We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Meat quality is not only influenced by breed but also rearing environment. The aim of this study was to evaluate the influence of different housing environments on growth performance, carcase traits, meat quality, physiological response pre-slaughter and fatty acid composition in two pig breeds. A total of 120 growing pigs at 60-70 days of age were arranged in a 2 × 2 factorial design with the breeds (Duroc × Landrace × Large White [D × L × LW] and Duroc × Landrace × Min pig [D × L × M]) and environmental enrichment (barren concrete floor or enriched with straw bedding) as factors. Each treatment was performed in triplicate with ten pigs per replicate. The pigs housed in the enriched environment exhibited a higher average daily gain, average daily feed intake, saturated fatty acid percentage and backfat depth than the pigs reared in the barren environment. Plasma cortisol levels were lower and growth hormone higher in enriched compared to barren pens. The D × L × M pigs showed lower cooking loss compared with the D × L × LW pigs. Moreover, the D × L × M pigs exhibited poor growth performance but had a better water-holding capacity. Only carcase traits and meat quality interaction effects were observed. We concluded that an enriched environment can reduce preslaughter stress and improve the growth performance of pigs and modulate the fatty acid composition of pork products.
Cognitive impairments are well-established features of psychotic disorders and are present when individuals are at ultra-high risk for psychosis. However, few interventions target cognitive functioning in this population.
Aims
To investigate whether omega-3 polyunsaturated fatty acid (n−3 PUFA) supplementation improves cognitive functioning among individuals at ultra-high risk for psychosis.
Method
Data (N = 225) from an international, multi-site, randomised controlled trial (NEURAPRO) were analysed. Participants were given omega-3 supplementation (eicosapentaenoic acid and docosahexaenoic acid) or placebo over 6 months. Cognitive functioning was assessed with the Brief Assessment of Cognition in Schizophrenia (BACS). Mixed two-way analyses of variance were computed to compare the change in cognitive performance between omega-3 supplementation and placebo over 6 months. An additional biomarker analysis explored whether change in erythrocyte n−3 PUFA levels predicted change in cognitive performance.
Results
The placebo group showed a modest greater improvement over time than the omega-3 supplementation group for motor speed (ηp2 = 0.09) and BACS composite score (ηp2 = 0.21). After repeating the analyses without individuals who transitioned, motor speed was no longer significant (ηp2 = 0.02), but the composite score remained significant (ηp2 = 0.02). Change in erythrocyte n-3 PUFA levels did not predict change in cognitive performance over 6 months.
Conclusions
We found no evidence to support the use of omega-3 supplementation to improve cognitive functioning in ultra-high risk individuals. The biomarker analysis suggests that this finding is unlikely to be attributed to poor adherence or consumption of non-trial n−3 PUFAs.
Caregiving experiences are implicated in children’s depression risk; however, children’s neural reactivity to positive and negative feedback from mothers, a potential mediator of depression risk, is poorly understood. In a sample of 81 children (Mage = 11.12 years, SDage = 0.63), some of whom were recruited based on a maternal history of depression (n = 29), we used fMRI to characterize children’s neural responses to maternal praise and criticism. Maternal history of depression was unrelated to children’s brain activity during both the praise and criticism conditions; however, ROI analyses showed that children’s self-reported depressive symptoms were negatively associated with functional activity in the left anterior insula and right putamen while hearing maternal criticism. Whole-brain analyses showed that children’s depressive symptoms were positively associated with left inferior frontal gyrus activity while listening to maternal praise. These findings complement past work implicating these brain regions in the processing of emotionally salient stimuli, reward processing, and internal speech. Given associations between early depressive symptoms and later disorder, findings suggest that maladaptive neural processing of maternal feedback may contribute to children’s early emerging risk for depression.
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$. We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
Reduced-order models (ROMs) are computationally inexpensive simplifications of high-fidelity complex ones. Such models can be found in computational fluid dynamics where they can be used to predict the characteristics of multiphase flows. In previous work, we presented a ROM analysis framework that coupled compression techniques, such as autoencoders, with Gaussian process regression in the latent space. This pairing has significant advantages over the standard encoding–decoding routine, such as the ability to interpolate or extrapolate in the initial conditions’ space, which can provide predictions even when simulation data are not available. In this work, we focus on this major advantage and show its effectiveness by performing the pipeline on three multiphase flow applications. We also extend the methodology by using deep Gaussian processes as the interpolation algorithm and compare the performance of our two variations, as well as another variation from the literature that uses long short-term memory networks, for the interpolation.
Cognitive theories of depression contend that biased cognitive information processing plays a causal role in the development of depression. Extensive research shows that deeper processing of negative and/or shallower processing of positive self-descriptors (i.e., negative and positive self-schemas) predicts current and future depression in adults and children. However, the neural correlates of the development of self-referent encoding are poorly understood. We examined children's self-referential processing using the self-referent encoding task (SRET) collected from 74 children at ages 6, 9, and 12; around age 10, these children also contributed structural magnetic resonance imaging data. From age 6 to age 12, both positive and negative self-referential processing showed mean-level growth, with positive self-schemas increasing relatively faster than negative ones. Further, voxel-based morphometry showed that slower growth in positive self-schemas was associated with lower regional gray matter volume (GMV) in ventrolateral prefrontal cortex (vlPFC). Our results suggest that smaller regional GMV within vlPFC, a critical region for regulatory control in affective processing and emotion development, may have implications for the development of depressogenic self-referential processing in mid-to-late childhood.
The objectives of this study were to develop and refine EMPOWER (Enhancing and Mobilizing the POtential for Wellness and Resilience), a brief manualized cognitive-behavioral, acceptance-based intervention for surrogate decision-makers of critically ill patients and to evaluate its preliminary feasibility, acceptability, and promise in improving surrogates’ mental health and patient outcomes.
Method
Part 1 involved obtaining qualitative stakeholder feedback from 5 bereaved surrogates and 10 critical care and mental health clinicians. Stakeholders were provided with the manual and prompted for feedback on its content, format, and language. Feedback was organized and incorporated into the manual, which was then re-circulated until consensus. In Part 2, surrogates of critically ill patients admitted to an intensive care unit (ICU) reporting moderate anxiety or close attachment were enrolled in an open trial of EMPOWER. Surrogates completed six, 15–20 min modules, totaling 1.5–2 h. Surrogates were administered measures of peritraumatic distress, experiential avoidance, prolonged grief, distress tolerance, anxiety, and depression at pre-intervention, post-intervention, and at 1-month and 3-month follow-up assessments.
Results
Part 1 resulted in changes to the EMPOWER manual, including reducing jargon, improving navigability, making EMPOWER applicable for a range of illness scenarios, rearranging the modules, and adding further instructions and psychoeducation. Part 2 findings suggested that EMPOWER is feasible, with 100% of participants completing all modules. The acceptability of EMPOWER appeared strong, with high ratings of effectiveness and helpfulness (M = 8/10). Results showed immediate post-intervention improvements in anxiety (d = −0.41), peritraumatic distress (d = −0.24), and experiential avoidance (d = −0.23). At the 3-month follow-up assessments, surrogates exhibited improvements in prolonged grief symptoms (d = −0.94), depression (d = −0.23), anxiety (d = −0.29), and experiential avoidance (d = −0.30).
Significance of results
Preliminary data suggest that EMPOWER is feasible, acceptable, and associated with notable improvements in psychological symptoms among surrogates. Future research should examine EMPOWER with a larger sample in a randomized controlled trial.
Multicomponent polymer systems are of interest in organic photovoltaic and drug delivery applications, among others where diverse morphologies influence performance. An improved understanding of morphology classification, driven by composition-informed prediction tools, will aid polymer engineering practice. We use a modified Cahn–Hilliard model to simulate polymer precipitation. Such physics-based models require high-performance computations that prevent rapid prototyping and iteration in engineering settings. To reduce the required computational costs, we apply machine learning (ML) techniques for clustering and consequent prediction of the simulated polymer-blend images in conjunction with simulations. Integrating ML and simulations in such a manner reduces the number of simulations needed to map out the morphology of polymer blends as a function of input parameters and also generates a data set which can be used by others to this end. We explore dimensionality reduction, via principal component analysis and autoencoder techniques, and analyze the resulting morphology clusters. Supervised ML using Gaussian process classification was subsequently used to predict morphology clusters according to species molar fraction and interaction parameter inputs. Manual pattern clustering yielded the best results, but ML techniques were able to predict the morphology of polymer blends with ≥90% accuracy.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
In chemical process engineering, surrogate models of complex systems are often necessary for tasks of domain exploration, sensitivity analysis of the design parameters, and optimization. A suite of computational fluid dynamics (CFD) simulations geared toward chemical process equipment modeling has been developed and validated with experimental results from the literature. Various regression-based active learning strategies are explored with these CFD simulators in-the-loop under the constraints of a limited function evaluation budget. Specifically, five different sampling strategies and five regression techniques are compared, considering a set of four test cases of industrial significance and varying complexity. Gaussian process regression was observed to have a consistently good performance for these applications. The present quantitative study outlines the pros and cons of the different available techniques and highlights the best practices for their adoption. The test cases and tools are available with an open-source license to ensure reproducibility and engage the wider research community in contributing to both the CFD models and developing and benchmarking new improved algorithms tailored to this field.
Development of high energy density solid-state batteries with Li metal anodes has been limited by uncontrollable growth of Li dendrites in liquid and solid electrolytes (SEs). This, in part, may be caused by a dearth of information about mechanical properties of Li, especially at the nano- and microlength scales and microstructures relevant to Li batteries. We investigate Li electrodeposited in a commercial LiCoO2/LiPON/Cu solid-state thin-film cell, grown in situ in a scanning electron microscope equipped with nanomechanical capabilities. Experiments demonstrate that Li was preferentially deposited at the LiPON/Cu interface along the valleys that mimic the domain boundaries of underlying LiCoO2 (cathode). Cryogenic electron microscopy analysis of electrodeposited Li revealed a single-crystalline microstructure, and in situ nanocompression experiments on nano-pillars with 360–759 nm diameters revealed their average Young's modulus to be 6.76 ± 2.88 GPa with an average yield stress of 16.0 ± 6.82 MPa, ~24x higher than what has been reported for bulk polycrystalline Li. We discuss mechanical deformation mechanisms, stiffness, and strength of nano-sized electrodeposited Li in the framework of its microstructure and dislocation-governed nanoscale plasticity of crystals, and place it in the parameter space of existing knowledge on small-scale Li mechanics. The enhanced strength of Li at small scales may explain why it can penetrate and fracture through much stiffer and harder SEs than theoretically predicted.
Attrition can pose significant barriers to treatment success of depression; its contributing factors and impacts on treatment outcome need further clarification. Current study aimed to describe patterns of treatment attrition, to examine associated demographic and clinical determinants and to test whether and how attrition affects outcome of depression in a national cohort of adults treated for depression.
Material and methods
All adult patients prescribed with antidepressants for depression (n=216,557) in 2003 were identified from the National Health Insurance Research Database in Taiwan. Based on individuals’ clinical visit and antidepressant prescription, three attrition types, i.e., non-attrition, returning attrition and non-returning attrition, and their demographic/disease characteristics were identified. The relationships between attrition type and remission outcome over an 18-month follow-up period were further explored.
Results
Factors pertaining to disease characteristics (severity of depression, comorbidities, painful physical symptoms and past treatment history) and clinical practice (physician specialty and choice of antidepressants) were associated with attrition and remission outcome at 18-month follow-up. Patients remaining in treatment within the first three months were associated with higher odds of having sustained remission (OR=1.21; 99% CI: 1.16, 1.27) and lower odds of having relapses/recurrences (OR=0.20; 99% CI: 0.19, 0.21) over the 18-month period, compared to those returning attriters.
Conclusions
Early attrition has significant negative impacts on antidepressant treatment outcome; it hence needs to be minimized through shared decision-making, exchange of treatment preferences and proper patient-physician communication. Based on current understanding, further efforts to reduce early attrition are highly warranted.
