Skip to main content Accessibility help

Enhanced Recruitment During Executive Control Processing in Cognitively Preserved Patients With Pediatric-Onset MS

  • Emily Barlow-Krelina (a1), Gary R. Turner (a1), Nadine Akbar (a2), Brenda Banwell (a3) (a4), Magdalena Lysenko (a1), E. Ann Yeh (a4), Sridar Narayanan (a5), D. Louis Collins (a5), Bérengère Aubert-Broche (a5) and Christine Till (a1) (a4)...


Objectives: Youth and young adults with pediatric-onset multiple sclerosis (MS) are vulnerable to executive dysfunction; however, some patients do not demonstrate functional deficits despite showing abnormalities on structural magnetic resonance imaging (MRI). Cognitively intact adults with MS have shown enhanced activation patterns relative to healthy controls on working memory tasks. We aim to evaluate whether cognitively preserved pediatric-onset MS patients engage compensatory recruitment strategies to facilitate age-normative performance on a task of working memory. Methods: Twenty cognitively preserved patients (mean age=18.7±2.7 years; 15 female) and 20 age- and sex-matched controls (mean age=18.5±2.9 years; 15 female) underwent neuropsychological testing and 3.0 Tesla MRI, including structural and functional acquisitions. Patterns of activation during the Alphaspan task, a working memory paradigm with two levels of executive control demand, were examined via whole-brain and region of interest (ROI) analyses. Results: Across all participants, lower accuracy and greater activation of regions implicated in working memory were observed during the high demand condition. MS patients demonstrated 0.21 s longer response time than controls. ROI analyses revealed enhanced activation for pediatric-onset MS patients relative to controls in the right middle frontal, left paracingulate, right supramarginal, and left superior parietal gyri during the low executive demand condition, over and above differences in response time. MS patients also demonstrated heightened activation in the right supramarginal gyrus in the high executive demand condition. Conclusions: Our findings suggest that pediatric-onset MS patients may engage compensatory recruitment strategies during working memory processing. (JINS, 2019, 25, 432–442)


Corresponding author

Correspondence and reprint requests to: Emily Barlow-Krelina, 130 BSB, 4700 Keele Street, Toronto, Ontario, M3J 1P3. E-mail:


