We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Instrument delivery is critical part in vascular intervention surgery. Due to the soft-body structure of instruments, the relationship between manipulation commands and instrument motion is non-linear, making instrument delivery challenging and time-consuming. Reinforcement learning has the potential to learn manipulation skills and automate instrument delivery with enhanced success rates and reduced workload of physicians. However, due to the sample inefficiency when using high-dimensional images, existing reinforcement learning algorithms are limited on realistic vascular robotic systems. To alleviate this problem, this paper proposes discrete soft actor-critic with auto-encoder (DSAC-AE) that augments SAC-discrete with an auxiliary reconstruction task. The algorithm is applied with distributed sample collection and parameter update in a robot-assisted preclinical environment. Experimental results indicate that guidewire delivery can be automatically implemented after 50k sampling steps in less than 15 h, demonstrating the proposed algorithm has the great potential to learn manipulation skill for vascular robotic systems.
The turbulent kinetic energy and energy dissipation rate in the wake of a circular cylinder are examined at a Reynolds number of 1000. The turbulence characteristics are quantified using direct numerical simulation, which provides a comprehensive dataset that is almost impossible to acquire from physical experiments. The energy dissipation rate is decomposed into the components due to the mean flow, the coherent primary vortices and the remainder. It is found that the remainder component, which develops only in a three-dimensional turbulent wake and resides mainly in the regions of vortices, accounts for 95 % and 97 % of the total dissipation rate for 10 and 20 cylinder diameters downstream of the cylinder, respectively (while the remainder accounts for 62 % and 83 % of the total turbulent kinetic energy). Based on the remainder component, the validity of local isotropy, local axisymmetry, local homogeneity and homogeneity in the y–z plane for the turbulent dissipation in the wake is examined. The analysis reveals that the turbulent dissipation is largely locally homogeneous, but not locally isotropic or axisymmetric, even after the annihilation of the primary vortex street. In addition, the performances of the four corresponding surrogates to the true dissipation rate are evaluated. Owing to the general validity of local homogeneity, the surrogates of local homogeneity and homogeneity in the y–z plane perform well. Although local axisymmetry does not hold, the corresponding surrogate performs well, because errors from different terms largely cancel out. However, the surrogate of local isotropy generally underestimates the true dissipation rate.
Cap-shaped skeletal fossils are the earliest undisputed body fossils of mollusks appearing in the basal Cambrian. A study on the morphometry of cap-shaped fossils from the Nanjiang area (North Sichuan, China) is undertaken to understand the origin and evolution of the early mollusks. The distribution of these fossil cap-shaped mollusks indicates a stepwise increase in their diversity during the early Cambrian. Maikhanella Zhegallo in Voronin et al., 1982 co-occuring with the spinose sclerites of siphogonuchitids, is regarded as the earliest scleritized mollusk. It is followed by other maikhanellids, e.g., Purella Missarzhevsky, 1974 and Yunnanopleura Yu, 1987, which co-occur with the earliest univalved helcionellids, e.g., Igorella Missarzhevsky in Rozanov et al., 1969. Cluster analysis of their morphometric characteristics shows that the Maikhanella group is similar to the Purella and Yunnanopleura groups, but is less comparable with univalved helcionellids. The maikhanellids are interpreted as representatives of the stem group Aculifera, although it remains uncertain if one or two larger cap-shaped shell plates were present on the elongate slug-like body, comparable to those of Halkieria Poulsen, 1967 or Orthrozanclus Conway Morris and Caron, 2007. Maikhanellids are characterized by the prominent protrusions or scales on the cap-shaped shell plates arranged in a concentric pattern around the shell apex. Evolutionarily, the protrusions or scales are reduced in younger strata, whereas subsequently a typically concentric ornament developed, the cap-shaped shell plates developed higher profiles, and the apical region became increasingly bare of scales. Meanwhile, the cap-shaped shell plates gradually evolved into a helcionellid-like appearance with an anteroposteriorly inclined apex. The morphological evolution of the earliest sclerotized mollusks reflects biotic evolution and environmental adaption among the stem-group mollusks during the early Cambrian.
Fossil feathers have greatly improved our understanding of the evolutionary transition from non-avian dinosaurs to birds and the evolution of feathers, and may be the only evidence for their source animals in the fossil record. Hot spring environments have been demonstrated to be conducive to the preservation of fossils, but internal silicification of feathers was not observed in the only avian carcass so far discovered in ancient hot spring deposits. To determine whether feathers can be internally silicified, here we analyse feathers sampled from a modern hot spring vent pool – Champagne Pool – in New Zealand. Our results of scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry elemental mapping show that the sampled feathers are silicified to different degrees, and one of them is pervasively silicified. SEM observations show that feathers can be silicified at the cellular level. Degradation is involved in the silicification of feathers, as indicated by the reduction of the abundance of carbon and the loss of keratin fibrils. Our findings suggest that ancient deposits of hot spring vent pools are promising targets in search for fossil feathers.
Accumulating evidence suggests that supplementation of omega-3 polyunsaturated fatty acids (ω−3 PUFAs) was associated with reduction in risk of major cardiovascular events. This meta-analysis was to systematically evaluate whether daily supplementation and accumulated intake of ω−3 PUFAs is associated with improved left ventricular (LV) remodeling in patients with chronic heart failure (CHF). Articles were obtained from Pubmed, Clinical key and Web of Science from inception to January 1 in 2021, and a total of 12 trials involving 2162 participants were eligible for inclusion. The sources of study heterogeneity were explained by I2 statistic and subgroup analysis. Compared with placebo groups, ω−3 PUFAs supplementation improved LV ejection fraction (LVEF) (11 trials, 2112 participants, WMD=2.52, 95%CI 1.25 to 3.80, I2=87.8%) and decreased LV end-systolic volume (LVESV) (5 studies, 905 participants, WMD=−3.22, 95%CI −3.67 to −2.77, I2=0.0%) by using the continuous variables analysis. Notably, the high accumulated ω−3 PUFAs dosage groups (≥600g) presented a prominent improvement in LVEF, while the low and middle accumulated dosage (≤300g and 300-600g) showed no effects on LVEF. In addition, ω−3 PUFAs supplementation decreased the levels of pro-inflammatory mediators including tumor necrosis factor−α (TNF-α), interleukin-6 (IL-6) and hypersensitive-c-reactive protein (Hs-CRP). Therefore, the present meta-analysis demonstrated that ω−3 PUFAs consumption was associated with a substantial improvement of LV function and remodeling in patients subjected to CHF. The accumulated dosage of ω-3 PUFAs intake is vital for its cardiac protective role.
The wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Insecticide application is the main method to effectively control wheat aphids. However, CWA has developed resistance to some insecticides due to its extensive application, and understanding resistance mechanisms is crucial for the management of CWA. In our study, a new P450 gene, CYP4CJ6, was identified from CWA and showed a positive response to imidacloprid and thiamethoxam. Transcription of CYP4CJ6 was significantly induced by both imidacloprid and thiamethoxam, and overexpression of CYP4CJ6 in the imidacloprid-resistant strain was also observed. The sensitivity of CWA to these two insecticides was increased after the knockdown of CYP4CJ6. These results indicated that CYP4CJ6 could be associated with CWA resistance to imidacloprid and thiamethoxam. Subsequently, the posttranscriptional regulatory mechanism was assessed, and miR-316 was confirmed to participate in the posttranscriptional regulation of CYP4CJ6. These results are crucial for clarifying the roles of P450 in the resistance of CWA to insecticides.
Soft robots combine the load-bearing capability of rigid material with the resilience, shape-shifting capabilities of soft materials. This paper presents a novel soft actuator with stiffness variation using particulate jamming technology. We design a hybrid composite structure consisting of driving layer and jamming layer. The driving layer with the arc air chamber aim to achieve large bending deformation. A membrane containing particles is integrated with driving layer to module its stiffness. The influence factors of stiffness variation were analyzed from energy of point of view. The dependence of granular attributes on the stiffness of the actuator was studied. Furthermore, we illustrated influence of stiffness changes on the kinematic and dynamic performance of the soft actuator. The experimental results showed these performance indexes are twofold. On the one hand, the structural parameters have significant effect on the bending angle, but on the other hand they have little effect on the end force. We found that flow resistance inside air chamber results in bending morphology variation. The dynamic response subjected to a square-wave air pressure was analyzed to exhibit the actuator’s transient and steady vibration behavior. The actuator with greater stiffness has faster responsiveness, but smaller range of motion. These conclusions are helpful to adjust the stiffness behavior and to improve motion performance.
T long-term effects of cognitive therapy and behavior therapy (CTBT) for menopausal symptoms are unknown, and whether the effects are different between natural menopause and treatment-induced menopause are currently unclear. Therefore, we sought to conduct an accurate estimate of the efficacy of CTBT for menopausal symptoms.
Methods
We conducted searches of Cochrane Library, EMBASE, PsycINFO, PubMed, and Web of Science databases for studies from 1 January 1977 to 1 November 2021. Randomized controlled trials (RCTs) comparing intervention groups to control groups for menopausal symptoms were included. Hedge's g was used as the standardized between-group effect size with a random-effects model.
Results
We included 14 RCTs comprising 1618 patients with a mean sample size of 116. CTBT significantly outperformed control groups in terms of reducing hot flushes [g = 0.39, 95% confidence interval (CI) 0.23–0.55, I2 = 45], night sweats, depression (g = 0.50, 95% CI 0.34–0.66, I2 = 51), anxiety (g = 0.38, 95% CI 0.23–0.54, I2 = 49), fatigue, and quality of life. Egger's test indicated no publication bias.
Conclusions
CTBT is an effective psychological treatment for menopausal symptoms, with predominantly small to moderate effects. The efficacy is sustained long-term, although it declines somewhat over time. The efficacy was stronger for natural menopause symptoms, such as vasomotor symptoms, than for treatment-induced menopause symptoms. These findings provide support for treatment guidelines recommending CTBT as a treatment option for menopausal symptoms.
To investigate the association between the Metabolic Score for Visceral Fat (METS-VF) and risk of type 2 diabetes mellitus (T2DM) and compare the predictive value of the METS-VF for T2DM incidence with other obesity indices in Chinese people. A total of 12 237 non-T2DM participants aged over 18 years from the Rural Chinese Cohort Study of 2007–2008 were included at baseline and followed up during 2013–2014. The cox proportional hazards regression was used to calculate hazard ratios (HR) and 95 % CI for the association between baseline METS-VF and T2DM risk. Restricted cubic splines were used to model the association between METS-VF and T2DM risk. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the ability of METS-VF to predict T2DM incidence. During a median follow-up of 6·01 (95 % CI 5·09, 6·06) years, 837 cases developed T2DM. After adjusting for potential confounding factors, the adjusted HR for the highest v. lowest METS-VF quartile was 5·97 (95 % CI 4·28, 8·32), with a per 1-sd increase in METS-VF positively associated with T2DM risk. Positive associations were also found in the sensitivity and subgroup analyses, respectively. A significant nonlinear dose–response association was observed between METS-VF and T2DM risk for all participants (Pnonlinearity = 0·0347). Finally, the AUC value of METS-VF for predicting T2DM was largest among six indices. The METS-VF may be a reliable and applicable predictor of T2DM incidence in Chinese people regardless of sex, age or BMI.
The sudden outbreak of the COVID-19 pandemic has caused tremendous challenges to the medical system. The government and hospitals have taken robust measures to curb the spread of the deadly virus. Its impact on routine medical services is gradually being taken seriously.
Objective:
To identify the impact of the novel Coronavirus pandemic on emergency department (ED) patient flow and the performance of the routine ED service.
Methods:
This retrospective cohort study was undertaken in a tertiary public teaching hospital ED in Chengdu, China. ED data of patients were routinely collected to compare demographic, clinical characteristics and outcomes during an 8-week period from January 1, 2019 to February 25, 2020. Data were analyzed with the chi-square statistical test.
Results:
Over the study periods, there were 31855 and 25244 patients presented to the ED in 2019 and 2020 respectively. During the pandemic period in 2020, the daily number of average ED visits was lower than that in 2019 (430 ± 134.9 versus 572 ± 38.6, P = 0.00), with fewer triage 1&2 cases (145 ± 33.3 versus 178 ± 15.0, P = 0.00). Nevertheless, the mortality increased remarkably during the pandemic period in 2020 (0.2% versus 0.1%, P = 0.009), with higher APACHE II scores (28 versus 19, P = 0.022) and shorter ED elapsed time (0.2 versus 1.4 days, P = 0.016) among these death cases.
Conclusions:
The COVID-19 pandemic had an evident impact on the patient’s behavioral patterns and routine emergency services, which caused higher ED mortality.
For torpedo electronic components tested by functional verification, there are characteristics of a few samples and few failures. During service life, it is difficult to analyse and predict the changes in reliability. At present, management's observation of quality is mainly base on failure data, and it is difficult to make predictions about the moments without failure in service life. In this paper, according to the failure data, we consider such factors as performance degradation and detection and use the model of instantaneous failure rate to evaluate the reliability of the detection moments periodically, and predict the reliability of stages through the results of detection moments. The method proposed in this paper, on the one hand, considers the service experience, and on the other combines the detection data, to make the final evaluation result more credible. In addition, this paper predicts the changing trend of reliability between adjacent detection moments, which can provide a useful reference for quality management work.
We propose a novel Fabry–Pérot (FP) antenna consisting of a checkered polarization-conversion metasurface (PCM), corner-cut square patch antennas, and sandwiched compounds. The proposed antenna achieves low radar-cross-section (RCS), high gain, and wideband circular polarization (CP). The corner-cut square patch antennas facilitate high reflectivity, satisfactory transmission magnitude, and the desired phase difference. An embedded metal between two rings of substrate contributes to reducing cross-polarization, improving transmission efficiency, enhancing bandwidth, and reducing RCS. Following simulations, we fabricated a prototype of the proposed antenna and tested its performance. Measurements from the simulation and prototype tests were similar within a reasonable margin of error. Compared with alternative antennas, our proposed FP antenna offers high gain, wideband CP, low cost, a low RCS, and a lower profile.
To get a more robust DNA methylation profile from the data given by a published article of a MZ study of psychiatry.
Method:
Considering the relevance of birth weight with DNA methylation profiles, we reanalyzed the data from the paper of Mill etc. (DOI: 10.1002/ajmg.b.30316) with rearrangement of the group order within twin pair, prior if lighter in birth weight. Statistical methods used are including mean, correlation and paired-samples t-test (considering twins’ particularity).
Results:
We calculated twin difference by lighter twin's methylation percentage minus that of heavier twin. The mean of CpG1 methylation differences is -7.08% while -7.17% for CpG2. The two means have no statistical significant difference in a paired-samples t-test (t=0.027, p=0.979, 2-tailed). These results are different from the original paper: 10.3% for CpG1 and 16.1% for CpG2, which are statistical significantly different (t=-2.792, p=0.018, 2-tailed). Besides, we found that in the lighter twin group, the methylation percentage are statistical significantly different between CpG1 and CpG2 (t=2.627, p=0.024, 2-tailed). As to correlation analysis, we got a slightly different result: correlation between MZ differences in two sites is weaker after rearrangement (r=0.875, while r=0.913 before arrangement, both p< 0.001).
Conclusion:
According to our study, the results imply that twin differences may not be the only thing worthy of investigation. Different patterns among CpGs in certain kinds of subgroups should also need attention. We need conduct a robust data analysis strategy in our researches on the epigenetic aspects of psychiatry, where monozygotic twins have a favorable utility.
A dual-arm space robot has large potentials in on-orbit servicing. However, there exist multiple dynamic coupling effects between the two arms, each arm, and the base, bringing great challenges to the trajectory planning and dynamic control of the dual-arm space robotic system. In this paper, we propose a dynamic coupling modeling and analysis method for a dual-arm space robot. Firstly, according to the conservation principle of the linear and angular momentum, the dynamic coupling between the base and each manipulator is deduced. The dynamic coupling factor is then defined to evaluate the dynamic coupling degree. Secondly, the dynamic coupling equations between the two arms, each arm, and the base are deduced, respectively. The dynamic coupling factor is suitable not only for single-arm space robots but also for multi-arm space robot systems. Finally, the multiple coupling effects of the dual-arm space robotic system are analyzed in detail through typical cases. Simulation results verified the proposed method.
The experimental study on thermocapillary convection in liquid bridges of large Prandtl number has been carried out on Tiangong-2 in space. The purpose of these experiments is to study the oscillation instability of thermocapillary convection, and to discover and recognize the mechanism of destabilization of thermocapillary convection in the microgravity environment in space. In this paper, the geometry of a half-floating-zone liquid bridge is featured by the aspect ratio Ar and volume ratio Vr, and its influence on critical conditions of oscillatory thermocapillary convection is studied. More than 700 sets of space experiments have been finished. The critical conditions and oscillation characteristics of thermocapillary convection instability in the Ar–Vr parameter space have been fully obtained under microgravity conditions for the first time. It is found that the Ar–Vr parameter space can be divided into two regions of different critical conditions and oscillation characteristics: the region of low frequency oscillation, and the region of high frequency oscillation. More importantly, we obtain the complete configuration of these two stability neutral curves, and find that the low frequency mode is a ‘’ type curve. Based on this, we discuss the influence of heating rate on the oscillation mode. It is found that the heating rate affects the selection of critical mode, which results in a jump change of critical temperature difference. The findings of this study are helpful to better understand the critical modes and transition processes of thermocapillary convection in liquid bridges with different configurations.
Androgenetic embryonic stem (AgES) cells offer a possible tool for patient-specific pluripotent stem cells that will benefit genomic imprinting studies and clinic applications. However, the difficulty in producing androgenetic embryos and the unbalanced expression of imprinted genes make the therapeutic applicability of AgES cells uncertain. In this study, we produced androgenetic embryos by injecting two sperm into an enucleated metaphase II (MII) oocyte. By this method, 88.48% of oocytes survived after injection, and 20.24% of these developed to the blastocyst stage. We successfully generated AgES cell lines from the androgenetic embryos and assayed the expression of imprinted genes in the cell lines. We found that the morphological characteristics of AgES cells were similar to that of fertilized embryonic stem cells (fES), such as expression of key pluripotent markers, and generation of cell derivatives representing all three germ layers following in vivo and in vitro differentiation. Furthermore, activation of paternal imprinted genes was detected, H19, ASC12 and Tss3 in AgES cell activation levels were lower while other examined genes showed no significant difference to that of fES cells. Interestingly, among examined maternal imprinted genes, only Mest and Igf2 were significantly increased, while levels of other detected genes were no different to that of fES cells. These results demonstrated that activation of some paternal imprinted genes, as well as recovery of maternal imprinted genes, was present in AgES cells. We differentiated AgES cells into a beating embryoid body in vitro, and discovered that the AgES cells did not show significant higher efficiency in myocardial differentiation potential.
To assess the effect of famine exposure during early life on dietary patterns, chronic diseases, and the interaction effect between famine exposure and dietary patterns on chronic diseases in adulthood.
Design
Cross-sectional study. Dietary patterns were derived by factor analysis. Multivariate quantile regression and log-binomial regression were used to evaluate the impact of famine exposure on dietary patterns, chronic diseases and the interaction effect between famine exposure and dietary patterns on chronic diseases, respectively.
Setting
Hefei, China.
Participants
Adults aged 45–60 years (n 939).
Results
‘Healthy’, ‘high-fat and high-salt’, ‘Western’ and ‘traditional Chinese’ dietary patterns were identified. Early-childhood and mid-childhood famine exposure were remarkably correlated with high intake of the traditional Chinese dietary pattern. Compared with the non-exposed group (prevalence ratio (PR); 95 % CI), early-childhood (3·13; 1·43, 6·84) and mid-childhood (2·37; 1·05, 5·36) exposed groups showed an increased PR for diabetes, and the early-childhood (2·07; 1·01, 4·25) exposed group showed an increased PR for hypercholesterolaemia. Additionally, relative to the combination of non-exposed group and low-dichotomous high-fat and high-salt dietary pattern, the combination of famine exposure in early life and high-dichotomous high-fat and high-salt dietary pattern in adulthood had higher PR for diabetes (4·95; 1·66, 9·05) and hypercholesterolaemia (3·71; 1·73, 7·60), and significant additive interactions were observed.
Conclusions
Having suffered the Chinese famine in childhood might affect an individual’s dietary habits and health status, and the joint effect between famine and harmful dietary pattern could have serious consequences on later-life health outcomes.