We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Maternal diet during pregnancy can influence fetal growth; however, the available evidence is controversial. We aimed to assess whether maternal diet of Japanese women in mid-pregnancy can affect their offspring’s birth size via collection of questionnaire and medical record data. The studied sample was a large cohort of paired mothers and their singleton offspring (n 78 793) from fifteen areas all over Japan who participated in the Japan Environment and Children’s Study. The mid-pregnancy intakes of total energy, macronutrients and vitamins were lower than the recommended intakes for pregnant Japanese women. Maternal total energy intake was positively associated with the offspring’s birth weight; there was a 10-g mean difference in the offspring’s birth weight of mothers in the lowest (3026 g) v. highest (3036 g) quartiles of energy intake. Carbohydrate intake was positively associated with the offspring’s birth length (mean difference of 0·7 cm) and inversely associated with the ponderal index (mean difference of 0·8 g/cm3). Offspring of mothers in the highest v. lowest quartiles of total dietary fibre intake were on average 9 g heavier and had 0·3 cm longer birth length and 0·2 cm longer head circumference. The highest in reference to lowest intake quartile of vitamin C was associated with 13 g and 0·7 cm mean differences in the offspring’s birth weight and length, respectively. Several other associations were evident for maternal intakes of vitamins and the offspring’s birth size. In conclusion, maternal dietary intakes of energy, dietary fibre, carbohydrate and vitamins during pregnancy were associated with the offspring’s birth size.
To evaluate aspects related to the psychiatric attendance in Campinas and population knowledge about mental disorders.
Methods:
Participants of a public event were invited to answer a questionnaire about sociodemographyc aspects and knowledge about mental health.
Results:
The 88 questionnaires showed that there was uniform distribution between sexes and that 50 % of subjects were between 41 and 65 years. The most people have concluded the primary and secondary school. About religion, 55,7 % were Catholics and 26,1% protestants. The study showed that 23% of the subjects have looked for a psychiatrist in last year, the most at primary care health, but only 4,35% said there was no psychiatrist for them. Beyond the psychiatrist, psychologists and spiritualists are looking to solve mental disorders. People consider suicide idea as a disorder that must be treated by psychiatrist more than the eating disorders. “Listen voices that do not exist” was considered as reason to look for psychiatrist, being an opinion more prevalent between Catholics than protestants (O.R = 1.67). The people with first or second grade think that spiritual works produce mental disorders more than those who are graduated. (OR=3.97). When the information about mental illness is TV the people have more chance to believe that spiritual works can produce mental disorders (OR=1.67).
Conclusion:
Psychiatric attendance is accessible for most people at primary health care in Campinas. The looking for psychiatrist comes with other professionals. The concept about mental disorders is influenced by level and source of information, sex and religion.
Clostridioides (Clostridium) difficile infection (CDI) is the leading cause of infectious diarrhoea in hospitalised patients, representing a substantial economic burden driven mainly by increased length of hospital stay (LoS). Currently in Japan, limited evidence on CDI-associated excess LoS is available. We conducted a retrospective, matched-cohort study using a large, Japanese, hospital-based administrative database. CDI was defined as CDI treatment plus either CDI diagnosis or positive enzyme immunoassay result. Propensity score matching at the time of CDI or recurrent CDI (rCDI) onset was applied to adjust baseline confounding and immortal time bias. The analysis included 5 994 054 hospitalisation records during 2008–2017, of which 11 823 were identified as CDI and 1359 as rCDI. The median excess LoS attributable to CDI and rCDI was 3 days and 6.5 days, respectively. The excess mortality attributable to CDI was 6.9%; there was no excess mortality attributable to rCDI (−1.9%). The median difference in costs attributable to CDI and rCDI during the residual stay was JPY 130 296 (USD 1185) and JPY 81 054 (USD 737) per hospitalisation, respectively. By adjusting the biases, the burden of CDI in Japan was evaluated. The findings could support decision making and resource allocation for CDI management in Japanese hospitals.
It has been indicated that low-luminosity active galactic nuclei (LLAGNs) are accelerating high-energy cosmic-ray (CR) protons in their radiatively inefficient accretion flows (RIAFs). If this is the case, Sagittarius A* (Sgr A*) should also be generating CR protons, because Sgr A* is a LLAGN. Based on this scenario, we calculate a production rate of CR protons in Sgr A* and their diffusion in the central molecular zone (CMZ) around Sgr A*. The CR protons diffusing in the CMZ create gamma-rays through pp interaction. We show that the gamma-ray luminosity and spectrum are consistent with observations if Sgr A* was active in the past.
Half-Heusler MNiSn (M=Ti, Zr, Hf) compounds are well-known, excellent n-type thermoelectric materials. The n-type Seebeck coefficients of ZrNiSn are reduced because of the precipitation of the metallic Heusler ZrNi2Sn phase. An excellent n-type Seebeck coefficient can be converted to p-type based on the vacancy site occupation by the solute Co atoms in the half-Heusler TiNiSn phase as well as ZrNiSn. The Heusler phase precipitates, including their precursor nano-structure in the half-Heusler matrix and the vacancy site occupation of the half-Heusler phase, are regarded as lattice defects based on the crystallographically and thermodynamically close relationship between half-Heusler and Heusler phases.
Mucosal mast cells (MMC) play a crucial role in the expulsion of Strongyloides ratti adults from the small intestine of mice. We reported the large intestinal parasitism of S. ratti in rats, and there has been no report on MMC in the large intestine of the natural host. We studied kinetics of MMC, together with eosinophils, in the upper and lower small intestines, caecum and colon of infected rats. Two distinct phases of mastocytosis were revealed: one in the upper small intestine triggered by stimulation of ‘ordinary’ adults, and the other in the colon stimulated by ‘immune-resistant’ adults that started parasitizing the colon around 19 days post-infection. In all 4 intestinal sites, the MMC peaks were observed 5–7 days after the number of adult worms became the maximum and the height of MMC peaks appeared to be dependent on the number of parasitic adults, suggesting an important role played by worms themselves in the MMC buildup.
Single crystals of E21 (L12) Ni3AlC1-x were prepared by the unidirectional solidification using the optical floating zone melting method to determine their mechanical properties. Particularly the effects of interstitial carbon atoms on mechanical properties were evaluated by compression tests at room temperature. Operative slip system of E21 Ni3AlC is {111}<011> type which is the same as that of L12 Ni3Al. Strength of Ni3AlC single crystals increases with carbon concentration due to the solid solution effect, though the stress relief of yielding behavior is enhanced at the intermediate carbon content at around 3at%. A large gap appears in the carbon concentration dependence of critical resolved shear stress (as well as yield stress) at almost the same carbon content. This discontinuity in strengthening is attributed to the interaction between multiple solute carbon atoms and mobile dislocations.
We have investigated microstructures in both the antiferroelectric (AFE) and relaxor states of Pb(In1/2Nb1/2)O3 (PIN) with the perovskite structure by a transmission electron microscopy (TEM). Electron diffraction (ED) experiments revealed that the AFE state is characterized as the modulated structure with the modulation vector of q=1/4 1/4 0. High-resolution TEM images clearly show the coexistence of two types of domains consisting of the modulated and the nonmodulated structures with the 100 ∼ 200 nm size. On the other hand, in the relaxor state there appear two types of diffuse scatterings in the ED patterns. One is diffuse spots at the 1/2 1/2 0-type reciprocal positions and the other is diffuse streaks elongating along the <110> direction around the fundamental spots. The real-space TEM images clearly demonstrate the presence of nanodomains with the average size of ∼ 5 nm. These nanodomains in the relaxor state should be responsible for the characteristic dielectric properties.
We have investigated characteristic ferroelectric and structural antiphase domain structures in single crystals of hexagonal RMnO3 (R=Y, Ho, Lu, and Yb) by obtaining various electron diffraction patterns, dark-filed images and high-resolution lattice images. In the ferroelectric phase of RMnO3 characteristic domain structures consisting of six ferroelectric and structural antiphase domains, which can be identified as the “cloverleaf” pattern, is found in the (110) plane, in addition to the (001) plane, and are inherent to the ferroelectric phase of hexagonal RMnO3. In domain configuration with the cloverleaf pattern in the (110) plane, the structural antiphase boundaries are inclined to be parallel to the [001] direction.
Strongyloides ratti (Nagoya strain) is unique in that a portion of adults parasitizing the small intestine withstands ‘worm expulsion’, which starts at around day 8 post-infection (p.i.) by host immunity, and establishes in the large intestine after day 19 p.i. To investigate the mechanism, adults obtained from the small intestine at day 7 or 19 p.i. were transplanted into the colon of infection-primed immune rats. Adults obtained at day 7 p.i. were rejected quickly, whereas those obtained at day 19 p.i. could establish infection. Moreover, the body length and the number of intrauterine eggs increased in the large intestine. In a separate experiment, large intestinal parasitism was abolished by the treatment of host rats with an anti-oxidant, butylated hydroxyanisole. These results indicate that small intestinal adults between days 7 and 19 p.i. acquired the ability to parasitize the large intestine of immune rats, and that free radicals produced by the host may have played a significant role in the process.
The half-Heusler compound ZrNiSn has a quite small solubility for Ni from the stoichiometric composition towards the Ni-rich direction since Ni atoms are not supposed to occupy the vacancy-site. Nevertheless, Co and Ir atoms preferably occupy the vacancy-site of ZrNiSn, which is contrary to the prediction that they would substitute for Ni sites. This implies that the phase stability of the compound gradually changes toward that of the Heusler compound Zr(Ni,M)2Sn (M = Co, Ir). It has been confirmed that there exists a two-phase field between half-Heusler Zr(Ni,Cox)Sn and Heusler Zr(Ni,Co)2Sn. The n-type thermoelectric property of ZrNiSn can be converted to p-type by the addition of Co and Ir within the compositional range of the half-Heusler phase. The occupation of vacancy sites by Co and Ir atoms leads to a drastic reduction in the thermal conductivity owing to the enhancement of phonon scattering. With further Co addition, the Heusler phase Zr(Ni,Co)2Sn alloys show metallic behavior.
In their 2007 paper, Jarvis, Kaufmann, and Kimura defined the full orbifoldK-theory of an orbifold , analogous to the Chen-Ruan orbifold cohomology of in that it uses the obstruction bundle as a quantum correction to the multiplicative structure. We give an explicit algorithm for the computation of this orbifold invariant in the case when arises as an abelian symplectic quotient. To this end, we introduce the inertial K-theory associated to a T -action on a stably complex manifold M, where T is a compact abelian Lie group. Our methods are integral K-theoretic analogues of those used in the orbifold cohomology case by Goldin, Holm, and Knutson in 2005. We rely on the K-theoretic Kirwan surjectivity methods developed by Harada and Landweber. As a worked class of examples, we compute the full orbifold K-theory of weighted projective spaces that occur as a symplectic quotient of a complex affine space by a circle. Our computations hold over the integers, and in the particular case of these weighted projective spaces, we show that the associated invariant is torsion-free.
This study aimed to analyse vocal performance and to investigate the nature of the neoglottal sound source in patients who had undergone supracricoid laryngectomy with cricohyoidoepiglottopexy, using a high-speed digital imaging system.
Methods:
High-speed digital imaging analysis of neoglottal kinetics was performed in two patients who had undergone supracricoid laryngectomy with cricohyoidoepiglottopexy; laryngotopography, inverse filtering analysis and multiline kymography were also undertaken.
Results:
In case one, laryngotopography demonstrated two vibrating areas: one matched with the primary (i.e. fundamental) frequency (75 Hz) and the other with the secondary frequency (150 Hz) at the neoglottis. In case two, laryngotopography showed two vibrating areas matched with the fundamental frequency (172 Hz) at the neoglottis. The interaction between the two areas was considered to be the sound source in both patients. The waveform of the estimated volume flow at the neoglottis, obtained by inverse filtering analysis, corresponded well to the neoglottal vibration patterns derived by multiline kymography. These findings indicated that the specific sites identified at the neoglottis by the present method were likely to be the sound source in each patient.
Conclusions:
High-speed digital imaging analysis is effective in locating the sites responsible for voice production in patients who have undergone supracricoid laryngectomy with cricohyoidoepiglottopexy. This is the first study to clearly identify the neoglottal sound source in such patients, using a high-speed digital imaging system.
The wettability of Pb-free Sn-based solder over the Cu-based Cu60Zr30Ti10 bulk metallic glass surface was investigated. We observed that the as-polished surface was nonwetting for the solder, which was due to the surface oxide layer of ZrOx formed in air. After complete removal of the oxide layer, a thin layer of Ag was deposited on the clean Cu60Zr30Ti10 surface. The Ag-covered Cu60Zr30Ti10 surface showed relatively high resistivity to the reoxidation even in air, and thus the wettability of the Cu60Zr30Ti10 surface for the Sn-based solder was greatly improved.
The evolution of microstructure in an Fe-0.67%C steel used for railway wheels has been investigated. To elucidate the mechanism of the ultrafine microstructure which is formed on the railway wheels tread surface, we have experimentally reproduced the same microstructure using uniaxial compressive deformation and subsequent annealing at 873 K. The deformation conditions required for ultrafine microstructure formation are the initial strain rate of 1 (=100) s-1 and total strain of 0.7. The mechanism of microstructural refinement is not the primary recrystallization but continuous recrystallization, i.e., the recovery process associated with the rearrangement of accumulated dislocations during deformation and annealing at temperatures between 773 K and 873 K. The recovery process never occurs at temperatures lower than 773 K. Primary recrystallization which involves the nucleation and growth of new ferrite grains takes place at temperatures higher than 873 K.