Skip to main content Accessibility help
×
Home

Synthesis and application of a porous composite material synthesized via an in situ technique

  • Shu-Qin Zheng (a1) (a2), Shao Ren (a1), Hong-Xia Yu (a1), Jian-Ce Zhang (a1) (a2) and Wei Zhu (a1)...

Abstract

Novel composite materials with wide pores were synthesized by an in situ technique using kaolin, palygorskite and pseudoboehmite as raw materials. The characterization results indicated that the synthesis components and conditions influenced the micro-, meso- and macro-porosity of the composite materials. The composites contained 53.5% zeolite Y and had much larger specific surface areas and pore volumes as well as significant hydrothermal stability. Fluid catalytic cracking (FCC) catalysts were prepared based on the composite materials. The results indicated that the as-prepared catalysts possessed a unique pore structure which assisted in diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the catalyst studied were superior to those of a reference catalyst. The catalyst studied also exhibited excellent nickel and vanadium passivation performance, strong ‘bottoms upgrading’ selectivity and better gasoline and coke selectivity.

Copyright

Corresponding author

References

Hide All
Brown, S.M. & Woltermann, G.M. (1980) Zeolitized composite bodies and manufacture thereof. US Patent 4235753.
Brown, S.M., Durante, V.A., Reagan, W.J., Speronello & Barry, K. (1985) Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and methods for making. US Patent 4493902.
Covarrubias, C., García, R., Arriagada, R., Yánez, J. & Garland, M.T. (2006) Cr(III) exchange on zeolites obtained from kaolin and natural mordenite. Microporous and Mesoporous Materials, 88, 220231.
Dight, L.B., Bogert, D.C. & Leskowicz, M.A. (1991) Ultra high zeolite content FCC catalysts and method for making same from microspheres composed of a mixture of calcined kaolin clays. US Patent 5023220.
Groen, J.C. & Moulijn, J.A. (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 16, 21212131.
Harding, R.H., Peters, A.W. & Nee J.R.D. (2001) New developments in FCC catalyst technology. Applied Catalysis A. General, 221, 389396.
Hosseinpour, N., Mortazavi, Y., Bazyari, A. & Khodadadi, A. A. (2009) Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation. Fuel Processing Technology, 90, 171—179.
Jacobsen C.J.H., Madsen, C., Houzvicka, J., Schmidt, I. & Carlsson, A. (2000) Mesoporous zeolite single crystals. Journal of the American Chemical Society, 122, 71167117.
Lee, H.J., Kim, Y.M., Kweon, O.S. & Kim, I.J. (2007) Crystal growing and reaction kinetics of large NaX zeolite crystals. Journal of the European Ceramic Society, 27, 581584.
Le Roy, L., Taggart, E. & Ribaud, G.L. (1964) Process for producing molecular sieve bodies. US Patent 3119659.
Liu, H.H., Zhao, H.J., Gao, X.H. & Ma, J.T. (2006) Synthesis, characterization and evaluation of a novel resid FCC catalyst based on in situ synthesis on kaolin microspheres. Catalysis Letters, 110, 229234.
Mitchell B.R. (1980) Metal contamination of cracking catalysts. 1. Synthetic metals deposition on fresh catalysts. Industrial & Engineering Chemistry Product Research and Development, 19, 209—213.
Miyazawa, K. & Inagaki, S. (2000) Control of the microporosity within the pore walls of ordered mesopor¬ous silica SBA-15. Chemical Communications, 21, 21212122.
Ogura, M., Shinomiya, S.Y., Tateno, J., Nara, Y., Kikuchi, E. & Matsukata, M. (2000) Formation of uniform mesopores in ZSM-5 Zeolite through treatment in alkaline solution. Chemistry Letters, 29, 882883.
Önal, M., Yilmaz, H. & Sarikaya Y (2008) Some physicochemical properties of the white sepiolite known as pipestone from Eskigehir, Turkey. Clays and Clay Minerals, 56, 511519.
O'Sullivan, P., Forni, L. & Hodnett, B.K. (2001) The role of acid site strength in the Beckmann rearrangement. Industrial & Engineering Chemistry Research, 40, 14711475.
Patrylak, L., Likhnyovskyi, R., Vypyraylenko, V., Leboda, R. & Skubiszewska-Zieba 1 (2001) Adsorption properties of zeolite-containing microspheres and FCC catalysts based on Ukrainian kaolin. Adsorption Science & Technology, 19, 525540.
Qin, Y., Gao, X., Zhang, H., Zhang, S., Zheng, L., Li, Q., Mo, Z., Duan, L., Zhang, X. & Song, L. (2015) Measurements and distinguishment of mass transfer processes in fluid catalytic cracking catalyst particles by uptake and frequency response method. Catalysis Today, 245, 147154.
Sun, S.H., Zheng, S.Q., Wang, Z.F., Zhang, Y.H. & Ma, J.T. (2005) Sulphur reduction additive prepared from caustic-modified kaolin. Clay Minerals, 40, 311316.
Takahasi, T., Ueno, K. & Kai T (1991) Vapor phase reaction of cyclohexanone oxime over boria modified HSZM-5 zeolites. Canadian Journal of Chemical Engineering, 69, 10961099.
Teyssier, L., Thomas, M., Bouchy, C., Martens, J.A. & Guillon, E. (2007) Liquid chromatography method for quantification of surface connected mesoporosity in ultrastable Y zeolites. Microporous and Mesoporous Materials, 100, 611.
Verhoef, M.J. & Kooyman, P.J. (2001) Partial transform¬ation of MCM-41 material into zeolites: formation of nanosized MFI type crystallites. Chemistry of Materials, 13, 683687.
Wang, P., Shen, B.J. & Gao, J.S. (2007) Synthesis of MAZ/ ZSM-5 composite zeolite and its catalytic perform¬ance in FCC gasoline aromatization. Catalysis Communications, 8, 11611166.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed