, V., Dočekalová, H., Dočekal, B. and Podborská, M., Use of the diffusive gradients in thin films technique (DGT) with various diffusive gels for characterization of sewage sludge-contaminated soils, Anal. Bioanal. Chem. 389 (2007), 23032311.CrossRefGoogle ScholarPubMed
Mercer, T. G. and Greenway, G. M., Diffusive gradient in thin films (DGT) for profiling leaching of CCA-treated wood waste mulch into the soil environment, Int. J. Environ. Anal. Chem. 94 (2014), 115126.CrossRefGoogle Scholar
Conesa, H. M., Schulin, R. and Nowack, B., Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints, Environ. Sci. Pollut. Res. 17 (2010), 657664.CrossRefGoogle ScholarPubMed
Hattab, N., Motelica-Heino, M., Bourrat, X. and Mench, M., Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization, Environ. Sci. Pollut. Res. Int. 21 (2014), 1030710319.CrossRefGoogle Scholar
Chen, C.-E., Zhang, H. and Jones, K. C., A novel passive water sampler for in situ sampling of antibiotics, J. Environ. Monit. 14 (2012), 15231530.CrossRefGoogle ScholarPubMed
Chen, C.-E., Jones, K. C., Ying, G.-G. and Zhang, H., Desorption kinetics of sulfonamide and trimethoprim antibiotics in soils assessed with diffusive gradients in thin-films, Environ. Sci. Technol. 48 (2014), 55305536.CrossRefGoogle ScholarPubMed
Zhang, H. and Davison, W., Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability, Environ. Chem. 12 (2015), 85101.CrossRefGoogle Scholar
Degryse, F., Smolders, E., Zhang, H. and Davison, W., Predicting availability of mineral elements to plants with the DGT technique: A review of experimental data and interpretation by modelling, Environ. Chem. 6 (2009), 198218.CrossRefGoogle Scholar
Zhang, H., Zhao, F.-J., Sun, B., Davison, W. and McGrath, S., A new method to measure effective soil solution concentration predicts copper availability to plants, Environ. Sci. Technol. 35 (2001), 26022607.CrossRefGoogle ScholarPubMed
Williams, P. N., Zhang, H., Davison, W., et al., Evaluation of in situ DGT measurements for predicting the concentration of Cd in Chinese field-cultivated rice: Impact of soil Cd:Zn ratios, Environ. Sci. Technol. 46 (2012), 80098016.CrossRefGoogle ScholarPubMed
Song, J., Zhao, F.-J., Luo, Y.-M., McGrath, S. P. and Zhang, H., Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils, Environ. Pollut. 128 (2004), 307315.CrossRefGoogle ScholarPubMed
Koster, M., Reijnders, L., van Oost, N. R. and Peijnenburg, W. J., Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods, Environ. Pollut. 133 (2005), 103116.CrossRefGoogle ScholarPubMed
Nolan, A. L., Zhang, H. and McLaughlin, M. J., Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques, J. Environ. Qual. 34 (2005), 496507.CrossRefGoogle ScholarPubMed
Almås, Å. R., Lombnaes, P., Sogn, T. A. and Mulder, J., Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass, Chemosphere 62 (2006), 16471655.CrossRefGoogle ScholarPubMed
Cornu, J. and Denaix, L., Prediction of zinc and cadmium phytoavailability within a contaminated agricultural site using DGT, Environ. Chem. 3 (2006), 6164.CrossRefGoogle Scholar
Sogn, T. A., Eich-Greatorex, S., Røyset, O., Falk Øgaard, A. and Almås, Å. R, Use of diffusive gradients in thin films to predict potentially bioavailable selenium in soil, Comm. Soil Sci. Plant Anal. 39 (2008), 587602.CrossRefGoogle Scholar
Soriano-Disla, J., Speir, T., Gómez, I., et al., Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils, Water Air Soil Pollut. 213 (2010), 471483.CrossRefGoogle Scholar
