Skip to main content Accessibility help
×
Home

Comparison of nonlinear models to describe the feather growth and development curve in yellow-feathered chickens

  • W. Y. Xie (a1), N. X. Pan (a1), H. R. Zeng (a1), H. C. Yan (a1), X. Q. Wang (a1) and C. Q. Gao (a1)...

Abstract

Feathers play a critical role in thermoregulation and directly influence poultry production. Poor feathering adversely affects living appearance and carcass quality, thus reducing profits. However, producers tend to ignore the importance of feather development and do not know the laws of feather growth and development. The objective of this study was to fit growth curves to describe the growth and development of feathers in yellow-feathered broilers during the embryonic and posthatching periods using different nonlinear functions (Gompertz, logistic and Bertalanffy). Feather mass and length were determined during the embryonic development and posthatching stages to identify which growth model most accurately described the feather growth pattern. The results showed that chick embryos began to grow feathers at approximately embryonic (E) day 10, and the feathers grew rapidly from E13 to E17. There was little change from E17 to the day of hatching (DOH). During the embryonic period, the Gompertz function (Y = 798.48e−203 431exp(−0.87t), Akaike’s information criterion (AIC) = −0.950 × 103, Bayesian information criterion (BIC) = −0.711 × 103 and mean square error (MSE) = 559.308) provided the best fit for the feather growth curve compared with the other two functions. After hatching, feather mass and length changed little from the DOH to day (D) 14, increased rapidly from D21 to D91 and then grew slowly after D91. The first stage of feather molting occurred from 2 to 3 weeks of age when the down feathers were mostly shed and replaced with juvenile feathers, and the second stage occurred at approximately 13 to 15 weeks of age. The three nonlinear functions could overall fit the feather growth curve well, but the Bertalanffy model (Y = 116.88 × (1−0.86e−0.02t)3, AIC = 1.065 × 105, BIC = 1.077 × 105 and MSE = 11.308) showed the highest degree of fit among the models. Therefore, the Gompertz model exhibited the best goodness of fit for the feather growth curve during the embryonic development, while the Bertalanffy model was the most suitable model due to its accurate ability to predict the growth and development of feathers during the growth period, which is an important commercial characteristic of yellow-feathered chickens.

