We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Murchison Widefield Array (MWA) has observed the entire southern sky (Declination,
$\delta< 30^{\circ}$
) at low radio frequencies, over the range 72–231MHz. These observations constitute the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we use the extragalactic catalogue (EGC) (Galactic latitude,
$|b| >10^{\circ}$
) to define the GLEAM 4-Jy (G4Jy) Sample. This is a complete sample of the ‘brightest’ radio sources (
$S_{\textrm{151\,MHz}}>4\,\text{Jy}$
), the majority of which are active galactic nuclei with powerful radio jets. Crucially, low-frequency observations allow the selection of such sources in an orientation-independent way (i.e. minimising the bias caused by Doppler boosting, inherent in high-frequency surveys). We then use higher-resolution radio images, and information at other wavelengths, to morphologically classify the brightest components in GLEAM. We also conduct cross-checks against the literature and perform internal matching, in order to improve sample completeness (which is estimated to be
$>95.5$
%). This results in a catalogue of 1863 sources, making the G4Jy Sample over 10 times larger than that of the revised Third Cambridge Catalogue of Radio Sources (3CRR;
$S_{\textrm{178\,MHz}}>10.9\,\text{Jy}$
). Of these G4Jy sources, 78 are resolved by the MWA (Phase-I) synthesised beam (
$\sim2$
arcmin at 200MHz), and we label 67% of the sample as ‘single’, 26% as ‘double’, 4% as ‘triple’, and 3% as having ‘complex’ morphology at
$\sim1\,\text{GHz}$
(45 arcsec resolution). We characterise the spectral behaviour of these objects in the radio and find that the median spectral index is
$\alpha=-0.740 \pm 0.012$
between 151 and 843MHz, and
$\alpha=-0.786 \pm 0.006$
between 151MHz and 1400MHz (assuming a power-law description,
$S_{\nu} \propto \nu^{\alpha}$
), compared to
$\alpha=-0.829 \pm 0.006$
within the GLEAM band. Alongside this, our value-added catalogue provides mid-infrared source associations (subject to 6” resolution at 3.4
$\mu$
m) for the radio emission, as identified through visual inspection and thorough checks against the literature. As such, the G4Jy Sample can be used as a reliable training set for cross-identification via machine-learning algorithms. We also estimate the angular size of the sources, based on their associated components at
$\sim1\,\text{GHz}$
, and perform a flux density comparison for 67 G4Jy sources that overlap with 3CRR. Analysis of multi-wavelength data, and spectral curvature between 72MHz and 20GHz, will be presented in subsequent papers, and details for accessing all G4Jy overlays are provided at https://github.com/svw26/G4Jy.
The entire southern sky (Declination,
$\delta< 30^{\circ}$
) has been observed using the Murchison Widefield Array (MWA), which provides radio imaging of
$\sim$
2 arcmin resolution at low frequencies (72–231 MHz). This is the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we have previously used a combination of visual inspection, cross-checks against the literature, and internal matching to identify the ‘brightest’ radio-sources (
$S_{\mathrm{151\,MHz}}>4$
Jy) in the extragalactic catalogue (Galactic latitude,
$|b| >10^{\circ}$
). We refer to these 1 863 sources as the GLEAM 4-Jy (G4Jy) Sample, and use radio images (of
${\leq}45$
arcsec resolution), and multi-wavelength information, to assess their morphology and identify the galaxy that is hosting the radio emission (where appropriate). Details of how to access all of the overlays used for this work are available at https://github.com/svw26/G4Jy. Alongside this we conduct further checks against the literature, which we document here for individual sources. Whilst the vast majority of the G4Jy Sample are active galactic nuclei with powerful radio-jets, we highlight that it also contains a nebula, two nearby, star-forming galaxies, a cluster relic, and a cluster halo. There are also three extended sources for which we are unable to infer the mechanism that gives rise to the low-frequency emission. In the G4Jy catalogue we provide mid-infrared identifications for 86% of the sources, and flag the remainder as: having an uncertain identification (129 sources), having a faint/uncharacterised mid-infrared host (126 sources), or it being inappropriate to specify a host (2 sources). For the subset of 129 sources, there is ambiguity concerning candidate host-galaxies, and this includes four sources (B0424–728, B0703–451, 3C 198, and 3C 403.1) where we question the existing identification.
