Skip to main content Accessibility help
×
Home

Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: a cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China))

  • Hua-Ling Zhai (a1), Ning-Jian Wang (a1), Bing Han (a1), Qin Li (a1), Yi Chen (a1), Chun-Fang Zhu (a1), Ying-Chao Chen (a1), Fang-Zhen Xia (a1), Zhen Cang (a1), Chao-Xia Zhu (a1), Meng Lu (a1) and Ying-Li Lu (a1)...

Abstract

Recent studies have suggested an association between vitamin D and non-alcoholic fatty liver disease (NAFLD); however, some results are subject to debate. This study was carried out to evaluate the correlation between NAFLD and vitamin D in men and women in East China. The data were obtained from a cross-sectional study that focused on the health and metabolic status of adults in sixteen areas of East China. According to ultrasonic assessments, the patients were divided into normal and NAFLD groups. Demographic characteristics and biochemical measurements were obtained. Binary logistic regression analysis was used to explore the association. In total, 5066 subjects were enrolled, and 2193 (43·3 %) were diagnosed with NAFLD; 84·56 % of the subjects showed vitamin D deficiency. Subjects with high vitamin D levels had a lower prevalence of NAFLD, particularly male subjects. Within the highest quartile of vitamin D levels, the prevalence of NAFLD was 40·8 %, whereas the lowest quartile of vitamin D levels showed a prevalence of 62·2 %, which was unchanged in women across the vitamin D levels. Binary logistic analysis showed that decreased vitamin D levels were associated with an increased risk of NAFLD (OR 1·54; 95 % CI 1·26, 1·88). This study suggests that vitamin D levels are significantly associated with NAFLD and that vitamin D acts as an independent factor for NAFLD prevalence, particularly in males in East China. Vitamin D interventional treatment might be a new target for controlling NAFLD; elucidating the mechanism requires further research.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: a cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China))
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: a cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China))
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: a cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China))
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Y.-L. Lu, fax +86 21 6313 6856, email luyingli2008@126.com

Footnotes

Hide All

Both authors contributed equally to this work.

Footnotes

References

Hide All
1. Chalasani, N, Younossi, Z, Lavine, JE, et al. (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55, 20052023.
2. Williams, CD, Stengel, J, Asike, MI, et al. (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140, 124131.
3. Wong, VW (2013) Nonalcoholic fatty liver disease in Asia: a story of growth. J Gastroenterol Hepatol 28, 1823.
4. Mohamed, AA, Mahmoud, S, Ahmed, R, et al. (2015) Vitamin D is it a key in Egyptian NAFLD pathogenesis? J Gastroenterol Hepatol 4, 16051609.
5. Kong, M, Zhu, L, Bai, L, et al. (2014) Vitamin D deficiency promotes nonalcoholic steatohepatitis through impaired enterohepatic circulation in animal model. Am J Physiol Gastrointest Liver Physiol 307, G883G893.
6. Rhee, EJ, Kim, MK, Park, SE, et al. (2013) High serum vitamin D levels reduce the risk for nonalcoholic fatty liver disease in healthy men independent of metabolic syndrome. Endocr J 60, 743752.
7. Sharifi, N, Amani, R, Hajiani, E, et al. (2014) Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine 47, 7080.
8. Targher, G, Scorletti, E, Mantovani, A, et al. (2013) Nonalcoholic fatty liver disease and reduced serum vitamin D(3) levels. Metab Syndr Relat Disord 11, 217228.
9. Bril, F, Maximos, M, Portillo-Sanchez, P, et al. (2014) Relationship of vitamin D with insulin resistance and disease severity in non-alcoholic steatohepatitis. J Hepatol 62, 405411.
10. Wang, N, Kuang, L, Han, B, et al. (2015) Follicle-stimulating hormone associates with prediabetes and diabetes in postmenopausal women. Acta Diabetol (Epublication ahead of print version 12 May 2015).
11. Xu, Y, Wang, L, He, J, et al. (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310, 948959.
12. Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentration in man. Diabetologia 28, 412419.
13. Hamaguchi, M, Kojima, T, Takeda, N, et al. (2007) Nonalcoholic fatty liver disease is a novel predictor of cardiovascular disease. World J Gastroenterol 13, 15791584.
14. Ong, JP & Younossi, ZM (2007) Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis 11, 116.
15. Ross, AC, Manson, JE, Abrams, SA, et al. (2011) The 2011 report on dietary reference intakes for calcium and vitamin d from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab 96, 5358.
16. Holick, MF, Binkley, NC, Bischoff-Ferrari, HA, et al. (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96, 19111930.
17. Barchetta, I, Angelico, F, Del Ben, M, et al. (2011) Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med 9, 85.
18. Targher, G, Bertolini, L, Scala, L, et al. (2007) Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 17, 517524.
19. Hao, YP, Ma, XJ, Luo, YQ, et al. (2014) Serum vitamin D is associated with non-alcoholic fatty liver disease in Chinese males with normal weight and liver enzymes. Acta Pharmacol Sin 35, 11501156.
20. Lu, Z, Pan, X, Hu, Y, et al. (2015) Serum vitamin D levels are inversely related with non-alcoholic fatty liver disease independent of visceral obesity in Chinese postmenopausal women. Clin Exp Pharmacol Physiol 42, 139145.
21. Fantuzzi, G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115, 911919.
22. Hotamisligil, GS, Shargill, NS & Spiegelman, BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 8791.
23. Roth, CL, Elfers, CT, Figlewicz, DP, et al. (2012) Vitamin D deficiency in obese rats exacerbates nonalcoholic fatty liver disease and increases hepatic resistin and toll-like receptor activation. Hepatology 55, 11031111.
24. Sharifi, N, Amani, R, Hajiani, E, et al. (2014) Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine 47, 7080.
25. Wang, N, Li, Q, Han, B, et al. (2015) Follicle-stimulating hormone is associated with non-alcoholic fatty liver disease in Chinese women over 55 years old. J Gastroenterol Hepatol (epublication ahead of print version 18 December 2015).
26. Wang, N, Han, B, Li, Q, et al. (2015) Vitamin D is associated with testosterone and hypogonadism in Chinese men: results from a cross-sectional SPECT-China study. Reprod Biol Endocrinol 13, 74.
27. Kobyliak, N & Abenavoli, L (2014) The role of liver biopsy to assess non-alcoholic fatty liver disease. Rev Recent Clin Trials 9, 159169.
28. Zhou, W & Ye, SD (2015) Relationship between serum 25-hydroxyvitamin D and lower extremity arterial disease in type 2 diabetes mellitus patients and the analysis of the intervention of vitamin D. J Diabetes Res 2015, 815949.
29. Lim, S, Kim, MJ, Choi, SH, et al. (2013) Association of vitamin D deficiency with incidence of type 2 diabetes in high-risk Asian subjects. Am J Clin Nutr 97, 524530.
30. Mojiminiyi, OA & Abdella, NA (2010) Effect of homeostasis model assessment computational method on the definition and associations of insulin resistance. Clin Chem Lab Med 48, 16291634.
31. Ghasemi, A, Tohidi, M, Derakhshan, A, et al. (2015) Cut-off points of homeostasis model assessment of insulin resistance, beta-cell function, and fasting serum insulin to identify future type 2 diabetes: Tehran Lipid and Glucose Study. Acta Diabetol 52, 905915.
32. Morimoto, A, Tatsumi, Y, Soyano, F, et al. (2014) Increase in homeostasis model assessment of insulin resistance (HOMA-IR) had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: the Saku study. PLOS ONE 9, e105827.
33. Sarafidis, PA, Lasaridis, AN, Nilsson, PM, et al. (2007) Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley’s indices in patients with hypertension and type II diabetes. J Hum Hypertens 21, 709716.

Keywords

Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: a cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China))

  • Hua-Ling Zhai (a1), Ning-Jian Wang (a1), Bing Han (a1), Qin Li (a1), Yi Chen (a1), Chun-Fang Zhu (a1), Ying-Chao Chen (a1), Fang-Zhen Xia (a1), Zhen Cang (a1), Chao-Xia Zhu (a1), Meng Lu (a1) and Ying-Li Lu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed