We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reintroductions of large carnivore species present unique opportunities to model population dynamics as populations can be monitored from the beginning of a reintroduction. However, analysis of the population dynamics of such reintroduced populations is rare and may be limited in incorporating the complex movements and environmental interactions of large carnivores. Starting in 2004, Asiatic black bears Ursus thibetanus were reintroduced and tracked in the Republic of Korea, along with their descendants, using radio telemetry, yielding 33,924 tracking points over 12 years. Along with information about habitat use, landscape, and resource availability, we estimated the population equilibrium and dispersal capability of the reintroduced population. We used a mixed modelling approach to determine suitable habitat areas, population equilibria for three different resources-based scenarios, and least-cost pathways (i.e. corridors) for dispersal. Our population simulations provided a mean population equilibrium of 64 individuals at the original reintroduction site and a potential maximum of 1,438 individuals in the country. The simulation showed that the bear population will disperse to nearby mountainous areas, but a second reintroduction will be required to fully restore U. thibetanus. Northern suitable habitats are currently disconnected and natural re-population is unlikely to happen unless supported. Our methodologies and findings are also relevant for determining the outcome and trajectories of reintroduced populations of other large carnivores.
Laboratory experiments are conducted to investigate the mechanism controlling the formation of stable and unstable acoustic fountains at the free surface of a quiescent body of water. Fountains are induced by focused ultrasonic, a new modality that allows for better spatiotemporal control of water flow. Particle image velocimetry was used to characterize the induced flow field in the vicinity of the ultrasonic focal spot. We used two types of ultrasonic transducers with distinct wave frequencies. We examined three fountain formation regimes by varying the pressure level of the transducers, namely weak, intermediate (stable) and highly forced fountains (explosive). Between different regimes, the fountain height underwent a step-change in response to the increase in acoustic pressure. A force estimation obtained from the flow field shows that the magnitude of axial momentum flux is orders of magnitude lower than that of gravity and surface tension, indicating that the dominant driving force for the fountain generation is the acoustic radiation force (Nightingale et al., Ultrasound Med. Biol., vol. 28, 2002, pp. 227–235). We propose a simple model to estimate the shape of a stable fountain; it accounts for the applied acoustic pressure, gravity, surface tension and axial momentum. The model neglects viscous force, which precludes capturing the intermediate fountain surface curvature. However, the model successfully predicts the geometry of the weak and intermediate fountains.
We report our experience with an emergency room (ER) shutdown related to an accidental exposure to a patient with coronavirus disease 2019 (COVID-19) who had not been isolated.
Setting:
A 635-bed, tertiary-care hospital in Daegu, South Korea.
Methods:
To prevent nosocomial transmission of the disease, we subsequently isolated patients with suspected symptoms, relevant radiographic findings, or epidemiology. Severe acute respiratory coronavirus 2 (SARS-CoV-2) reverse-transcriptase polymerase chain reaction assays (RT-PCR) were performed for most patients requiring hospitalization. A universal mask policy and comprehensive use of personal protective equipment (PPE) were implemented. We analyzed effects of these interventions.
Results:
From the pre-shutdown period (February 10–25, 2020) to the post-shutdown period (February 28 to March 16, 2020), the mean hourly turnaround time decreased from 23:31 ±6:43 hours to 9:27 ±3:41 hours (P < .001). As a result, the proportion of the patients tested increased from 5.8% (N=1,037) to 64.6% (N=690) (P < .001) and the average number of tests per day increased from 3.8±4.3 to 24.7±5.0 (P < .001). All 23 patients with COVID-19 in the post-shutdown period were isolated in the ER without any problematic accidental exposure or nosocomial transmission. After the shutdown, several metrics increased. The median duration of stay in the ER among hospitalized patients increased from 4:30 hours (interquartile range [IQR], 2:17–9:48) to 14:33 hours (IQR, 6:55–24:50) (P < .001). Rates of intensive care unit admissions increased from 1.4% to 2.9% (P = .023), and mortality increased from 0.9% to 3.0% (P = .001).
Conclusions:
Problematic accidental exposure and nosocomial transmission of COVID-19 can be successfully prevented through active isolation and surveillance policies and comprehensive PPE use despite longer ER stays and the presence of more severely ill patients during a severe COVID-19 outbreak.