The evolutionary basis for clinical depression is not well understood. A growing body of literature that is not based on evolutionary logic links inflammation to depression. Integration of these findings with an evolutionary framework for depression, however, needs to address the reasons why the body's inflammatory response would be regulated so poorly that it would result in incapacitating depression. Pathogen induction of inflammation offers an explanation, but the extent to which the association between inflammation and depression can be attributed to general inflammation as opposed to particular effects of pro-inflammatory pathogens remains unclear. This paper reports a study of sexually transmitted pathogens, which addresses this issue. Although several sexually transmitted pathogens were associated with depression according to bivariate tests, only Chlamydia trachomatis and Trichomonas vaginalis were significantly associated with depression by a multivariate analysis that accounted for correlations among the pathogens. This finding is consistent with the hypothesis that infection may contribute to depression through induction of tryptophan restriction, and a consequent depletion of serotonin. It reinforces the idea that some depression may be caused by specific pathogens in specific evolutionary arms races with their human host.
We detail tentative detections of low-frequency carbon radio recombination lines from within the Orion molecular cloud complex observed at 99–129 MHz. These tentative detections include one alpha transition and one beta transition over three locations and are located within the diffuse regions of dust observed in the infrared at 100 μm, the Hα emission detected in the optical, and the synchrotron radiation observed in the radio. With these observations, we are able to study the radiation mechanism transition from collisionally pumped to radiatively pumped within the H ii regions within the Orion molecular cloud complex.
In the era of the SKA precursors, telescopes are producing deeper, larger images of the sky on increasingly small time-scales. The greater size and volume of images place an increased demand on the software that we use to create catalogues, and so our source finding algorithms need to evolve accordingly. In this paper, we discuss some of the logistical and technical challenges that result from the increased size and volume of images that are to be analysed, and demonstrate how the Aegean source finding package has evolved to address these challenges. In particular, we address the issues of source finding on spatially correlated data, and on images in which the background, noise, and point spread function vary across the sky. We also introduce the concept of forced or prioritised fitting.
Through this study we aimed to assess the educational level and employment status of adults with CHD in Germany.
Methods
Data were acquired from an online survey carried out in 2015 by the German National Register for Congenital Heart Defects. A total of 1458 adults with CHD participated in the survey (response rate: 37.6%). For 1198 participants, detailed medical information, such as main cardiac diagnosis and information from medical reports, was available.
Results
Of the participants surveyed (n=1198), 54.5% (n=653) were female, and the mean age was 30 years. The majority of respondents (59.4%) stated that they had high education levels and that they were currently employed (51.1%). Patients with simple CHD had significantly higher levels of education (p<0.001) and were more likely to be employed (p=0.01) than were patients with complex CHD.
Conclusions
More than half of the participants had high education levels and the majority were employed. The association between CHD and its severity and individuals’ educational attainment should be investigated more closely in future studies.
We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array telescope. We searched the GaLactic and Extragalactic All-sky Murchison Widefield Array survey images for 200-MHz continuum radio emission at the position of all pulsars in the Australia Telescope National Facility (ATNF) pulsar catalogue. For the 60 confirmed detections, we have measured flux densities in 20 × 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the Murchison Widefield Array flux densities are in good agreement.
Improving dementia diagnosis rates in England has been a key strategic aim of the UK Government but the variation and low diagnosis rates are poorly understood. The aim of this study was to explore the variation in actual versus expected diagnosis of dementia across England, and how these variations were associated with general practice characteristics.
Method
A cross-sectional, ecological study design using secondary data sources and median regression modelling was used. Data from the year 2011 for 7711 of the GP practices in England (92.7%). Associations of dementia diagnosis rates (%) per practice, calculated using National Health Service England’s ‘Dementia Prevalence Calculator’ and various practice characteristics were explored using a regression model.
Results
The median dementia diagnosis rate was 41.6% and the interquartile range was 31.2–53.9%. Multivariable regression analysis demonstrated positive associations between dementia diagnosis rates and deprivation of the population, overall Quality and Outcomes Framework performance, type of primary care contract and size of practice list. Negative associations were found between dementia diagnosis rates and average experience of GPs in the practice and the proportion of the practice caseload over 65 years old.
