Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-08-05T05:14:57.478Z Has data issue: false hasContentIssue false

Chapter 7 - Convection and complexity

Published online by Cambridge University Press:  05 June 2012

Don L. Anderson
Affiliation:
California Institute of Technology
Get access

Summary

… if your theory is found to be against the second law of thermodynamics, I can give you no hope; there is nothing for it but to collapse in deepest humiliation.

Eddington

Contrary to current textbooks … the observed world does not proceed from lower to higher “degrees of disorder”, since when all gravitationally-induced phenomena are taken into account the emerging result indicates a net decrease in the “degrees of disorder”, a greater “degree of structuring” … classical equilibrium thermodynamics … has to be completed by a theory of ‘creation of gravitationally-induced structures’ …

Gal-or

Overview

In 1900 Henri Bénard heated whale oil in a pan and noted a system of hexagonal convection cells. Lord Rayleigh in 1916 analyzed this in terms of the instability of a fluid heated from below. Since that time Rayleigh–Bénard convection has been taken as the classic example of thermal convection, and the hexagonal planform has been considered to be typical of convective patterns at the onset of thermal convection. Fifty years went by before it was realized that Bénard's patterns were actually driven from above, by surface tension, not from below by an unstable thermal boundary layer. Experiments showed the same style of convection when the fluid was heated from above, cooled from below or when performed in the absence of gravity. This confirmed the top-down surface-driven nature of the convection which is now called Marangoni or Bénard–Marangoni convection.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Convection and complexity
  • Don L. Anderson, California Institute of Technology
  • Book: New Theory of the Earth
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139167291.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Convection and complexity
  • Don L. Anderson, California Institute of Technology
  • Book: New Theory of the Earth
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139167291.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Convection and complexity
  • Don L. Anderson, California Institute of Technology
  • Book: New Theory of the Earth
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139167291.010
Available formats
×