We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Glutamine synthetase (GS) and glutamate synthase (GOGAT) play a central role in plant nitrogen (N) metabolism. In order to study the effect of powdery mildew (Blumeria graminis f. sp. tritici, Bgt) on N metabolism, field experiments were carried out to evaluate GS and GOGAT activity, GS expression and grain protein content (GPC) in susceptible (Xi'nong 979) and resistant (Zhengmai 103) wheat cultivars under three treatments. The three treatments were no inoculation (CK), inoculated once with Bgt (MP) and inoculated nine times with Bgt (HP). For Xi'nong 979, the activities of GS and GOGAT in grains as well as GS activity in flag leaves increased at 10–15 days after anthesis (DAA), and decreased significantly at 15 or 20–30 DAA in HP and MP. However, GS activity in grains decreased from 20 DAA, which was later than that of flag leaves (15 DAA). At the same time, GS expression in grains was up-regulated at early stage, with GS1 at 10 DAA and GS2 at 15 DAA, followed by a continuous down-regulation. This result indicated that GS and GOGAT activity as well as GS expression were inhibited by powdery mildew, indicating that N metabolism in grains was inhibited at 20–30 DAA. The current study also found out that the yield of the susceptible cultivar decreased significantly, while its GPC increased obviously in HP. It was shown that the increase of GPC was not due to the enhancement of N metabolism, but due to the passive increase caused by yield reduction.
Carrier-based unmanned aerial aircraft (UAV) structure is subjected to severe tensile load during takeoff, especially the drawbar, which affects its fatigue performance and structural safety. However, the complex structural features pose great challenges for the engineering design. Considering this situation, a structural design, fatigue analysis, and parameters optimisation joint working platform are urgently needed to solve this problem. In this study, numerical analysis of strain fatigue is carried out based on the laboratory fatigue failure of the carrier-based aircraft drawbar. Taking the sensitivity of drawbar parameters to stress and life into account and optimum design of drawbar with fatigue life as a target using the parametric method, this study also includes cutting-edge parameters of milling cutters, structural details of the drawbar and so on. Then an experimental design is applied using the Latin hypercube sampling method, and a surrogate model based on RBF neural network is established. Lastly, a multi-island genetic algorithm is introduced for optimisation. The results show that the error between the obtained optimal solution and simulation is 0.26%, while the optimised stress level is reduced by 15.7%, and the life of the drawbar is increased by 122%.
Although recognized as one of the most significant cultural transformations in North America, the reintroduction of the horse to the continent after AD 1492 has been rarely addressed by archaeological science. A key contributing factor behind this limited study is the apparent absence of equine skeletal remains from early historic archaeological contexts. Here, we present a multidisciplinary analysis of a horse skeleton recovered in Lehi, Utah, originally attributed to the Pleistocene. Reanalysis of stratigraphic context and radiocarbon dating indicates a historic age for this horse (cal AD 1681–1939), linking it with Ute or other Indigenous groups, whereas osteological features demonstrate its use for mounted horseback riding—perhaps with a nonframe saddle. DNA analysis indicates that the animal was a female domestic horse, which was likely cared for as part of a breeding herd despite outliving its usefulness in transport. Finally, sequentially sampled stable carbon, oxygen, and strontium isotope values from tooth enamel (δ13C, δ18O, and 87Sr/86Sr) suggest that the horse was raised locally. These results show the utility of archaeological science as applied to horse remains in understanding Indigenous horse pastoralism, whereas consideration of the broader archaeological record suggests a pattern of misidentification of horse bones from early historic contexts.
The rotating instability in a contra-rotating axial flow compressor is investigated by experiments. Twenty-four pressure sensors were installed on the casing to capture the unsteady flow in the rotor tip region simultaneously. A double-phase-locking technique suitable for the contra-rotating compressor was proposed to characterise the static pressure contours of the rotor tip. The mean and root-mean-square pressure contours indicate that rotating instability occurs before the rotating stall happened, and the rotor tip clearance vortex is located upstream of the rear rotor leading edge plane before stall. Fourier spectrum shows that rotating instability and rotating stall both happened under the stall condition, and the frequency band of rotating instability does not change with the flow rate. In the front rotor, the frequency of rotating instability is half of the blade passing frequency. It is verified that the modal estimation method can be implemented by using the average azimuthal phase velocity, which significantly reduced the number of pressure sensors required. Modal estimation results show that each peak of the rotating instability frequency band corresponds to a unique dominant circumferential mode. By optimising average azimuthal phase velocity, an improved modal estimation method is obtained, which can further improve the reliability of the modal estimation results.
To investigate the influences of dietary riboflavin (RF) addition on nutrient digestion and rumen fermentation, eight rumen cannulated Holstein bulls were randomly allocated into four treatments in a repeated 4 × 4 Latin square design. Daily addition level of RF for each bull in control, low RF, medium RF and high RF was 0, 300, 600 and 900 mg, respectively. Increasing the addition level of RF, DM intake was not affected, average daily gain tended to be increased linearly and feed conversion ratio decreased linearly. Total tract digestibilities of DM, organic matter, crude protein (CP) and neutral-detergent fibre (NDF) increased linearly. Rumen pH decreased quadratically, and total volatile fatty acids (VFA) increased quadratically. Acetate molar percentage and acetate:propionate ratio increased linearly, but propionate molar percentage and ammonia-N content decreased linearly. Rumen effective degradability of DM increased linearly, NDF increased quadratically but CP was unaltered. Activity of cellulase and populations of total bacteria, protozoa, fungi, dominant cellulolytic bacteria, Prevotella ruminicola and Ruminobacter amylophilus increased linearly. Linear increase was observed for urinary total purine derivatives excretion. The data suggested that dietary RF addition was essential for rumen microbial growth, and no further increase in performance and rumen total VFA concentration was observed when increasing RF level from 600 to 900 mg/d in dairy bulls.
The coronavirus disease 2019 (COVID-19) pandemic represents an unprecedented threat to mental health. Herein, we assessed the impact of COVID-19 on subthreshold depressive symptoms and identified potential mitigating factors.
Methods
Participants were from Depression Cohort in China (ChiCTR registry number 1900022145). Adults (n = 1722) with subthreshold depressive symptoms were enrolled between March and October 2019 in a 6-month, community-based interventional study that aimed to prevent clinical depression using psychoeducation. A total of 1506 participants completed the study in Shenzhen, China: 726 participants, who completed the study between March 2019 and January 2020 (i.e. before COVID-19), comprised the ‘wave 1’ group; 780 participants, who were enrolled before COVID-19 and completed the 6-month endpoint assessment during COVID-19, comprised ‘wave 2’. Symptoms of depression, anxiety and insomnia were assessed at baseline and endpoint (i.e. 6-month follow-up) using the Patient Health Questionnaire-9 (PHQ-9), Generalised Anxiety Disorder-7 (GAD-7) and Insomnia Severity Index (ISI), respectively. Measures of resilience and regular exercise were assessed at baseline. We compared the mental health outcomes between wave 1 and wave 2 groups. We additionally investigated how mental health outcomes changed across disparate stages of the COVID-19 pandemic in China, i.e. peak (7–13 February), post-peak (14–27 February), remission plateau (28 February−present).
Results
COVID-19 increased the risk for three mental outcomes: (1) depression (odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.04–1.62); (2) anxiety (OR = 1.47, 95% CI: 1.16–1.88) and (3) insomnia (OR = 1.37, 95% CI: 1.07–1.77). The highest proportion of probable depression and anxiety was observed post-peak, with 52.9% and 41.4%, respectively. Greater baseline resilience scores had a protective effect on the three main outcomes (depression: OR = 0.26, 95% CI: 0.19–0.37; anxiety: OR = 1.22, 95% CI: 0.14–0.33 and insomnia: OR = 0.18, 95% CI: 0.11–0.28). Furthermore, regular physical activity mitigated the risk for depression (OR = 0.79, 95% CI: 0.79–0.99).
Conclusions
The COVID-19 pandemic exerted a highly significant and negative impact on symptoms of depression, anxiety and insomnia. Mental health outcomes fluctuated as a function of the duration of the pandemic and were alleviated to some extent with the observed decline in community-based transmission. Augmenting resiliency and regular exercise provide an opportunity to mitigate the risk for mental health symptoms during this severe public health crisis.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Array’s (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and (2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum (PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the effects on the PS over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model incompleteness error.
To evaluate the impacts of guanidinoacetic acid (GAA) and coated folic acid (CFA) on growth performance, nutrient digestion and hepatic gene expression, fifty-two Angus bulls were assigned to four groups in a 2 × 2 factor experimental design. The CFA of 0 or 6 mg/kg dietary DM folic acid was supplemented in diets with GAA of 0 (GAA−) or 0·6 g/kg DM (GAA+), respectively. Average daily gain (ADG), feed efficiency and hepatic creatine concentration increased with GAA or CFA addition, and the increased magnitude of these parameters was greater for addition of CFA in GAA− diets than in GAA+ diets. Blood creatine concentration increased with GAA or CFA addition, and greater increase was observed when CFA was supplemented in GAA+ diets than in GAA− diets. DM intake was unchanged, but rumen total SCFA concentration and digestibilities of DM, crude protein, neutral-detergent fibre and acid-detergent fibre increased with the addition of GAA or CFA. Acetate:propionate ratio was unaffected by GAA, but increased for CFA addition. Increase in blood concentrations of albumin, total protein and insulin-like growth factor-1 (IGF-1) was observed for GAA or CFA addition. Blood folate concentration was decreased by GAA, but increased with CFA addition. Hepatic expressions of IGF-1, phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin and ribosomal protein S6 kinase increased with GAA or CFA addition. Results indicated that the combined supplementation of GAA and CFA could not cause ADG increase more when compared with GAA or CFA addition alone.
Accurate prediction of supersonic and hypersonic turbulent flows is essential to the design of high-speed aerospace vehicles. Such flows are mainly predicted using the Reynolds-Averaged Navier–Stokes (RANS) approach in general, and in particular turbulence models using the effective viscosity approximation. Several terms involving the turbulent kinetic energy (k) appear explicitly in the RANS equations through the modelling of the Reynolds stresses in such approach, and similar terms appear in the mean total energy equation. Some of these terms are often ignored in low, or even supersonic, speed simulations with zero-equation models, as well as some one- or two-equation models. The omission of these terms may not be appropriate under hypersonic conditions. Nevertheless, this is a widespread practice, even for very high-speed turbulent flow simulations, because many software packages still make such approximations. To quantify the impact of ignoring these terms in the RANS equations, two linear two-equation models and one non-linear two-equation model are applied to the computation of five supersonic and hypersonic benchmark cases, one 2D zero-pressure gradient hypersonic flat plate case and four shock wave boundary layer interaction (SWBLI) cases. The surface friction coefficients and velocity profiles predicted with different combinations of the turbulent kinetic energy terms present in the transport equations show little sensitivity to the presence of these terms in the zero-pressure gradient case. In the SWBLI cases, however, comparisons show that inclusion of k in the mean flow equations can have a strong effect on the prediction of flow separation. Therefore, it is highly recommended to include all the turbulent kinetic energy terms in the mean flow equations when dealing with simulations of supersonic and hypersonic turbulent flows, especially for flows with SWBLIs. As a further consequence, since k may not be obtained explicitly in zero-equation, or certain one-equation, models, it is debatable whether these models are suitable for simulations of supersonic and hypersonic turbulent flows with SWBLIs.
A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.
Antarctica's ice shelves modulate the grounded ice flow, and weakening of ice shelves due to climate forcing will decrease their ‘buttressing’ effect, causing a response in the grounded ice. While the processes governing ice-shelf weakening are complex, uncertainties in the response of the grounded ice sheet are also difficult to assess. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) compares ice-sheet model responses to decrease in buttressing by investigating the ‘end-member’ scenario of total and sustained loss of ice shelves. Although unrealistic, this scenario enables gauging the sensitivity of an ensemble of 15 ice-sheet models to a total loss of buttressing, hence exhibiting the full potential of marine ice-sheet instability. All models predict that this scenario leads to multi-metre (1–12 m) sea-level rise over 500 years from present day. West Antarctic ice sheet collapse alone leads to a 1.91–5.08 m sea-level rise due to the marine ice-sheet instability. Mass loss rates are a strong function of the sliding/friction law, with plastic laws cause a further destabilization of the Aurora and Wilkes Subglacial Basins, East Antarctica. Improvements to marine ice-sheet models have greatly reduced variability between modelled ice-sheet responses to extreme ice-shelf loss, e.g. compared to the SeaRISE assessments.
Klebsiella pneumoniae is a common pathogen associated with nosocomial infections and is characterised serologically by capsular polysaccharide (K) and lipopolysaccharide O antigens. We surveyed a total of 348 non-duplicate K. pneumoniae clinical isolates collected over a 1-year period in a tertiary care hospital, and determined their O and K serotypes by sequencing of the wbb Y and wzi gene loci, respectively. Isolates were also screened for antimicrobial resistance and hypervirulent phenotypes; 94 (27.0%) were identified as carbapenem-resistant (CRKP) and 110 (31.6%) as hypervirulent (hvKP). isolates fell into 58 K, and six O types, with 92.0% and 94.2% typeability, respectively. The predominant K types were K14K64 (16.38%), K1 (14.66%), K2 (8.05%) and K57 (5.46%), while O1 (46%), O2a (27.9%) and O3 (11.8%) were the most common. CRKP and hvKP strains had different serotype distributions with O2a:K14K64 (41.0%) being the most frequent among CRKP, and O1:K1 (26.4%) and O1:K2 (17.3%) among hvKP strains. Serotyping by gene sequencing proved to be a useful tool to inform the clinical epidemiology of K. pneumoniae infections and provides valuable data relevant to vaccine design.
