We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Objectives: Youth and young adults with pediatric-onset multiple sclerosis (MS) are vulnerable to executive dysfunction; however, some patients do not demonstrate functional deficits despite showing abnormalities on structural magnetic resonance imaging (MRI). Cognitively intact adults with MS have shown enhanced activation patterns relative to healthy controls on working memory tasks. We aim to evaluate whether cognitively preserved pediatric-onset MS patients engage compensatory recruitment strategies to facilitate age-normative performance on a task of working memory. Methods: Twenty cognitively preserved patients (mean age=18.7±2.7 years; 15 female) and 20 age- and sex-matched controls (mean age=18.5±2.9 years; 15 female) underwent neuropsychological testing and 3.0 Tesla MRI, including structural and functional acquisitions. Patterns of activation during the Alphaspan task, a working memory paradigm with two levels of executive control demand, were examined via whole-brain and region of interest (ROI) analyses. Results: Across all participants, lower accuracy and greater activation of regions implicated in working memory were observed during the high demand condition. MS patients demonstrated 0.21 s longer response time than controls. ROI analyses revealed enhanced activation for pediatric-onset MS patients relative to controls in the right middle frontal, left paracingulate, right supramarginal, and left superior parietal gyri during the low executive demand condition, over and above differences in response time. MS patients also demonstrated heightened activation in the right supramarginal gyrus in the high executive demand condition. Conclusions: Our findings suggest that pediatric-onset MS patients may engage compensatory recruitment strategies during working memory processing. (JINS, 2019, 25, 432–442)
Pollen grains and spores, plant macrofossils, and sponge spicules from a 7.2-m sediment core from Jackson Pond dating back to 20,000 yr B.P. are the basis for new interpretations of vegetational, limnological, and climatic changes in central Kentucky. During the full-glacial interval (20,400 to 16,800 yr B.P.) upland vegetation was closed spruce forest with jack pine as a subdominant. Aquatic macrophyte and sponge assemblages indicate that the site was a relatively deep, open pond with low organic productivity. During late-glacial time (16,800 to 11,300 yr B.P.) spruce populations continued to dominate while jack pine declined and sedge increased as the vegetation became a more open, taiga-like boreal woodland. Between 11,300 and 10,000 yr B.P., abundances of spruce and oak pollen oscillated reciprocally, possibly reflecting the Younger Dryas oscillation as boreal taxa underwent a series of declines and increases at the southern limit of their ranges before becoming extirpated and replaced by deciduous forest. In the early Holocene (10,000 to 7300 yr B.P.) a mesic deciduous woodland developed; it was replaced by xeric oak-hickory forest during the middle Holocene between 7300 and 3900 yr B.P. Grass increased after 3900 yr B.P., indicating that the presettlement vegetation mosaic of mixed deciduous forest and prairie (the “Kentucky Barrens”) became established in central Kentucky after the Hypsithermal interval. Sponge spicules increased in number during the Holocene, reflecting reduced water depths in the pond. Sediment infilling, as well as climatic warming and the expansion of fringing shrub thickets, increased nutrient and habitat availability for freshwater sponges.
Email your librarian or administrator to recommend adding this to your organisation's collection.