We recently reported an association between TAAR6 (trace amine associated receptor 6 gene) variations and schizophrenia (SZ). We now report an association of a set of TAAR6 variations and clinical presentation and outcome in a sample of 240 SZ Korean patients. Patients were selected by a Structured Clinical Interview, DSM-IV Axis I disorders – Clinical Version (SCID-CV). Other psychiatric or neurologic disorders, as well as medical diseases, were exclusion criteria. To assess symptom severity, patients were administered the CGI scale and the PANSS at baseline and at the moment of discharge, 1 month later on average. TAAR6 variations rs6903874, rs7452939, rs8192625 and rs4305745 were investigated; rs6903874, rs7452939 and rs8192625 entered the statistical investigation after LD analysis. Rs8192625 G/G homozygosis was found to be significantly associated both with a worse clinical presentation at PANSS total and positive scores and with a shorter period of illness before hospitalization. No haplotype significant findings were found. The present study stands for a role of the TAAR6 in the clinical presentation of SZ. Moreover, our results show that this genetic effect may be counteracted by a correct treatment. Haplotype analysis was not informative in our sample, probably also because of the incomplete SNPs' coverage of the gene we performed. Further studies in this direction are warranted.
The dynamics of air bubbles in turbulent Rayleigh–Bénard (RB) convection is described for the first time using laboratory experiments and complementary numerical simulations. We performed experiments at
$Ra=5.5\times 10^{9}$
and
$1.1\times 10^{10}$
, where streams of 1 mm bubbles were released at various locations from the bottom of the tank along the path of the roll structure. Using three-dimensional particle tracking velocimetry, we simultaneously tracked a large number of bubbles to inspect the pair dispersion,
$R^{2}(t)$
, for a range of initial separations,
$r$
, spanning one order of magnitude, namely
$25\unicode[STIX]{x1D702}\leqslant r\leqslant 225\unicode[STIX]{x1D702}$
; here
$\unicode[STIX]{x1D702}$
is the local Kolmogorov length scale. Pair dispersion,
$R^{2}(t)$
, of the bubbles within a quiescent medium was also determined to assess the effect of inhomogeneity and anisotropy induced by the RB convection. Results show that
$R^{2}(t)$
underwent a transition phase similar to the ballistic-to-diffusive (
$t^{2}$
-to-
$t^{1}$
) regime in the vicinity of the cell centre; it approached a bulk behavior
$t^{3/2}$
in the diffusive regime as the distance away from the cell centre increased. At small
$r$
,
$R^{2}(t)\propto t^{1}$
is shown in the diffusive regime with a lower magnitude compared to the quiescent case, indicating that the convective turbulence reduced the amplitude of the bubble’s fluctuations. This phenomenon associated to the bubble path instability was further explored by the autocorrelation of the bubble’s horizontal velocity. At large initial separations,
$R^{2}(t)\propto t^{2}$
was observed, showing the effect of the roll structure.
Using especially designed laboratory experiments, we demonstrate that the flow-driven deformation of sufficiently porous, wall-mounted, flexible plates can exhibit positive Vogel exponent
$V$
, i.e. drag proportional to the
$(2+V)$
power of the incoming flow velocity. High-resolution force balance, planar particle image velocimetry and particle tracking velocimetry are used to measure the drag force, flow characteristics and plate bending. For a flexible plate with relatively high porosity given by an array of regularly spaced square openings, we derive a simple analytical argument that accounts for the sub-quadratic trends of the drag in a range of flow velocities spanning one order of magnitude. There, the drag experienced by the structure is modulated by the contributions of the local structure containing an open area. The effective approach velocity for each of these sections appears to increase monotonically with increased structure deformation due to the reduced effect of local wakes produced by adjacent areas. The uncovered aerodynamic behaviour may help to understand the complex flow–structure interaction of perforated structures in nature and engineering.
The unsteady dynamics of wall-mounted flexible plates under inclined flows was fundamentally described using theoretical arguments and experiments under various Cauchy numbers $Ca=\unicode[STIX]{x1D70C}_{f}bL^{3}U_{0}^{2}/(EI)\in [7,81]$ (where $\unicode[STIX]{x1D70C}_{f}$ is the fluid density, $b$ and $L$ are the plate width and length, $U_{0}$ is the incoming velocity, $E$ is Young’s modulus and $I$ is the second moment of the area) and inclination angles $\unicode[STIX]{x1D6FC}$. Three-dimensional particle tracking velocimetry and a high-resolution force sensor were used to characterize the evolution of the plate dynamics and aerodynamic force. We show the existence of three distinctive, dominant modes of tip oscillations, which are modulated by the structure dynamic and flow instability. The first mode is characterized by small-amplitude, planar fluttering-like motions occurring under a critical Cauchy number, $Ca=Ca_{c}$. Past this condition, the motions are dominated by the second mode consisting of unsteady twisting superimposed onto the fluttering patterns. The onset of this mode is characterized by a sharp increase of the force fluctuation intensity. At sufficiently high $Ca$ and $\unicode[STIX]{x1D6FC}$, the plate may undergo a third mode given by large-scale tip orbits about the mean bending. Using the equation of motion and first-order approximations, we propose a formulation to estimate $Ca_{c}$ as a function of $\unicode[STIX]{x1D6FC}$; it exhibits solid agreement with experiments.
The status of Asian populations of the Eurasian otter Lutra lutra is largely unknown. Since its designation as a Natural Monument (in 1983) and as Endangered (in 1997) in South Korea the authorities there have been trying to conserve and recover the species. We conducted a national otter survey by standard methods in 2017 and compared the current otter distribution to those recorded in a previous survey (2010). We found otter signs in 84.5% of 1,105 10 × 10 km grid cells, with the highest sprainting intensity in the south-west in the Yeongsan River Basin and on the south coast, where we recorded 7.05 and 6.26 spraints/site, respectively. Despite relatively low spraint densities, the otter has expanded its range since 2010 by colonizing urban areas. This trend suggests that South Korea could be a source area for the recovery of the Eurasian otter in East Asia.
A sediment core (14DH-C01) obtained from the mouth of Gomso Bay, on the west coast of South Korea, was used to obtain high-resolution palynomorph, grain-size, and 14C age data to investigate the Holocene sedimentary environment. The results indicated a transgressive depositional process with four stages controlled by sea-level change, as follows: river-dominated fluvial deposition from the early Holocene to 8.48 cal ka BP; tide-dominated tidal channel fill transgression from 8.48 to 8.08 cal ka BP; tide- to wave-dominated tidal channel fill transgression from 8.08 to 6.98 cal ka BP; and wave-dominated marine transgression from 6.98 cal ka BP to the present. Tidal channel filling was the primary mid-Holocene depositional process, accounting for the high sedimentation rate observed. The different hydrodynamics of the river-dominated, tide-dominated, tide- to wave-dominated, and wave-dominated processes following the changes in sea level may have controlled the transgressive depositional process. This transgressive sedimentary model differs from those of other large river mouth areas (e.g., the Changjiang River) since the mid-Holocene, perhaps resulting from the limited sediment supply in the study area.
Background: Patients diagnosed with Parkinson’s disease (PD) on clinics who subsequently turn out to have normal dopamine transporter images have been referred to as scans without evidence of dopaminergic deficits (SWEDDs) patients. Cardiovascular autonomic dysfunction has frequently been reported in PD. In this study, we determined the similarities and differences in cardiac autonomic dysfunction between SWEDDs and PD patients. This study investigated whether 24-hour ambulatory blood pressure monitoring (24-hour ABPM) can help identify possible cases with SWEDDs. Methods: We enrolled 28 SWEDDs patients, 46 patients with PD, and 30 healthy controls. To evaluate cardiac autonomic function, 24-hour ABPM was performed on all subjects. Cardiac metaiodobenzylguanidine (MIBG) scintigraphy was performed on the SWEDDs and PD subjects. Results: The percentage nocturnal decline in blood pressure differed significantly among SWEDDs patients, PD patients, and controls (p<0.05). In addition to the abnormal nocturnal BP, regulation (nondipping and reverse dipping) was significantly higher in SWEDDs and PD subjects than in the control subjects (p<0.05). There was no significant correlation between the % nocturnal blood pressure reduction and parameters of cardiac MIBG uptake ratio. However, orthostatic hypotension was significant correlated with the nocturnal blood pressure dip (%), nocturnal blood pressure patterns, and the cardiac MIBG uptake ratio (early and late) in combined SWEDDs and PD subjects. Conclusions: Pathologic nocturnal blood pressure regulation and nocturnal hypertension, known characteristics of PD, are also present in SWEDDs. Moreover, cardiac sympathetic denervation should not be attributed to cardiac autonomic dysfunction in SWEDDs patients. As with PD patients, the SWEDDs patients studied here tended to have cardiac autonomic dysfunction.
Steel coils coated with Zn–Mg alloy containing high Mg content develop dark rust when exposed to an extremely limited amount of aqueous environment. To understand the nature of the dark rust and its formation mechanism, the steel is evaluated by the immersion test and high temperature–humidity test followed by critical evaluation with transmission electron microscopy for cross-sectional observation, field-emission scanning electron microscopy for surface morphology observation, Auger electron spectroscopy and glow discharge spectroscopy for identification of chemical composition as a function of depth. The results indicate that the dark rust is formed by precipitation of Mg-based corrosion product on the outermost surface when the steel is exposed to aqueous environment at high temperature. This is due mainly to preferential dissolution of Mg phases by the galvanic action with MgZn2 and Mg2Zn11 composed of the coating layer, and easy precipitation of Mg2+ ion in a form of Mg(OH)2 in a limited volume of the condensed water film on the surface.
Background: Dysphagia is a common symptom and an important prognostic factor in Parkinson’s disease (PD). Although cognitive and motor dysfunctions may contribute to dysphagia in patients with PD, any specific association between such problems and swallowing functions is unclear. Here, we examined the potential relationship between cognitive/motor components and swallowing functions in PD. We evaluated the contributions of cognition and motor function to the components of swallowing via video fluoroscopic swallowing (VFS) experiments. Methods: We prospectively enrolled 56 patients without dementia having PD. Parkinson’s disease severity was assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS). All participants received neuropsychological tests covering general mental status, visuospatial function, attention, language, learning and memory, and frontal executive function. The well-validated “modified barium swallow impairment profile” scoring system was applied during VFS studies to quantify swallowing impairments. Finally, correlations between neuropsychological or motor functions and impairment in swallowing components were calculated. Results: The most significant correlations were found between the frontal/executive or learning/memory domains and the oral phase of swallowing, though a minor component of the pharyngeal phase correlated with frontal function as well. Bradykinesia and the UPDRS total score were associated with both the pharyngeal and oral phases. Conclusions: Our findings suggest that cognitive dysfunctions are associated with the oral phase of swallowing in patients with early stage PD while the severity of motor symptoms may be associated with overall swallowing function.
Korea Astronomy and Space Science Institute (KASI) successfully completed the development of Korea Microlensing Telescope Network (KMTNet, Park et al. 2012) in mid-2015, following which it conducted test runs for several months. ‘DEep Ecliptic Patrol of the Southern sky’ (DEEP-South, Moon et al. 2015), which will be used for asteroid and comet studies, will not only characterize targeted asteroids, carrying out blind surveys toward the sweet spots, but will also mine the data of such bodies using the KMTNet archive. We report preliminary lightcurves of four Potentially Hazardous Asteroids (PHAs) from test runs at KMTNet-CTIO in the February - May 2015 period.
Decreased hemoglobin levels increase the risk of developing dementia among the elderly. However, the underlying mechanisms that link decreased hemoglobin levels to incident dementia still remain unclear, possibly due to the fact that few studies have reported on the relationship between low hemoglobin levels and neuroimaging markers. We, therefore, investigated the relationships between decreased hemoglobin levels, cerebral small-vessel disease (CSVD), and cortical atrophy in cognitively healthy women and men.
Methods:
Cognitively normal women (n = 1,022) and men (n = 1,018) who underwent medical check-ups and magnetic resonance imaging (MRI) were enrolled at a health promotion center. We measured hemoglobin levels, white matter hyperintensities (WMH) scales, lacunes, and microbleeds. Cortical thickness was automatically measured using surface based methods. Multivariate regression analyses were performed after controlling for possible confounders.
Results:
Decreased hemoglobin levels were not associated with the presence of WMH, lacunes, or microbleeds in women and men. Among women, decreased hemoglobin levels were associated with decreased cortical thickness in the frontal (Estimates, 95% confidence interval, −0.007, (−0.013, −0.001)), temporal (−0.010, (−0.018, −0.002)), parietal (−0.009, (−0.015, −0.003)), and occipital regions (−0.011, (−0.019, −0.003)). Among men, however, no associations were observed between hemoglobin levels and cortical thickness.
Conclusion:
Our findings suggested that decreased hemoglobin levels affected cortical atrophy, but not increased CSVD, among women, although the association is modest. Given the paucity of modifiable risk factors for age-related cognitive decline, our results have important public health implications.