Copyright

Corresponding author

References

Hide All
Aggrey, SE 2002. Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science 81, 17821788.
Alves, WJ, Malheiros, EB, Sakomura, NK, Da Silva, EP, Gabriel, DSV, Matheus, DPR, Camila, AG and Rafael, MS 2019. In vivo description of body growth and chemical components of egg-laying pullets. Livestock Science 220, 221229.
Chen, CF, Foley, J, Tang, P, Li, CA, Jiang, T, Wu, XP, Widelitz, RB and Cheng, MC 2015a. Development, regeneration, and evolution of feathers. Annual Review of Animal Biosciences 3, 169195.
Chen, JL, Zhao, GP, Zheng, MQ, Wen, J and Yang, N 2008. Estimation of genetic parameters for contents of intramuscular fat and inosine-5'-monophosphate and carcass traits in Chinese Beijing-You chickens. Poultry Science 87, 10981104.
Chuong, CM, Randall, VA, Widelitz, RB, Wu, P and Jiang, TX 2012. Physiological regeneration of skin appendages and implications for regenerative medicine. Physiology 27, 6172.
DesRochers, DW, Silbernagle, MD, Nadig, A and Reed, JM 2010. Body size, growth, and feather mass of the Endangered Hawaiian Moorhen (Gallinula Chloropus Sandvicensis). Pacific Science 64, 327333.
Duncan, TE and Duncan, SC 2004. An introduction to latent growth curve modeling. Behavior Therapy 35, 333363.
Gao, CQ, Yang, JX, Chen, MX, Yan, HC and Wang, XQ 2016. Growth curves and age-related changes in carcass characteristics, organs, serum parameters, and intestinal transporter gene expression in domestic pigeon (Columba livia). Poultry Science 95, 867877.
Gong, H, Wang, H, Wang, YX, Xue, B, Liu, B, He, JF, Wu, JH, Qi, WM and Zhang, WG 2018. Skin transcriptome reveals the dynamic changes in the Wnt pathway during integument morphogenesis of chick embryos. PLoS ONE 13, e0190933.
Hancock, CE, Bradford, GD, Emmans, GC and Gous, RM 1995. The evaluation of the growth parameters of six strains of commercial broiler chickens. British Poultry Science 36, 247264.
Kjaer, J and Bessei, W 2013. The interrelationships of nutrition and feather pecking in the domestic fowl-a review. European Poultry Science 77, 19.
Leeson, S and Walsh, T 2004. Feathering in commercial poultry. ii. Factors influencing feather growth and feather loss. World′s Poultry Science Journal 60, 5263.
Li, XG, Chen, XL and Wang, XQ 2013. Changes in relative organ weights and intestinal transporter gene expression in embryos from White Plymouth Rock and WENS Yellow Feather Chickens. Comparative Biochemistry Physiology A-Molecular Integrative Physiology 164, 368375.
Lin, SJ, Wideliz, RB, Yue, Z, Li, A, Wu, X, Jiang, TX, Wu, P and Chuong, CM 2013. Feather regeneration as a model for organogenesis. Development Growth and Differentiation 55, 139148.
Lopez-Coello, C 2003. Potential causes of broiler feathering problems. Feathering manual, pp. 146. Novus International, St. Louis, MO, USA.
Meyer, W and Baumgartner, G 2010. Embryonal feather growth in the chicken. Journal of Anatomy 193, 611616.
Ministry of Agriculture of the People’s Republic of China 2004. Nutrient requirements of Chinese color-feather chicken. Feeding Standard of Chicken. 2nd edition. China Agricultural Press, Beijing, China. (In Chinese)
Musser, JM, Wagner, GP and Prum, RO 2015. Nuclear β-catenin localization supports homology of feathers, avian scutate scales, and alligator scales in early development. Evolution and Development 17, 185194.
Narinc, D, Aksoy, T, Karaman, E and Curek, DI 2010. Analysis of fitting growth models in medium growing chicken raised indoor system. Trends in Animal and Veterinary Sciences 1, 1218.
Narinc, D, Karaman, E, Aksoy, T and Firat, MZ 2013. Investigation of nonlinear models to describe long-term egg production in Japanese quail. Poultry Science 92, 16761682.
Scott, JM, Costa, JD and Oviedorondon, EO 2015. Incubation temperature profiles affect broiler feathering. Journal of Applied Poultry Research 24, 4957.
Statistical Analysis Systems (SAS ) 2002–2003. SAS version 9.1. Statistical Analysis Systems Institute Inc., Cary, NC, USA.
Stepinska, M, Mroz, E and Jankowski, J 2012. The effect of dietary selenium source on embryonic development in Turkeys. Folia Biologica 60, 235241.
Tedeschi, LO 2006. Assessment of the adequacy of mathematical models. Agricultural Systems 89, 225247.
Tompic, T, Dobsa, J, Legen, S, Tompic, N and Medic, H 2011. Modeling the growth pattern of in-season and off-season Ross 308 broiler breeder flocks. Poultry Science 90, 28792887.
Vitezica, ZG, Marie-Etancelin, C, Bernadet, MD, Fernandez, X and Robert-Granie, C 2010. Comparison of nonlinear and spline regression models for describing mule duck growth curves. Poultry Science 89, 17781784.
Wattanachant, S, Benjakul, S and Ledward, DA 2005. Microstructure and thermal characteristics of Thai indigenous and broiler chicken muscles. Poultry Science 84, 328336.
Wylie, LM, Robertson, GW and Hocking, PM 2003. Effects of dietary protein concentration and specific amino acids on body weight, body composition and feather growth in young turkeys. British Poultry Science 44, 7587.
Zach, R and Mayoh, KR 2011. Weight and feather growth of nestling tree swallows. Canadian Journal of Zoology 60, 10801090.
Zheng, MQ, Gong, GF, Gao, HJ, Yao, WY, Lv, SY, Tian, LJ and Wen, J 2016. Report of Chinese broiler industry development in 2015. China Poultry 38, 6770. (In Chinese)

Keywords

Type Description Title
WORD
Supplementary materials

Xie et al. supplementary material
Xie et al. supplementary material

 Word (17 KB)
17 KB

Comparison of nonlinear models to describe the feather growth and development curve in yellow-feathered chickens

  • W. Y. Xie (a1), N. X. Pan (a1), H. R. Zeng (a1), H. C. Yan (a1), X. Q. Wang (a1) and C. Q. Gao (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed