We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the axisymmetric evolution of a liquid film on a solid sphere governed by gravity, capillarity and viscous forces. The lubrication equations established in spherical coordinates are numerically solved using finite elements and local similarity solutions are obtained. Results show that the evolution behaves differently at early and late stages. At the early stage, the interface evolves in such a way that the capillary effect can be ignored. At the late stage, there emerge four zones from top to bottom: a thin film, a ridge ring, a dimple ring and a pendant drop. Each zone is governed by the balance of different forces, and hence is characterized by an individual physical mechanism. Consequently, the pendant drop is quasi-static, and the film thicknesses of other regions follow different scaling laws. The position of the dimple remains unchanged at the late stage.
LiMnxCoyNi1−x−yO2 (LMCNO) has been broadly investigated and commercialized primarily as lithium ion battery (LIB) cathodes, owing to its high operating voltage, large energy density, and superior electronic conductivity. However, poor cycling stability induced by the rapid structure degradation limits their further development. Coating is regarded as a very effective strategy to address the problem of structure degradation. Regrettably, the coating layers obtained by traditional methods are usually thick, which is not appropriate for delivering of integrated performance. As an emerging coating technology, atomic layer deposition (ALD) demonstrates immeasurable advantages in deposition of ultrathin coating materials because of its atomic-level precision, and has been widely applied in construction of the coating layers on LMCNO substrate materials. Herein, we firstly outline the development and mechanism of ALD technology, and then systematically summarize intrinsic reasons for the enhanced electrochemical performance. Finally, we propose new insights toward designing and preparing the coating structure of LMCNO cathodes by controllable ALD for the next-generation LIBs.
Nickel-rich layered oxide LiNi0.8Co0.1Mn0.1O2 suffers from severe structural instability and irreversible capacity loss during cycling due to cation disorder of Li+ and Ni2+. To solve this problem, the precursor Ni0.8Co0.1Mn0.1(OH)2 and well-ordered LiNi0.8Co0.1Mn0.1O2 cathode materials were successfully synthesized via controlled crystallization and high-temperature solid-state methods. The structure, morphology, and electrochemical performance of the precursor and LiNi0.8Co0.1Mn0.1O2 powders were investigated. The results show that the precursor Ni0.8Co0.1Mn0.1(OH)2 is made of sphere-like particles composed of needle-like primary crystal and LiNi0.8Co0.1Mn0.1O2 possesses a perfect layered structure with low Li/Ni disorder. Electrochemical data demonstrate that the material rate capabilities are 203.3, 187.7, 170.4, and 163 mA h/g from 0.1C to 10C, respectively. The capacity retention is 87.9% after 100 cycles at 1C, even the cut-off voltage was increased to 4.5 V. The high discharge capacity and outstanding cycling life can be attributed to the merits of a perfect crystal lattice with low Li/Ni disorder, fast lithium ion transport, and relatively low charge transfer resistance.
Compared with commercial polyolefin membranes, polyacrylonitrile (PAN) membrane prepared by electrostatic spinning has higher porosity, electrolyte uptake, thermal stability, and lithium-ion conductivity, etc. However, poor mechanical performance has largely limited the application of electrospun PAN separators. In this study, PAN/polyimide (PI) composite membrane is prepared by electrostatic spinning to improve the mechanical and electrochemical performances. Scanning electron microscopy, thermal analysis method, and electrochemical methods were used for evaluation of the electrospun composite membrane. The results show that the composite membrane possesses good thermal stability and exhibits better mechanical performance than pristine PAN membrane (increasing by 1.1 times in tension strength). The addition of PI can increase porosity and fluid absorption rate obviously. In addition, the composite membrane has high ionic conductivity (18.77 × 10−4 S/cm), wide electrochemical window (about 4.0 V), and excellent cycling performance. It can retain a discharge specific capacity of 153 mA h/g even after 50 cycles at 0.5 C. The electrospun PAN/PI membrane may be a promising candidate for lithium-ion battery separators.
When a contact line moves with a sufficiently large speed, liquid or gas films can be entrained on a solid depending on the direction of contact-line movement. In this work, the contact-line dynamics in the situation of a generic two-fluid system is investigated. We demonstrate that the hydrodynamics of a contact line, no matter whether advancing or receding, can formally reduce to that of a receding one with small interfacial slopes. Since the latter can be well treated under the classical lubrication approximation, this analogy allows us to derive an asymptotic solution of the interfacial profiles for arbitrary values of contact angle and viscosity ratio. For the dip-coating geometry, we obtain, with no adjustable parameters, an analytical formula for the critical speed of wetting transition, which in particular predicts the onset of both liquid and gas entrainment. Moreover, the present analysis also builds a novel connection between the Cox–Voinov law and classical lubrication theory for moving contact lines.