Tandy, S., Mundus, S., Yngvesson, J., et al., The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils, Plant Soil 346 (2011), 167180.CrossRefGoogle Scholar
Ahumada, I., Ascar, L., Pedraza, C., et al., Determination of the bioavailable fraction of Cu and Zn in soils amended with biosolids as determined by diffusive gradients in thin films (DGT), BCR sequential extraction, and Ryegrass plant, Water Air Soil Pollut. 219 (2011), 225237.CrossRefGoogle Scholar
Six, L., Pypers, P., Degryse, F., Smolders, E. and Merckx, R., The performance of DGT versus conventional soil phosphorus tests in tropical soils – An isotope dilution study, Plant Soil 359 (2012), 267279.CrossRefGoogle Scholar
Mason, S. D., McLaughlin, M. J., Johnston, C. and McNeill, A., Soil test measures of available P (Colwell, resin and DGT) compared with plant P uptake using isotope dilution, Plant Soil 373 (2013), 711722.CrossRefGoogle Scholar
Colwell, J., The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis, Aust. J. Exp. Agr. 3 (1963), 190197.CrossRefGoogle Scholar
Menzies, N. W., Kusumo, B. and Moody, P. W., Assessment of P availability in heavily fertilized soils using the diffusive gradient in thin films (DGT) technique, Plant Soil 269 (2005), 19.CrossRefGoogle Scholar
McBeath, T. M., McLaughlin, M. J., Armstrong, R. D., et al., Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils, Soil Res. 45 (2007), 448458.CrossRefGoogle Scholar
Mason, S., McNeill, A., McLaughlin, M. and Zhang, H., Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods, Plant Soil 337 (2010), 243258.CrossRefGoogle Scholar
Six, L., Smolders, E. and Merckx, R., The performance of DGT versus conventional soil phosphorus tests in tropical soils – Maize and rice responses to P application, Plant Soil 366 (2013), 4966.CrossRefGoogle Scholar
Zhang, H., Davison, W., Mortimer, R. J., et al., Localised remobilization of metals in a marine sediment, Sci. Total Environ. 296 (2002), 175187.CrossRefGoogle Scholar
Krom, M. D., Mortimer, R. J. G., Poulton, S. W., et al., In-situ determination of dissolved iron production in recent marine sediments, Aquat. Sci. 64 (2002), 282291.CrossRefGoogle Scholar
Leermakers, M., Gao, Y., Gabelle, C., et al., Determination of high resolution pore water profiles of trace metals in sediments of the Rupel river (Belgium) using DET (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) techniques, Water Air Soil Pollut. 166 (2005), 265286.CrossRefGoogle Scholar
Diviš, P., Leermakers, M., Dočekalová, H. and Gao, Y., Mercury depth profiles in river and marine sediments measured by the diffusive gradients in thin films technique with two different specific resins, Anal. Bioanal. Chem 382 (2005), 17151719.Google ScholarPubMed
Pradit, S., Gao, Y., Faiboon, A., et al., Application of DET (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) techniques in the study of the mobility of sediment-bound metals in the outer section of Songkhla Lake, Southern Thailand, Environ. Monit. Assess. 185 (2013), 42074220.CrossRefGoogle Scholar
Tankéré-Muller, , Davison, W. and Zhang, H., Effect of competitive cation binding on the measurement of Mn in marine waters and sediments by diffusive gradients in thin films, Anal. Chim. Acta 716 (2012), 138144.CrossRefGoogle ScholarPubMed
Monbet, P., McKelvie, I. D. and Worsfold, P. J., Combined gel probes for the in situ determination of dissolved reactive phosphorus in porewaters and characterization of sediment reactivity, Environ. Sci. Technol. 42 (2008), 51125117.CrossRefGoogle ScholarPubMed
Hiemstra, T. and Van Riemsdijk, W. H., A surface structural approach to ion adsorption: The charge distribution (CD) model, J. Colloid Interface Sci. 179 (1996), 488508.CrossRefGoogle Scholar
Zhou, A., Tang, H. and Wang, D., Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition, Water Res. 39 (2005), 12451254.CrossRefGoogle ScholarPubMed
Clarisse, O., Dimock, B., Hintelmann, H. and Best, E. P. H., Predicting net mercury methylation in sediments using diffusive gradient in thin films measurements, Environ. Sci. Technol. 45 (2011), 15061512.CrossRefGoogle ScholarPubMed
Naylor, C., Davison, W., Motelica-Heino, M., van der Heijdt, L. M. and van den Berg, G. A., Transient release of Ni, Mn and Fe from mixed metal sulphides under oxidising and reducing conditions, Environ. Earth Sci. 65 (2012), 21392146.CrossRefGoogle Scholar
Stahl, H., Warnken, K. W., Sochaczewski, L., et al., A combined sensor for simultaneous high resolution 2-D imaging of oxygen and trace metals fluxes, Limnol. Oceanogr. Methods 10 (2012), 389401.CrossRefGoogle Scholar
Roulier, J. L., Tusseau-Vuillemin, M. H., Coquery, M., Geffard, O. and Garric, J., Measurement of dynamic mobilization of trace metals in sediments using DGT and comparison with bioaccumulation in Chironomus riparius: First results of an experimental study, Chemosphere 70 (2008), 925932.CrossRefGoogle ScholarPubMed
Dabrin, A., Durand, C. L., Garric, J., et al., Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment, Sci. Total Environ. 424 (2012), 308315.CrossRefGoogle ScholarPubMed
Amirbahman, A., Massey, D. I., Lotufo, G., et al., Assessment of mercury bioavailability to benthic macroinvertebrates using diffusive gradients in thin films (DGT), Environ. Sci. Process. Impacts. 15 (2013), 21042114.CrossRefGoogle ScholarPubMed
Degryse, F., Smolders, E., Oliver, I. and Zhang, H., Relating soil solution Zn concentrations to diffusive gradients in thin films measurements in contaminated soils, Environ. Sci. Technol. 37 (2003), 39583965.CrossRefGoogle ScholarPubMed
Warnken, K. W., Davison, W., Zhang, H., Galceran, J. and Puy, J., In situ measurements of metal complex exchange kinetics in freshwater, Environ. Sci. Technol. 41 (2007), 31793185.CrossRefGoogle ScholarPubMed
Lehto, N. J., Davison, W., Zhang, H. and Tych, W., An evaluation of DGT performance using a dynamic numerical model, Environ. Sci. Technol. 40 (2006), 63686376.CrossRefGoogle ScholarPubMed
Tipping, E., Humic ion binding model VI: An improved description of the interactions of protons and metal ions with humic substances, Aquat. Geochem. 4 (1998), 348.CrossRefGoogle Scholar
Lehto, N. J., Davison, W. and Zhang, H., The use of ultra-thin diffusive gradients in thin-films (DGT) devices for the analysis of trace metal dynamics in soils and sediments: A measurement and modelling approach, Environ. Chem. 9 (2012), 415423.CrossRefGoogle Scholar
Garmo, Ø.-A., Lehto, N. J., Zhang, H. and Davison, W., Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand, Environ. Sci. Technol. 40 (2006), 47544760.CrossRefGoogle ScholarPubMed
Nowack, B., Koehler, S. and Schulin, R., Use of diffusive gradients in thin films (DGT) in undisturbed field soils, Environ. Sci. Technol. 38 (2004), 11331138.CrossRefGoogle ScholarPubMed
Ciffroy, P., Nia, Y. and Garnier, J. M., Probabilistic multicompartmental model for interpreting DGT kinetics in sediments, Environ. Sci. Technol. 45 (2011), 95589565.CrossRefGoogle ScholarPubMed
Reichman, S. M. and Parker, D. R., Probing the effects of light and temperature on diurnal rhythms of phytosiderophore release in wheat, New Phytol. 174 (2007), 101108.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×