Hide All
Akbar, N., Banwell, B., Sled, J.G., Binns, M.A., Doesburg, S.M., Rypma, B., … Till, C. (2016). Brain activation patterns and cognitive processing speed in patients with pediatric-onset multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 38(4), 393403.
Amann, M., Dössegger, L.S., Penner, I.K., Hirsch, J.G., Raselli, C., Calabrese, P., … Gass, A. (2011). Altered functional adaptation to attention and working memory tasks with increasing complexity in relapsing‐remitting multiple sclerosis patients. Human Brain Mapping, 32(10), 17041719.
Amato, M.P., Goretti, B., Ghezzi, A., Hakiki, B., Niccolai, C., Lori, S., … Cilia, S. (2014). Neuropsychological features in childhood and juvenile multiple sclerosis: Five-year follow-up. Neurology, 83(16), 14321438.
Audoin, B., Ibarrola, D., Ranjeva, J.P., Confort‐Gouny, S., Malikova, I., Ali‐Chérif, A., … Cozzone, P. (2003). Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of multiple sclerosis. Human Brain Mapping, 20(2), 5158.
Baldo, J.V., & Dronkers, N.F. (2006). The role of inferior parietal and inferior frontal cortex in working memory. Neuropsychology, 20(5), 529.
Banwell, B.L., & Anderson, P.E. (2005). The cognitive burden of multiple sclerosis in children. Neurology, 64(5), 891894.
Bigi, S., & Banwell, B. (2012). Pediatric multiple sclerosis. Journal of Child Neurology, 27(11), 13781383.
Casey, B.J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Science, 9(3), 104110.
Cavanna, A.E., & Trimble, M.R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129(3), 564583.
Collins, D.L., Neelin, P., Peters, T.M., & Evans, A.C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192205.
Collins, D.L., Holmes, C.J., Peters, T.M., & Evans, A.C. (1995). Automatic 3‐D model‐based neuroanatomical segmentation. Human brain mapping, 3(3), 190208.
Craik, F. I. M. (1986). A functional account of differences in memory. In F. Klix & H. Hagendorf (Eds.), Human memory and cognitive capacities (pp. 409421). North Holland: Elsevier Science Publishers.
Curtis, C.E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415423.
Dennis, M. (2000). Developmental plasticity in children: The role of biological risk, development, time and reserve. Journal of Communication Disorders, 33(4), 321332.
Dennis, M., Spiegler, B.J., Simic, N., Sinopoli, K.J., Wilkinson, A., Yeates, K.O., … Fletcher, J.M. (2014). Functional plasticity in childhood brain disorders: When, what, how, and whom to assess. Neuropsychology Review, 24(4), 389408.
Deschamps, I., Baum, S.R., & Gracco, V.L. (2014). On the role of the supramarginal gyrus in phonological processing and verbal working memory: Evidence from rTMS studies. Neuropsychologia, 53, 3946.
Eskildsen, S.F., Coupe, P., Fonov, V., Manjon, J.V., Leung, K.K., Guizard, N., … the Alzheimer’s Disease Neuroimaging Initiative. (2012). BEaST: Brain extraction based on nonlocal segmentation technique. Neuroimage, 59(3), 23622373.
Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., & the Brain Development Cooperative Group. (2011). Unbiased average age-appropriate atlases for pediatric studies. Neuroimage, 54(1), 313327.
Forn, C., Barros-Loscertales, A., Escudero, J., Benlloch, V., Campos, S., Parcet, M.A., & Avila, C. (2006). Cortical reorganization during PASAT task in MS patients with preserved working memory functions. Neuroimage, 31(2), 686691.
Forn, C., Barros-Loscertales, A., Escudero, J., Benlloch, V., Campos, S., Parcet, M.A., & Avila, C. (2007). Compensatory activations in patients with multiple sclerosis during preserved performance on the auditory N-back task. Human Brain Mapping, 28(5), 424430.
Ghassemi, R., Nayahanan, S., Banwell, B., Sled, J.G., Shroff, M., & Arnold, D.L. (2014). Quantitative determination of regional lesion volume and distribution in children and adults with relapsing-remitting multiple sclerosis. PLoS One, 9(2), e85741.
Greve, D.N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary based registration. Neuroimage, 48(1), 6372.
Ingraham, L.J., & Aiken, C.B. (1996). An empirical approach to determining criteria for abnormality in test batteries with multiple measures. Neuropsychology, 10(1), 120.
Jenkinson, M. (2003). Fast, automated, N‐dimensional phase‐unwrapping algorithm. Magnetic Resonance in Medicine, 49(1), 193197.
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825841.
Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., & Smith, S.M. (2012 ). Fsl. Neuroimage, 62(2), 782790.
Jenkinson, M., & Smith, S. (2001). A global optimization method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143156.
MacAllister, W.S., Christodoulou, C., Milazzo, M., & Krupp, L.B. (2007). Longitudinal neuropsychological assessment in pediatric multiple sclerosis. Developmental Neuropsychology, 32(2), 625644.
Mainero, C., Caramia, F., Pozzilli, C., Pisani, A., Pestalozza, I., Borriello, G., … Pantano, P. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage, 21(3), 858867.
Mathiowetz, V., Volland, G., Kashman, N., & Weber, K. (1992). Nine Hole Peg Test. New York, NY: Oxford University Press.
Morgen, K., Sammer, G., Courtney, S.M., Wolters, T., Melchior, H., Blecker, C.R., … Vaitl, D. (2007). Distinct mechanisms of altered brain activation in patients with multiple sclerosis. Neuroimage, 37(3), 937946.
Owen, A.M., McMillan, K.M., Laird, A.R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 4659.
Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M., … Lublin, F.D. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald Criteria. Annals of Neurology, 69(2), 292302.
Prakash, R.S., Snook, E.M., Erickson, K.I., Colcombe, S.J., Voss, M.W., Motl, R.W., & Kramer, A.F. (2007). Cardiorespiratory fitness: A predictor of cortical plasticity in multiple sclerosis. Neuroimage, 34(3), 12381244.
Reitan, R.M. (1992). Trail Making Test: Manual for Administration and Scoring. Tucson, AZ: Reitan Neuropsychology Laboratory.
Reuter-Lorenz, P.A., & Cappell, K.A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science. 17(3), 177182.
Rocca, M.A., De Meo, E., Amato, M.P., Copetti, M., Moiola, L., Ghezzi, A., … Pera, M.C. (2015). Cognitive impairment in paediatric multiple sclerosis patients is not related to cortical lesions. Multiple Sclerosis Journal, 21(7), 956957.
Schmidt, M. (1996). Rey Auditory Verbal Learning Test: A handbook. Los Angeles, CA: Western Psychological Services.
Schoonheim, M.M., Geurts, J.J., & Barkhof, F. (2010). The limits of functional reorganization in multiple sclerosis. Neurology, 74(16), 12461247.
Smith, A. (1982). Symbol Digit Modalities Test: Manual. Los Angeles, CA: Western Psychological Services.
Smith, E.E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 16571661.
Smith, S.M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143155.
Smith, S.M., De Stefano, N., Jenkinson, M., & Matthews, P.M. (2001). Normalized accurate measurement of longitudinal brain change. Journal of Computer Assisted Tomography, 25(3), 466475.
Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P.M., Federico, A., & De Stefano, N. (2002). Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage, 17(1), 479489.
Staffen, W., Mair, A., Zauner, H., Unterrainer, J., Niederhofer, H., Kutzelnigg, A., … Ladurner, G. (2002). Cognitive function and fMRI in patients with multiple sclerosis: Evidence for compensatory cortical activation during an attention task. Brain, 125(6), 12751282.
Sweet, L.H., Rao, S.M., Primeau, M., Durgerian, S., & Cohen, R.A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 2836.
Till, C., Deotto, A., Tipu, V., Sled, J.G., Bethune, A., Narayanan, S., … Banwell, B.L. (2011). White matter integrity and math performance in pediatric multiple sclerosis: A diffusion tensor imaging study. Neuroreport, 22(18), 10051009.
Till, C., Ho, C., Dudani, A., Garcia-Lorenzo, D., Collins, D.L., & Banwell, B.L. (2012). Magnetic resonance imaging predictors of executive functioning in patients with pediatric-onset multiple sclerosis. Archives of Clinical Neuropsychology, 27(5), 495509.
Tsukiura, T., Fujii, T., Takahashi, T., Xiao, R., Inase, M., Iijima, T., … Okuda, J. (2001). Neuroanatomical discrimination between manipulating and maintaining processes involved in verbal working memory: A functional MRI study. Cognitive Brain Research, 11(1), 1321.
Turner, G.R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71(11), 812818.
Turner, G.R., & Spreng, R.N. (2012). Executive functions and neurocognitive aging: Dissociable patterns of brain activity. Neurobiology of Aging, 33(4), 826e1.
Uddin, L.Q., Kelly, A.M., Biswal, B.B., Castellanos, F.X., & Milham, M.P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30(2), 625637.
Van Strien, J.W. (2002). The Dutch Handedness Questionnaire. Rotterdam: Faculty of Social Sciences (FSW), Department of Psychology, Erasmus University Rotterdam.
Wager, T.D., & Smith, E.E. (2003). Neuroimaging studies of working memory. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255274.
Waubant, E., & Chabas, D. (2009). Pediatric multiple sclerosis. Current Treatment Options in Neurology, 11(3), 203210.
Weschler, D. (1999) Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: The Psychological Corporation.
Woo, C.W., Krishnan, A., & Wager, T.D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. Neuroimage, 91, 412419.
Woodcock, R.W., McGrew, K.S., & Mather, N. (2001). Woodcock-Johnson III Tests of Cognitive Abilities. Itasca, IL: Riverside Publishing.
Yeh, E.A., Chitnis, T., Krupp, L., Ness, J., Chabas, D., Kuntz, N., & Waubant, E. (2009). Pediatric multiple sclerosis. Nature Reviews Neurology, 5(11), 621.
Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging, 20(1), 4557.


Related content

Powered by UNSILO

Enhanced Recruitment During Executive Control Processing in Cognitively Preserved Patients With Pediatric-Onset MS

  • Emily Barlow-Krelina (a1), Gary R. Turner (a1), Nadine Akbar (a2), Brenda Banwell (a3) (a4), Magdalena Lysenko (a1), E. Ann Yeh (a4), Sridar Narayanan (a5), D. Louis Collins (a5), Bérengère Aubert-Broche (a5) and Christine Till (a1) (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.