Feathers play a critical role in thermoregulation and directly influence poultry production. Poor feathering adversely affects living appearance and carcass quality, thus reducing profits. However, producers tend to ignore the importance of feather development and do not know the laws of feather growth and development. The objective of this study was to fit growth curves to describe the growth and development of feathers in yellow-feathered broilers during the embryonic and posthatching periods using different nonlinear functions (Gompertz, logistic and Bertalanffy). Feather mass and length were determined during the embryonic development and posthatching stages to identify which growth model most accurately described the feather growth pattern. The results showed that chick embryos began to grow feathers at approximately embryonic (E) day 10, and the feathers grew rapidly from E13 to E17. There was little change from E17 to the day of hatching (DOH). During the embryonic period, the Gompertz function (Y = 798.48e−203 431exp(−0.87t), Akaike’s information criterion (AIC) = −0.950 × 103, Bayesian information criterion (BIC) = −0.711 × 103 and mean square error (MSE) = 559.308) provided the best fit for the feather growth curve compared with the other two functions. After hatching, feather mass and length changed little from the DOH to day (D) 14, increased rapidly from D21 to D91 and then grew slowly after D91. The first stage of feather molting occurred from 2 to 3 weeks of age when the down feathers were mostly shed and replaced with juvenile feathers, and the second stage occurred at approximately 13 to 15 weeks of age. The three nonlinear functions could overall fit the feather growth curve well, but the Bertalanffy model (Y = 116.88 × (1−0.86e−0.02t)3, AIC = 1.065 × 105, BIC = 1.077 × 105 and MSE = 11.308) showed the highest degree of fit among the models. Therefore, the Gompertz model exhibited the best goodness of fit for the feather growth curve during the embryonic development, while the Bertalanffy model was the most suitable model due to its accurate ability to predict the growth and development of feathers during the growth period, which is an important commercial characteristic of yellow-feathered chickens.
Mental disorders can have a major impact on brain development. Peripheral blood concentrations of brain-derived neurotrophic factor (BDNF) are lower in adult psychiatric disorders. Serum BDNF concentrations and BDNF genotype have been associated with cortical maturation in children and adolescents. In 2 large independent samples, this study tests associations between serum BDNF concentrations, brain structure, and psychopathology, and the effects of BDNF genotype on BDNF serum concentrations in late childhood and early adolescence.
Methods
Children and adolescents (7-14 years old) from 2 cities (n = 267 in Porto Alegre; n = 273 in São Paulo) were evaluated as part of the Brazilian high-risk cohort (HRC) study. Serum BDNF concentrations were quantified by sandwich ELISA. Genotyping was conducted from blood or saliva samples using the SNParray Infinium HumanCore Array BeadChip. Subcortical volumes and cortical thickness were quantified using FreeSurfer. The Development and Well-Being Behavior Assessment was used to identify the presence of a psychiatric disorder.
Results
Serum BDNF concentrations were not associated with subcortical volumes or with cortical thickness. Serum BDNF concentration did not differ between participants with and without mental disorders, or between Val homozygotes and Met carriers.
Conclusions
No evidence was found to support serum BDNF concentrations as a useful marker of developmental differences in brain and behavior in early life. Negative findings were replicated in 2 of the largest independent samples investigated to date.
The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFκB activation and, consequently, attenuate inflammation induced by a high-fat diet in black sea bream (Acanthopagrus schlegelii). An 8-week feeding trial was conducted on fish with an initial weight of 8·16 ± 0·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3, 6 or 12 g/kg) termed HFD + C1, HFD + C2 and HFD + C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of nfκb and pro-inflammatory cytokines in liver and intestine was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of nfκb and pro-inflammatory cytokines in liver, intestine and kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFκB activation, consequently attenuating HFD-induced inflammation in A. schlegelii.
While child self-regulation is shaped by the environment (e.g., the parents’ caregiving behaviors), children also play an active role in influencing the care they receive, indicating that children's individual differences should be integrated in models relating early care to children's development. We assessed 409 children's observed temperamental behavioral inhibition (BI), effortful control (EC), and the primary caregiver's parenting at child ages 3 and 5. Parents reported on child behavior problems at child ages 3, 5, and 8. Mediation analyses were conducted to examine relations between child temperament and parenting in predicting child problems. BI at age 3 was positively associated with structured parenting at age 5, which was negatively related to child internalizing and attention-academic problems at age 8. In contrast, parenting at child age 3 did not predict child BI or EC at age 5, nor did age 3 EC predict parenting at age 5. Findings indicate that child behavior may shape the development of caregiving and, in turn, long-term child adjustment, suggesting that studies of caregiving and child outcomes should consider the role of child temperament toward developing more informative models of child–environment interplay.
An experiment was conducted to determine the effects of supplementing different amounts of daidzein in a diet on the growth performance, blood biochemical parameters and meat quality of finishing beef cattle. Thirty finishing Xianan steers were distributed in three groups equilibrated by weight and fed three different dietary treatments (concentrate ratio = 80%): (1) control; (2) 500 mg/kg daidzein and (3) 1000 mg/kg daidzein, respectively. Steers were slaughtered after an 80-day feeding trial. Results showed that daidzein supplementation had no effect on the final body weight, average daily gain and feed conversion rate of steers. Steers fed with 1000 mg/kg daidzein had greater dry matter intake than those fed with control diets. Compared with the control group, the 1000 mg/kg daidzein group had a higher fat thickness, lower shear force and lightness. The pH, drip loss, cooking loss, redness (a*), yellowness (b*), moisture, ash, crude protein and intramuscular fat of the Longissimus dorsi muscle were unaffected by daidzein supplementation. Compared with the control group, the 1000 mg/kg daidzein group significantly increased the serum concentrations of insulin, free fatty acid and Glutamic-pyruvic transaminase. The 500 mg/kg daidzein group significantly increased the serum concentration of tetraiodothyronine compared with the control group. Supplemental daidzein did not affect the blood antioxidant ability and blood immune parameters in serum. In conclusion, daidzein supplementation above 500 mg/day modifies feed intake and metabolic and hormonal profile, with positive and negative effects on meat quality.
A stable reference gene is a key prerequisite for accurate assessment of gene expression. At present, the real-time reverse transcriptase quantitative polymerase chain reaction has been widely used in the analysis of gene expression in a variety of organisms. Neoseiulus barkeri Hughes (Acari: Phytoseiidae) is a major predator of mites on many important economically crops. Until now, however, there are no reports evaluating the stability of reference genes in this species. In view of this, we used GeNorm, NormFinder, BestKeeper, and RefFinder software tools to evaluate the expression stability of 11 candidate reference genes in developmental stages and under various abiotic stresses. According to our results, β-ACT and Hsp40 were the top two stable reference genes in developmental stages. The Hsp60 and Hsp90 were the most stable reference genes in various acaricides stress. For alterations in temperature, Hsp40 and α-TUB were the most suitable reference genes. About UV stress, EF1α and α-TUB were the best choice, and for the different prey stress, β-ACT and α-TUB were best suited. In normal conditions, the β-ACT and α-TUB were the two of the highest stable reference genes to respond to all kinds of stresses. The current study provided a valuable foundation for the further analysis of gene expression in N. barkeri.
A natural quartz, annealed first at 800°C and then irradiated with a 3.5 MeV electron beam, has been investigated by single-crystal electron paramagnetic resonance (EPR) spectroscopy at X- and W-band frequencies from 110 K to 298 K. The W-band EPR spectra allow better separation of two previously reported radiation-induced defects (D and E) and improved determinations of their spin Hamiltonian parameters. These defects have similar g tensors with the gmax axes approximately along an O—O pair and gmin axes perpendicular to the short Si—O bonds, but different 27Al hyperfine structures. Centre E is also characterized by a 29Si hyperfine structure (A/geβe = ~0.4 mT). These spin Hamiltonian parameters, together with results from density functional theory (DFT) calculations, suggest centre E to be a new variant of peroxy radicals in quartz, whereas a peroxy radical model for centre D remains tentative. Thermal stabilities and decay kinetics of centres D and E have been investigated by use of isochronal and isothermal annealing experiments on a neutron-irradiated quartz and six smoky quartz crystals in druses from a U deposit.
Oxidative stress has been documented in chronic schizophrenia and in the first episode of psychosis, but there are very little data on oxidative stress prior to the disease onset.
Objective
This work aimed to compare serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in young individuals at ultra-high risk (UHR) of developing psychosis with a comparison healthy control group (HC).
Methods
Thirteen UHR subjects and 29 age- and sex-matched healthy controls (HC) were enrolled in this study. Clinical assessment included the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or the Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and the Global Assessment of Functioning (GAF) scale. Activities of SOD and GPx were measured in serum by the spectrophotometric method using enzyme-linked immunosorbent assay kits.
Results
After adjusting for age and years of education, there was a significant lower activity of SOD and lower GPX activity in the UHR group compared to the healthy control group (rate ratio [RR]=0.330, 95% CI 0.187; 0.584, p<0.001 and RR=0.509, 95% CI 0.323; 0.803, p=0.004, respectively). There were also positive correlations between GAF functioning scores and GPx and SOD activities.
Conclusion
Our results suggest that oxidative imbalances could be present prior to the onset of full-blown psychosis, including in at-risk stages. Future studies should replicate and expand these results.