Coated copper sulphate (CCS) could be used as a Cu supplement in cows. To investigate the influences of copper sulphate (CS) and CCS on milk performance, nutrient digestion and rumen fermentation, fifty Holstein dairy cows were arranged in a randomised block design to five groups: control, CS addition (7·5 mg Cu/kg DM from CS) or CCS addition (5, 7·5 and 10 mg Cu/kg DM from CCS, respectively). When comparing Cu source at equal inclusion rates (7·5 mg/kg DM), cows receiving CCS addition had higher yields of fat-corrected milk, milk fat and protein; digestibility of DM, organic matter (OM) and neutral-detergent fibre (NDF); ruminal total volatile fatty acid (VFA) concentration; activities of carboxymethyl cellulase, cellobiase, pectinase and α-amylase; populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes; and liver Cu content than cows receiving CS addition. Increasing CCS addition, DM intake was unchanged, yields of milk, milk fat and protein; feed efficiency; digestibility of DM, OM, NDF and acid-detergent fibre; ruminal total VFA concentration; acetate:propionate ratio; activity of cellulolytic enzyme; populations of total bacteria, protozoa and dominant cellulolytic bacteria; and concentrations of Cu in serum and liver increased linearly, but ruminal propionate percentage, ammonia-N concentration, α-amylase activity and populations of Prevotella ruminicola and Ruminobacter amylophilus decreased linearly. The results indicated that supplement of CS could be substituted with CCS and addition of CCS improved milk performance and nutrient digestion in dairy cows.
Previous work led to the proposal that the precision feeding of a high-concentrate diet may represent a potential method with which to enhance feed efficiency (FE) when rearing dairy heifers. However, the physiological and metabolic mechanisms underlying this approach remain unclear. This study used metabolomics analysis to investigate the changes in plasma metabolites of heifers precision-fed diets containing a wide range of forage to concentrate ratios. Twenty-four half-sib Holstein heifers, with a similar body condition, were randomly assigned into four groups and precision fed with diets containing different proportions of concentrate (20%, 40%, 60% and 80% based on DM). After 28 days of feeding, blood samples were collected 6 h after morning feeding and gas chromatography time-of-flight/MS was used to analyze the plasma samples. Parameters of oxidative status were also determined in the plasma. The FE (after being corrected for gut fill) increased linearly (P < 0.01) with increasing level of dietary concentrate. Significant changes were identified for 38 different metabolites in the plasma of heifers fed different dietary forage to concentrate ratios. The main pathways showing alterations were clustered into those relating to carbohydrate and amino acid metabolism; all of which have been previously associated with FE changes in ruminants. Heifers fed with a high-concentrate diet had higher (P < 0.01) plasma total antioxidant capacity and superoxide dismutase but lower (P ≤ 0.02) hydroxyl radical and hydrogen peroxide than heifers fed with a low-concentrate diet, which might indicate a lower plasma oxidative status in the heifers fed a high-concentrate diet. Thus, heifers fed with a high-concentrate diet had higher FE and antioxidant capacity but a lower plasma oxidative status as well as changed carbohydrate and amino acid metabolism. Our findings provide a better understanding of how forage to concentrate ratios affect FE and metabolism in the precision-fed growing heifers.
We assessed Clostridioides difficile toxin testing and positivity for all patients in Manitoba hospitals during June 2016–November 2018. The testing rate was 30 per 10,000 patient bed days (95% confidence interval [CI], 30–31) and the incidence rate was 3.5 per 10,000 patient bed days (95% CI, 3.3–3.7). The context of testing is essential to the interpretation of data among jurisdictions.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
The modelling of edge carbon transport and emission on EAST tokamak under resonant magnetic perturbation (RMP) fields has been conducted with the three-dimensional edge transport code EMC3-EIRENE. The measured vertical distribution of CVI emission by the extreme ultraviolet spectrometer system for the perturbed case shows a reduction in the CVI emission by 20 % compared to the equilibrium case. The chord-integrated CVI emission can be reconstructed by EMC3-EIRENE modelling, which presents an increase in the CVI emission with RMP fields. The discrepancy between experiments and simulations has been investigated by parameter study to examine the sensitivity of the simulation results on the edge plasma conditions and the impurity perpendicular transport. It is found that the variation of edge plasma conditions for the equilibrium case cannot resolve the discrepancy in the CVI emission between simulations and measurements. The simulations with enhanced impurity perpendicular transport coefficient allows a reasonable agreement with the measured reduction of CVI emission.