Several previous prospective studies suggest that consumption of green leafy and cruciferous vegetables may lower the risk of type 2 diabetes (T2D). We investigated the association between consumption of different types of vegetables in relation to T2D risk in an Asian Population. We included 45 411 participants (age range: 45–74 years) of the Singapore Chinese Health Study (SCHS) free of diabetes, cancer or CVD at baseline (1993–1998). Dietary information was collected using a validated FFQ. Physician-diagnosed incident diabetes was reported at follow-up I (1999–2004) and II (2006–2010) interviews. Cox proportional hazards regression was used to estimate hazard ratio (HR) and 95 % CI of T2D risk. An updated meta-analysis was also conducted to summarise results for green leafy and cruciferous vegetables. During 494 741 person-years of follow-up, 5207 incident T2D occurred. After adjustment for potential confounders, neither total vegetables (top v. bottom quintile HR=1·08; 95 % CI 0·98, 1·18, Ptrend=0·66) nor specific vegetables including dark green leafy vegetables (HR=1·05; 95 % CI 0·96, 1·15, Ptrend=0·21) and cruciferous vegetables (HR=0·97; 95 % CI 0·88, 1·06, Ptrend=0·29) were substantially associated with risk of T2D. A meta-analysis (eleven studies with 754 729 participants and 58 297 cases) including the SCHS and all previous prospective studies suggested borderline significant inverse associations between green leafy (summary relative risk (RR)=0·91; 95 % CI 0·84, 1·00) and cruciferous vegetable consumption (RR=0·87; 95 % CI 0·76, 1·00) and T2D risk, with moderate-to-high heterogeneity. In conclusion, green leafy or cruciferous vegetable consumption was not substantially associated with risk of T2D in an Asian population. Meta-analysis of available cohort data indicated that evidence for a beneficial effect of green leafy or cruciferous vegetable consumption on T2D risk is not convincing.
This study aimed to investigate the effects of dietary live yeast (LY) supplementation on growth, intestinal permeability and immunological parameters of piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). Piglets weaned at 21 d were allocated into three treatments with six pens and six piglets per pen, receiving the control diet (CON), diets supplemented with antibiotics plus zinc oxide (ANT–ZnO) and LY (Saccharomyces cerevisiae strain CNCM I-4407), respectively, for a period of 2 weeks. On day 8, thirty-six piglets were selected as control without ETEC (CON), CON–ETEC, ANT–ZnO–ETEC and LY–ETEC groups challenged with ETEC until day 10 for sample collections. Piglets fed ANT–ZnO diet had the highest average daily gain and average daily feed intake (P<0·05) during the 1st week, but ADG of piglets fed the ANT–ZnO diet was similar as piglets fed LY diet during the second week. Piglets with LY–ETEC or ANT–ZnO–ETEC had markedly lower diarrhoea score (P<0·05) than piglets with CON–ETEC during the 24 h after ETEC challenge. Relative to piglets with CON, the counts of E. coli, urinary ratio of lactulose to mannitol, plasma IL-6 concentration, mRNA abundances of innate immunity-related genes in ileum and mesenteric lymph node tissues were increased (P<0·05), whereas the villous height of jejunum and relative protein expression of ileum claudin-1 were decreased (P<0·05) in piglets with CON–ETEC; however, these parameters did not markedly change in piglets with LY–ETEC or ANT–ZnO–ETEC. In summary, dietary LY supplementation could alleviate the severity of diarrhoea in piglets with ETEC, which may be associated with the improved permeability, innate immunity and bacterial profile.
Volume-preserving algorithms (VPAs) for the charged particles dynamics is preferred because of their long-term accuracy and conservativeness for phase space volume. Lie algebra and the Baker-Campbell-Hausdorff (BCH) formula can be used as a fundamental theoretical tool to construct VPAs. Using the Lie algebra structure of vector fields, we split the volume-preserving vector field for charged particle dynamics into three volume-preserving parts (sub-algebras), and find the corresponding Lie subgroups. Proper combinations of these subgroups generate volume preserving, second order approximations of the original solution group, and thus second order VPAs. The developed VPAs also show their significant effectiveness in conserving phase-space volume exactly and bounding energy error over long-term simulations.
Recent studies have suggested an association between vitamin D and non-alcoholic fatty liver disease (NAFLD); however, some results are subject to debate. This study was carried out to evaluate the correlation between NAFLD and vitamin D in men and women in East China. The data were obtained from a cross-sectional study that focused on the health and metabolic status of adults in sixteen areas of East China. According to ultrasonic assessments, the patients were divided into normal and NAFLD groups. Demographic characteristics and biochemical measurements were obtained. Binary logistic regression analysis was used to explore the association. In total, 5066 subjects were enrolled, and 2193 (43·3 %) were diagnosed with NAFLD; 84·56 % of the subjects showed vitamin D deficiency. Subjects with high vitamin D levels had a lower prevalence of NAFLD, particularly male subjects. Within the highest quartile of vitamin D levels, the prevalence of NAFLD was 40·8 %, whereas the lowest quartile of vitamin D levels showed a prevalence of 62·2 %, which was unchanged in women across the vitamin D levels. Binary logistic analysis showed that decreased vitamin D levels were associated with an increased risk of NAFLD (OR 1·54; 95 % CI 1·26, 1·88). This study suggests that vitamin D levels are significantly associated with NAFLD and that vitamin D acts as an independent factor for NAFLD prevalence, particularly in males in East China. Vitamin D interventional treatment might be a new target for controlling NAFLD; elucidating the mechanism requires further research.
Novel composite materials with wide pores were synthesized by an in situ technique using kaolin, palygorskite and pseudoboehmite as raw materials. The characterization results indicated that the synthesis components and conditions influenced the micro-, meso- and macro-porosity of the composite materials. The composites contained 53.5% zeolite Y and had much larger specific surface areas and pore volumes as well as significant hydrothermal stability. Fluid catalytic cracking (FCC) catalysts were prepared based on the composite materials. The results indicated that the as-prepared catalysts possessed a unique pore structure which assisted in diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the catalyst studied were superior to those of a reference catalyst. The catalyst studied also exhibited excellent nickel and vanadium passivation performance, strong ‘bottoms upgrading’ selectivity and better gasoline and coke selectivity.
Introduction: The mortality of Parkinson’s disease (PD) and its associated risk factors among clinically definite PD patients in China has been rarely investigated. Our study aimed to identify the mortality rates and predictors of death in PD patients in China. Methods: 157 consecutive, clinically definite PD patients from the urban area of Shanghai were recruited from a central hospital based movement disorder clinic in 2006. All patients were regularly followed up at the clinic until December 31, 2011, or death. Mortality and associations with baseline demographics, health and medical factors were then determined within the cohort. Results: After 5 years, 11(7%) patients had died. The standardised mortality ratio was 0.62 (95% CI 0.32 to 1.07, P=0.104). The main causes of death were pneumonia (54.5%, 6/11) and digestive disorders (18.2%, 2/11), respectively. Age at onset, independent living, the mini mental state examination score, the Parkinson’s disease sleep scale score and the Epworth sleepiness scale score at baseline were statistically significantly different between the survival group and the deceased group (P<0.05). Across all participants, risk factors for death included low mini mental state examination score, and high Epworth sleepiness scale score according to a binary variable logistic regression analysis. Conclusions: This study confirms the similar survival of patients with PD to the control population up to a follow-up of 5 years. Interventions tailored to potential risk factors associated with death may offer further benefits.
Thermal stress can induce birefringence in a laser medium, which can cause depolarization of the laser. The depolarization effect will be very severe in a high-average-power laser. Because the depolarization will make the frequency doubling efficiency decline, it should be compensated. In this paper, the thermal characteristics of two kinds of materials are analyzed in respect of temperature, thermal deformation and thermal stress. The depolarization result from thermal stress was simulated. Depolarization on non-uniform pumping was also simulated, and the compensation method is discussed.
The Montreal Cognitive Assessment (MoCA) is used for screening mild cognitive impairment (MCI), and the Beijing version (MoCA-BJ) is widely used in China. We aimed to develop a computerized tool for MoCA-BJ (MoCA-CC).
Methods:
MoCA-CC used person-machine interaction instead of patient-to-physician interaction; other aspects such as the scoring system did not differ from the original test. MoCA-CC, MoCA-BJ and routine neuropsychological tests were administered to 181 elderly participants (MCI = 96, normal controls [NC] = 85).
Results:
A total of 176 (97.24%) participants were evaluated successfully by MoCA-CC. Cronbach's α for MoCA-CC was 0.72. The test–retest reliability (retesting after six weeks) was good (intraclass correlation coefficient = 0.82; P < 0.001). Significant differences were observed in total scores (t = 9.38, P < 0.001) and individual item scores (t = 2.18–8.62, P < 0.05) between the NC and MCI groups, except for the score for “Naming” (t = 0.24, P = 0.81). The MoCA-CC total scores were highly correlated with the MoCA-BJ total scores (r = 0.93, P < 0.001) in the MCI participants. The area under receiver–operator curve for the prediction of MCI was 0.97 (95% confidence interval = 0.95–1.00). At the optimal cut-off score of 25/26, MoCA-CC demonstrated 95.8% sensitivity and 87.1% specificity.
Conclusion:
The MoCA-CC tool developed here has several advantages over the paper-pencil method and is reliable for screening MCI in elderly Chinese individuals, especially in the primary clinical setting. It needs to be validated in other diverse and larger populations.
The high repetition rate 10 J/10 ns Yb:YAG laser system and its key techniques are reported. The amplifiers in this system have a multi-pass V-shape structure and the heat in the amplifiers is removed by means of laminar water flow. In the main amplifier, the laser is four-pass, and an approximately 8.5 J/1 Hz/10 ns output is achieved in the primary test. The far-field of the output beam is approximately 10 times the diffraction limit. Because of the higher levels of amplified spontaneous emission (ASE) in the main amplifier, the output energy is lower than expected. At the end we discuss some measures that can improve the properties of the laser system.
Numerical methods based on gyrocenter gauge kinetic theory are suitable for first principle simulations of high frequency waves in magnetized plasmas. The δf gyrocenter gauge PIC simulation for linear rf wave has been previously realized. In this paper we further develop a full-f nonlinear PIC algorithm appropriate for the nonlinear physics of high frequency waves in magnetized plasmas. Numerical cases of linear rf waves are calculated as a benchmark for the nonlinear GyroGauge code, meanwhile nonlinear rf-wave phenomena are studied. The technique and advantage of the reduction of the numerical noise in this full-f gyrocenter gauge PIC algorithm are also discussed.
the goal of this study was to identify important prognostic variables affecting placement of a percutaneous endoscopic gastrostomy (Peg) tube after acute stroke.
Methods:
We retrospectively reviewed our patient database to identify acute ischemic stroke patients who placed Peg or nasogastric tube (Ngt) tube, but were free of other confounding conditions affecting swallowing. A total of 340 patients were involved in our study. We assessed the influence of age, National Institutes of Health stroke scale (NIHss) score, infarct volume, stroke subtype based on the toAst criteria, swallowing disorders, bilateral lesions in cerebrum and length of stay (los) in a logistic regression analysis.
Results:
In univariate analysis, age (p=0.048), NIHss score (p<0.0001), lesion volume (p<0.0001), los (p<0.0001), stroke location (p=0.045), and swallowing disorders (p<0.0001) were found to be the primary predictors of placing Peg. the presence of lesions in bilateral cerebral was included in the final model based on clinical considerations. After multivariate adjustment, only NIHss score (odds ratio [oR], 4.055; 95% confidence interval [CI], 2.398-6.857; p=0.0001), lesion volume (oR, 1.69; 95%CI, 1.09–4.39; p=0.014), swallowing disorders (oR, 1.151; 95% CI, 1.02-1.294; p=0.047), los (oR, 0.955; 95% CI, 0.914-0.998; p=0.0415) and bilateral lesions (oR, 2.8; 95% CI, 1.666-4.705; p=0.0001) remained significant.
Conclusion:
our data shows that NIHss score, lesion volume, swallowing disorders, los and bilateral lesions in cerebrum can predict the requiring of Peg tube insertion in patients after stroke.