Conclusion
Dementia diagnosis rates vary greatly across GP practices in England. This study has found independent associations between dementia diagnosis rates and a number of patient and practice characteristics. Consideration of these factors locally may provide targets for case-finding interventions and so facilitate timely diagnosis.
The concept of information has penetrated almost all areas of human inquiry, from physics, chemistry, and engineering through biology to the social sciences. And yet its status as a physical entity remains obscure. Traditionally, information has been treated as a derived or secondary concept. In physics especially, the fundamental bedrock of reality is normally vested in the material building blocks of the universe, be they particles, strings, or fields. Because bits of information are always instantiated in material degrees of freedom, the properties of information could, it seems, always be reduced to those of the material substrate. Nevertheless, over several decades there have been attempts to invert this interdependence and root reality in information rather than matter. This contrarian perspective is most famously associated with the name of John Archibald Wheeler, who encapsulated his proposal in the pithy dictum ‘it from bit?’ (Wheeler, 1999).
In a practical, everyday sense, information is often treated as a primary entity, as a ‘thing in its own right’ with a measure of autonomy; indeed, it is bought and sold as a commodity alongside gas and steel. In the life sciences, informational narratives are indispensable: biologists talk about the genetic code, about translation and transcription, about chemical signals and sensory data processing, all of which treat information as the currency of activity, the ‘oil’ that makes the ‘biological wheels go round’. The burgeoning fields of genomic and metagenomic sequencing and bioinformatics are based on the notion that informational bits are literally vital. But beneath this familiar practicality lies a stark paradox. If information makes a difference in the physical world, which it surely does, then should we not attribute to it causal powers? However, in physics causation is invariably understood at the level of particle and field interactions, not in the realm of abstract bits (or qubits, their quantum counterparts). Can we have both? Can two causal chains coexist compatibly? Are the twin narratives of material causation and informational causation comfortable bedfellows? If so, what are the laws and principles governing informational dynamics to place alongside the laws of material dynamics?
Recent advances suggest that the concept of information might hold the key to unravelling the mystery of life's nature and origin. Fresh insights from a broad and authoritative range of articulate and respected experts focus on the transition from matter to life, and hence reconcile the deep conceptual schism between the way we describe physical and biological systems. A unique cross-disciplinary perspective, drawing on expertise from philosophy, biology, chemistry, physics, and cognitive and social sciences, provides a new way to look at the deepest questions of our existence. This book addresses the role of information in life, and how it can make a difference to what we know about the world. Students, researchers, and all those interested in what life is and how it began will gain insights into the nature of life and its origins that touch on nearly every domain of science.
There are few open problems in science as perplexing as the nature of life and consciousness. At present, we do not have many scientific windows into either. In the case of consciousness, it seems evident that certain aspects will ultimately defy reductionist explanation, the most important being the phenomenon of qualia – roughly speaking, our subjective experience as observers. It is a priori far from obvious why we should have experiences such as the sensation of the smell of coffee or the blueness of the sky. Subjective experience isn't necessary for the evolution of intelligence (we could, for example, be zombies in the philosophical sense and appear to function just as well from the outside with nothing going on inside). Even if we do succeed in eventually uncovering a complete mechanistic understanding of the wiring and firing of every neuron in the brain, it might tell us nothing about thoughts, feelings, and what it is like to experience something. Our phenomenal experiences are the only aspect of consciousness that appears as though they cannot, even in principle, be reduced to known physical principles. This led Chalmers to identify pinpointing an explanation for our subjective experience as the “hard problem of consciousness.” The corresponding “easy problems” (in practice not so easy) are associated with mapping the neural correlates of various experiences. By focusing attention on the problem of subjective experience, Chalmers highlighted the truly inexplicable aspect of consciousness, based on our current understanding. The issue, however, is by no means confined to philosophy. Chalmers’ proposed resolution is to regard subjective consciousness as an irreducible, fundamental property of mind, with its own laws and principles. Progress can be expected to be made by focusing on what would be required for a theory of consciousness to stand alongside our theories for matter, even if it turns out that something fundamentally new is not necessary.
The same may be true for life. With the case of life, it seems as though we have a better chance of understanding it as a physical phenomenon than we do with consciousness.