We report on the formation of highly flexible and transparent TiO2/Ag/ITO multilayer films deposited on polyethylene terephthalate substrates. The optical and electrical properties of the multilayer films were investigated as a function of oxide thickness. The transmission window gradually shifted toward lower energies with increasing oxide thickness. The TiO2 (40 nm)/Ag (18 nm)/ITO (40 nm) films gave the transmittance of 93.1% at 560 nm. The relationship between transmittance and oxide thickness was simulated using the scattering matrix method to understand high transmittance. As the oxide thickness increased from 20 to 50 nm, the carrier concentration gradually decreased from 1.08 × 1022 to 6.66 × 1021 cm−3, while the sheet resistance varied from 5.8 to 6.1 Ω/sq. Haacke's figure of merit reached a maximum at 40 nm and then decreased with increasing oxide thickness. The change in resistance for the 60 nm-thick ITO single film rapidly increased with increasing bending cycles, while that of the TiO2/Ag/ITO (40 nm/18 nm/40 nm) film remained virtually unchanged during the bending test.
We have previously reported on a simple desktop method for producing high quality reduced graphene oxide sheets (RGO) which involved dispersing graphene oxide in an ethanol-water solvent and reducing it with sodium borohydride. Metal salts can also be potent reducing agents. Here we show that when these salts are incorporated into the reduction process, metalized graphene sheets can be formed. Metallic salts were used to form Au, Pt, and AuPt nanoplatelets incorporated into the graphene structure. The nature of these metalized graphene platelets was then examined using FTIR, TEM, and SEM/EDAX. Raman spectroscopy of metalized graphene samples show peak shifts and increased D/G ratios over pure graphene, indicating an increased number of defects in the material and suggesting an attachment of metal atoms to the graphene surface. By using a minimum of metal while maximizing the surface contact area of the graphene sheet, these nanoparticle-RGO composites have potential for use in energy-producing devices and/or as catalysts.
Epidemiological studies have reported that higher education (HE) is associated with a reduced risk of incident Alzheimer's disease (AD). However, after the clinical onset of AD, patients with HE levels show more rapid cognitive decline than patients with lower education (LE) levels. Although education level and cognition have been linked, there have been few longitudinal studies investigating the relationship between education level and cortical decline in patients with AD. The aim of this study was to compare the topography of cortical atrophy longitudinally between AD patients with HE (HE-AD) and AD patients with LE (LE-AD).
Methods:
We prospectively recruited 36 patients with early-stage AD and 14 normal controls. The patients were classified into two groups according to educational level, 23 HE-AD (>9 years) and 13 LE-AD (≤9 years).
Results:
As AD progressed over the 5-year longitudinal follow-ups, the HE-AD showed a significant group-by-time interaction in the right dorsolateral frontal and precuneus, and the left parahippocampal regions compared to the LE-AD.
Conclusion:
Our study reveals that the preliminary longitudinal effect of HE accelerates cortical atrophy in AD patients over time, which underlines the importance of education level for predicting prognosis.
Non-destructive high-throughput phenotyping based on phenomics is an emerging technology for assessing the genetic diversity of various traits and screening in breeding programmes. In this study, non-destructive measurements of leaf temperature and chlorophyll fluorescence were conducted to investigate the physiological responses of soybean (Glycine max) to salt stress so as to set up a non-destructive screening method. Two-week-old seedlings of soybean in the V2 stage were treated with 0, 12.5, 25, 50 and 100 mM NaCl to induce salt stress. Three parameters, photosynthesis rate, stomatal conductance and chlorophyll fluorescence, decreased significantly, while soybean leaf temperature increased by exhibiting a positive correlation with NaCl concentration (P< 0.001). Soybean leaf temperature increased significantly at 50 mM NaCl when compared with the untreated control, although no visual symptom was observed. We selected leaf temperature as a major physiological parameter of salt stress as its measurement is much easier, faster and cheaper than that of other physiological parameters. Therefore, leaf temperature can be used for evaluating the responses to salt stress in soybean as a non-destructive and phenomic parameter. The results of this study suggest that non-destructive parameters such as chlorophyll fluorescence and leaf temperature are useful tools for assessing the genetic diversity of soybean with regard to salt stress tolerance and to screen salt stress-tolerant soybean for breeding.
To modify the rigid structure of alginate, polyvinyl alcohol was mixed. Rheological properties and viscoelastic properties of the polymer blend solution were investigated. Complex and shear viscosity and tangent delta of the solution were obtained to find optimum condition of spinning dope. Effect of blend ratio on morphology and property change was investigated.