Drug addiction is a major public health issue, yet the underlying adaptation of neural networks by drugs of abuse is not fully understood. We have previously linked chaperone heat shock protein 70 (Hsp70) to drug-induced adaptations. Focusing on the NAc core and shell, the present study aims to provide further findings for our understanding of the relation between behavioural sensitization to morphine and Hsp70 at transcriptional and functional levels in rats. Firstly, we delineated the characteristics of behavioural sensitization induced by a single morphine exposure (1–10 mg/kg, s.c.). Secondly, Hsp70 protein expression in the NAc core was time- and dose-relatedly induced during the development of behavioural sensitization to a single morphine exposure in rats, and Pearson analysis indicated a positive correlation between behavioural sensitization and Hsp70 expression in NAc core. Thirdly, at the transcriptional level, intra-NAc core injection of the specific heat shock factor-I (HSF-I) inhibitor N-Formyl-3,4-methylenedioxy-benzylidine-γ-butyrolactam (KNK437) suppressed Hsp70 expression and the development of behavioural sensitization, while the HSF-I specific inducer geranylgeranylacetone (GGA) promoted both of them. Interestingly, intra-NAc shell injection of KNK437 or GGA did not affect the development of behavioural sensitization. Finally, both the functional inhibition of Hsp70 ATPase activity by methylene blue (MB), and the antagonism of Hsp70 substrate binding site (SBD) activity by pifithrin-μ (PES) impaired the development of behavioural sensitization when they were microinjected into the NAc core. Taken together, the critical involvement of chaperone Hsp70 in behavioural sensitization to morphine identifies a biological target for long-lasting adaptations with relevance to addiction.
A joint diagnostic system was established for the diagnosis of laser-driven shock wave experiments. The system has high temporal resolution (time resolution ~12 ps) and high spatial resolution (spatial resolution ~7 μm) and fits for diagnostics of the experiment with small sample size and short time physical process. The joint diagnostic system was applied for shock wave measurement on the Shenguang-II laser facility. The passive shock breakout signal and active diagnostic signal were simultaneously obtained. The temporal measurement reliability of the system was verified using a multi-layered target. The experimental results show that the two measurement results were consistent.
Deposition of ibuprofen (IBU) into ordered mesoporous silica SBA-15 was carried out to prepare controlled release nanodrug using supercritical carbon dioxide (scCO2) as solvent at 17 MPa and 310.15 K. The maximum drug loading of IBU/SBA-15 was as high as 41.96%. The characterization of the obtained materials was performed using x-ray diffractometry (XRD), scanning electron microscopy (SEM), and nitrogen (N2) adsorption-desorption isotherms; the results indicate that most adsorbed drugs were inside the nanoscale channels. The in vitro study shows that the time of complete (100%) release significantly decreases as drug-loading decreases. The interesting aspect is that the samples with similar drug loading display different release rates, which may be due to differences in the drug quantity adsorbed inside the pores. In addition, the modified Noyes-Whitney equation was used to model the release kinetics for all the samples and a good agreement was obtained between the model representation and experimental data. In addition, the solubility of IBU in scCO2was tested through a high-pressure view cell at the temperature range of 298.15–320.15 K and pressure range of 7–17 MPa. The experimental solubility data were well correlated using Chrastil’s equation as well as Mendez-Santiago and Teja’s equation.
The purpose of the present study was to evaluate the impact of a lifestyle intervention programme, combined with a daily low-glycaemic index meal replacement, on body-weight and glycaemic control in subjects with impaired glucose regulation (IGR). Subjects with IGR were randomly assigned to an intervention group (n 46) and a control group (n 42). Both groups received health counselling at baseline. The intervention group also received a daily meal replacement and intensive lifestyle intervention to promote healthy eating habits during the first 3 months of the study, and follow-up visits performed monthly until the end of the 1-year study. Outcome measurements included changes in plasma glucose, glycated Hb (HbA1c), plasma lipids, body weight, blood pressure and body composition (such as body fat mass and visceral fat area). The results showed that body-weight loss after 1 year was significant in the intervention group compared with the control group ( − 1·8 (sem 0·35) v.− 0·6 (sem 0·40) 2·5 kg, P< 0·05). The 2 h plasma glucose concentration decreased 1·24 mmol/l in the intervention group and increased 0·85 mmol/l in the control group (P< 0·05) compared with their baseline, respectively. A 5 kg body-weight loss at 1 year was associated with a decrease of 1·49 mmol/l in 2 h plasma glucose (P< 0·01). The incidence of normal glucose regulation (NGR) in the two groups was significantly different (P= 0·001). In conclusion, the combination of regular contact, lifestyle advice and meal replacement is beneficial in promoting IGR to NGR.