Skip to main content Accessibility help
×
  • Cited by 128
Publisher:
Cambridge University Press
Online publication date:
June 2012
Print publication year:
2007
Online ISBN:
9781139167291

Book description

Theory of the Earth is an interdisciplinary advanced textbook on the origin, composition, and evolution of the Earth's interior: geophysics, geochemistry, dynamics, convection, mineralogy, volcanism, energetics and thermal history. This is the only book on the whole landscape of deep Earth processes which ties together all the strands of the subdisciplines. It is a complete update of Anderson's Theory of the Earth (1989). It includes many new sections and dozens of new figures and tables. As with the original book, this new edition will prove to be a stimulating textbook on advanced courses in geophysics, geochemistry, and planetary science, and supplementary textbook on a wide range of other advanced Earth science courses. It will also be an essential reference and resource for all researchers in the solid Earth sciences.

Reviews

From reviews of the previous edition, Theory of the Earth:' … Theory of the Earth is one of the most important books of the decade … Anderson is one of a very small group of scientists who have managed to achieve success in both fields [geophysics and geochemistry], providing a dual experience that makes his book an invaluable survey. Theory of the Earth, then, is in part an extensive summary of our current state of knowledge of the Earth's interior, … drawing on a wide variety of scientific disciplines including not only geophysics and geochemistry but solid-state physics, astronomy, crystallography and thermodynamics. It goes much further than merely summarizing knowledge, however, in that it also attempts to integrate the information from different fields in the spirit of an Earth that itself recognizes no humanly devised disciplinary boundaries. Both as survey and synthesis, Anderson's text, the first in its field, will be of great benefit to students around the world.'

Peter J. Smith - Open University

From reviews of the previous edition, Theory of the Earth:'Any scientist today who takes on the task of trying to integrate the mass of diverse observations about Earth into a coherent model is courageous. Anderson has attempted to put together data from modern geophysics, geochemistry, isotope systematics, and petrology and, in large part, has succeeded … this book will introduce the advanced student quite well to the tools of observation we have available to us, and to what we know and don't know about the Earth. … Anderson can be congratulated for producing a document that will be a standard taking-off point for many a future graduate seminar.'

William S. Fyfe - University of Western Ontario

From reviews of the previous edition, Theory of the Earth:' … much to the envy of the rest of us, there are a few people within the Earth-science community who are, well, fairly superhuman. Don Anderson is one of them - as close to being the complete geophysicist/geochemist as anyone is ever likely to be. Theory of the Earth, then, is an extensive summary of practically everything 'known' about the physics, chemistry and physicochemical evolution of the Earth's interior. … Anderson has produced a remarkable synthesis of our present understanding of the Earth's interior.'

Source: Nature

From reviews of the previous edition, Theory of the Earth:'The appearance of this book is a major event in geoscience literature. It is a comprehensive statement on the Physics and Chemistry of the Earth by one of the great authorities of our time. It will occupy a prominent place on our bookshelves for the rest of our professional lives. When we get into an argument with colleagues or face a fundamental problem that we are unsure about we will reach for it: 'Let's see what Anderson says about that'. … a very valuable book.’

Frank Stacey Source: Physics of the Earth and Planetary Interiors

From reviews of the previous edition, Theory of the Earth:' … as in all good scientific books, there is strong concentration on themes with which Anderson has been closely identified over a number of years. … The scope of the book is most impressive: it will be a constantly useful as a source of information that is otherwise extremely time-consuming to track down.'

Joe Cann Source: The Times Higher Education Supplement

'Don Anderson is among one of those rare geoscientists who have wisdom and capability of in-depth criticism, as is evident from this book.'

Source: Journal of Sedimentary Research

'… the sequencing topics is one of the book’s best qualities. … because it is so well written and well conceived, it is suitable either as a graduate level text book or as supplemental reading in an advanced undergraduate course, and because it is so comprehensive, it deserves to be within arm’s length of every serious student of earth.'

Source: Physics Today

'… comprehensive and in-depth … In addition to conventional (highly relevant and up-to-date) references, the added 'googlets' will be of immense help for students and researcher to find many relevant but otherwise inaccessible web documents. The mode of presentation is enjoyable and the illustrations are reader-friendly. This book will definitely motivate new research and I strongly recommend this book for libraries of universities and institutes.'

Source: Geologos

' … Anderson has written a very amazing book. … many pages bring provocative facts and interpretations, but this is essential for a stimulation of our thinking… Its importance in geosciences may not be less than in other branches of the human knowledge. When its rich content makes this book outstanding, the noted message makes it brilliant.'

Source: Paläontologie allgem

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References and notes
References and notes
References
Classical references
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–86.
Bowen, N. L. (1928) The Evolution of Igneous Rocks. Princeton, NJ, Princeton University Press.
Bowie, W. (1927) Isostasy. New York, Dutton.
Bullen, K. E. (1975) The Earth's Density. London, Chapman and Hall.
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.
Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press.
Daly, R. A. (1933) Igneous Rocks and the Depths of the Earth. New York, McGraw Hill.
Daly, R. A. (1940) Strength and Structure of the Earth. Englewood Cliffs, NJ, Prentice-Hall.
Darwin, G. H. (1879) On the bodily tides of viscous and semi-elastic spheroids and on the ocean tides upon a yielding nucleus. Phil. Trans. Roy. Soc. London A, 1970.
Dietz, R. S. (1961) Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 854–7.
Du Toit, A. L. (1937) Our Wandering Continents. Edinburgh, Oliver and Boyd.
Elder, J. (1976) The Bowels of the Earth. Oxford, Oxford University Press.
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49.
Gast, P. W. (1969) The isotopic compositon of lead from St. Helena and Ascension Islands. Earth Planet. Sci. Lett., 5, 353–9.
Gutenberg, Beno (1939) Internal Constitution of the Earth, ed. Gutenberg, B.New York, McGraw-Hill. (2nd Edition, New York, Dover Publications, 1951.)
Haskell, N. A. (1937) The viscosity of the asthenosphere. Am. J. Sci., 33, 22–30.
Hess, H. H. (1962) History of ocean basins. In Petrologic Studies: A Volume in Honor of A. F. Buddington, eds. Engel, A. E. J., James, H. L. and Leonard, B. F.Boulder, CO, Geological Society of America, pp. 599–620.
Hirth, J. P. and Lothe, J. (1982) Theory of Dislocations, New York, John Wiley & Sons.
Holmes, A. (1928) Radioactivity and continental drift. Geol. Mag., 65, 236–8.
Holmes, A. (1944) Principles of Physical Geology. Edinburgh, Thomas and Sons Ltd.
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 57, 680–4.
Howard, L. N. (1963) Heat transport by turbulent convection. J. Fluid Mech., 17, 405–32.
Jeffreys, H. (1926) The stability of a layer of fluid heated from below. Phil. Mag., 2, 833–44.
Jeffreys, H. (1976) The Earth, Sixth Edition. Cambridge, Cambridge University Press.
Jeffreys, H. (1939) Theory of Probability. Oxford, Oxford University Press; with new editions in 1948 and in 1961 (also in the Oxford Classic Texts in the Physical Sciences series).
Jeffreys, H. and Swirles, B. (eds.) (1971–77) Collected Papers of Sir Harold Jeffreys on Geophysics and other Sciences (in six volumes). London, Gordon & Breach.
Kaula, W. M. (1968) An Introduction to Planetary Physics, the Terrestrial Planets, New York, John Wiley & Sons.
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–7.
Pekeris, C. L. (1935) Thermal convection in the interior of the Earth. Mon. Not. R. Astron. Soc., Geophys. Suppl., 3, 343–67.
Rayleigh, Lord (1916) On convection currents on a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag., 32, 529–46. (See also Pearson, J. R. A. (1958) On convection cells induced by surface tension. J. Fluid Mech., 4, 489–500.)
Rutherford, E. (1907) Some cosmical aspects of radioactivity. J. Roy. Astr. Soc. Canada, May–June, 145–65.
Thompson, D‘Arcy (1917) On Growth and Form. Cambridge, Cambridge University Press.
Wegener, A. (1924) The Origin of Continents and Oceans. New York, Dutton.
Chapter 1. Origin and early history
References
Anders, E. (1968) Chemical processes in the early solar system, as inferred from meteorites. Acct. Chem. Res., 1, 289–98.
Fuchs, L. H., Olsen, E. and Jensen, K. (1973) Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contrib. Earth Sci., 10, 39.
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973.
Safronov, V. S. (1972) Accumulation of the planets. In On the Origin of the Solar System, ed. Reeves, H. Paris, Centre Nationale de Recherche Scientifique, pp. 89–113.
Selected reading
Abe, Y. (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter., 100, 27–39.
Agee, C. B. (1990) A new look at differentiation of the Earth from melting experiments on the Allende meteorite. Nature, 346, 834–7.
Cameron, A. G. W. (1997) The origin of the moon and the single impact hypothesis. Icarus, 126, 126–37.
Canup, R. M. and Asphaug, E. (2001) The Moon-forming impact. Nature, 412, 708–12.
Carrigan, C. R. (1983) A heat pipe model for vertical, magma-filled conduits. J. Volc. Geotherm. Res., 16, 279–88.
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 579–619.
Murthy, V. R. (1991) Early differentiation of the earth and the problems of mantle siderophile elements: a new approach. Science, 253, 303–6.
Ohtani, E. (1985) The primordial terrestrial magma ocean and its implications for the stratification of the mantle. Phys. Earth Planet. Inter., 38, 70–80.
Ringwood, A. E. (1979) Origin of the Earth and Moon. New York, Springer-Verlag.
Chapter 2. Comparative planetology
References
Hartman, W., Phillips, R. and Taylor, G. (1986) Origin of the Moon. Houston, Lunar and Planetary Institute.
Taylor, S. R. (1982) Planetary Science, A Lunar Perspective. Houston, Lunar and Planetary Institute.
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell.
Weaver, B. L. and Tarney, J. (1984) Major and trace element composition of the continental lithosphere. Phys. Chem Earth, 15, 39–68.
Further reading
Anderson, D. L. (1972) The internal constitution of Mars. J. Geophys. Res., 77, 789–95.
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci. Conf., 5, 1181–206.
Taylor, S. R. and McLennan, S. M. (1981) The composition and evolution of the Earth's crust; rare earth element evidence from sedimentary rocks. Phil. Trans. Roy. Soc. Lond. A, 301, 381–99.
Chapter 3. The building blocks of planets
References
Anders, E. and Ebihara, M. (1982) Solar system abundances of the Elements. Geochim. Cosmochim. Acta, 46, 2363–80.
Breneman, H. H. and Stone, E. C. (1985) Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. Lett. 294, L57–62.
BVP, Basaltic Volcanism Study Project (1980) Basaltic Volcanism on the Terrestrial Planets. New York, Pergamon.
Drake, M. J. and Righter, K. (2002) Determining the composition of the Earth. Nature, 416, 39–44.
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci.Conf., 5, 1181–206.
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.
Javoy, M. (1995) The integral enstatite chondrite model of the Earth. Geophys. Res. Lett., 22, 2219–22.
Mason, B. (1962) Meteorites. New York, John Wiley & Sons.
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973.
Ringwood, A. E. (1977) Composition and Origin of the Earth. Publication No. 1299. Canberra, Research School of Earth Sciences, Australian National University.
Wood, J. A. (1962) Chondrules and the origin of the terrestrial planets. Nature, 194, 127–30.
Further reading
Anders, E. and Owen, T. (1977) Mars and Earth: origin and abundance of volatiles. Science, 198, 453–65.
Cameron, A. G. W. (1982) Elementary and nuclidic abundances in the solar system. In Essays in Nuclear Astrophysics, eds. Barnes, C. A.et al. Cambridge, Cambridge University Press.
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.
Mazor, E., Heymann, D. and Anders, E. (1970) Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta, 34, 781–824.
von Zahn, V., Kumar, S., Niemann, H. and Prim, R. (1983) Composition of the Venus atmosphere. In Venus, eds. Hunten, D. M., Colin, L., Donahue, T. and Moroz, V.Tucson, University of Arizona Press, pp. 299–430.
Wacker, J. and Marti, K. (1983) Noble gas components of Albee Meteorite. Earth Planet. Sci. Lett., 62, 147–58.
Wanke, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Hofmeister, H., Kruse, H., Jagoutz, E., Palme, C., Spettel, B., Thacker R. and Vilcsek, E. (1977) On chemistry of lunar samples and achondrites; Primary matter in the lunar highlands; A re-evaluation. Proc. Lunar Sci. Conf. 8th, 2191–13.
Weidenschilling, S. J. (1976) Accretion of the terrestrial planets. Icarus, 27, 161–70.
Chapter 4. The outer shells of Earth
References and notes
Clare, B. W. and Kepert, D. L. (1991). The optimal packing of circles on a sphere. J. Math. Chem., 6, 325–49.
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L. (eds.) (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388.
Morgan, W. J. (1971) Convective plumes in the lower mantle. Nature, 230, 42–3.
Rowley, D. B. (2002) Rate of plate creation and destruction: 180 Ma to present. Geolog. Soc. Am. Bull., 114, 927–33.
Van Hunen, J., van den Berg, A. P. and Vlaar, N. (2002) On the role of subducting oceanic plateaus in the development of shallow flat subduction, Tectonophysics, 352, 317–33.
Wilson, J. T. (1973) Mantle plumes and plate motions, Tectonophysics, 19, 149–64.
Further reading
Chappell, W. M. and Tullis, T. E. (1977) Evaluation of the forces that drive plates. J. Geophys. Res., 82, 1967–84.
Chase, C. G. (1979) Asthenospheric counterflow: a kinematic model. Geophys. J. R. Astron. Soc., 56, 1–18.
Chase, C. G. (1979) Subduction, the geoid, and lower mantle convection. Nature, 282, 464–8.
Elder, J. W. (1967) Convective self-propulsion of continents. Nature, 214, 657–60.
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49.
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43, 163–200.
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63, 97–109.
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84, 1031–48.
Hager, B. H. and O'Connell, R. J. (1981) A simple global model of plate dynamics and mantle convection. J. Geophys. Res., 86, 4843–67.
Harper, J. F. (1978) Asthenosphere flow and plate motions. Geophys. J. R. Astr. Soc., 55, 87–110.
Jacoby, W. R. (1970) Instability in the upper mantle and global plate movements. J. Geophys. Res., 75, 5671–80.
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York, McGraw-Hill, pp. 386–405.
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85, 7031–44.
Parmentier, E. M. and Oliver, J. E. (1979) A study of shallow global mantle flow due to the accretion and subduction of lithospheric plates. Geophys. J. R. Astr. Soc., 57, 1–21.
Ramberg, H. (1967) Gravity, Deformation and the Earth's Crust. London, Academic Press.
Plate Driving Forces; Whole Mantle Convection
Becker, T. W. and O'Connell, R. J. (2001) Predicting plate motions with mantle circulation models. Geochemistry, Geophysics, Geosystems 2, 2001GC000171.
Bercovici, D. (1995) A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow. J. Geophys. Res., 100, 2013–30.
Tackley, P. (2000) The quest for self-consistent generation of plate tectonics in mantle convection models. In History and Dynamics of Global Plate Motions, Geophys. Monogr. Ser., eds. Richards, M. A., Gordon, R. and Hilst, R.Washington, DC, American Geophysical Union, pp. 47–72.
Trompert, R. & Hansen, U. (1998) Mantle convection simulations with rheologies that generate plate-like behavior. Nature, 395, 686–9.
Lithgow-Bertelloni, C. & Richards, M. A. (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78.
Chapter 5. The eclogite engine
Further reading
Allen, R. & Tromp, J. (2005) Resolution of regional seismic models: Squeezing the Iceland anomaly. Geophys. J. Inter., 161, 373–86.
Anderson, D. L. (2005) Scoring hotspots: The plume and plate paradigms. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 31–54.
Anderson, D. L. (2002) How many plates?Geology, 30, 411–14.
Anderson, D. L. and Natland, J. H. (2005) A brief history of the plume hypothesis and its competitors: Concept and controversy. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 119–46.
Anderson, D. L. and Schramm, K. A. (2005). Hotspot catalogs. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 19–30.
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3, 2001GC000168.
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. (1998) Jamming, force chains and fragile matter. Phys. Rev. Lett., 81, 1841–4.
Conrad, C. P. & Hager, B. H. (2001) Mantle convection with strong subduction zones. Geophys. J. Inter., 144, 271–88.
Davies, G. F. (2000) Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge, Cambridge University Press.
Chapter 6. The shape of the Earth
References
Hager, B. H. (1984) Subducted slabs and the geoid; constraints on mantle theology and flow. J. Geophys. Res., 89, 6003–15.
Hager, B. H., Clayton, R., Richards, M., Comer, R. and Dziewonski, A. (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313, 541–5.
Rapp, R. H. (1981) The Earth's gravity field to degree and order 180 using Seaset altimeter data, terrestrial gravity data, and other data. Report 322, Dept. Geodetic. Sci. and Surv. Columbus, OH, Ohio State University.
Richards, M. A. and Hager, B. H. (1984) Geoid anomalies in a dynamic Earth. J. Geophys. Res., 89, 5987–6002.
Selected reading and notes
Darwin, G. (1877) On the influence of geological changes on the earth's axis of rotation. Phil. Trans. R. Soc. Lond. A, 167, 271–312.
Goldreich, P. and Toomre, A. (1968) Some remarks on polar wandering. J. Geophys. Res., 74, 2555–67.
Hager, B. H. and Richards, M. (1989) Long-wavelength variations in Earth's geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A, 328, 309–27.
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York, McGraw-Hill, pp. 386–405.
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85, 7031–44.
Further reading
Parsons, B. and Sclater, J. G. (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82, 803–27.
Chapter 7. Convection and complexity
Layered mantle convection
Anderson, D. L. (1979) Chemical stratification of the mantle. J. Geophys. Res., 84, 6297–8.
Anderson, D. L. (2002) The case for irreversible chemical stratification of the mantle. Int. Geol. Rev., 44, 97–116.
Ciskova, H., Cadek, O., van den Berg, A. P. & Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26, 1501–4.
Ciskova, H. & Cadek, O. (1997) Effect of a viscosity interface at 1000 km depth on mantle convection. Studia geoph. geod., 41, 297–306.
Glatzmaier, G. A. & Schubert, G. (1993) Three-dimensional spherical models of layered and whole mantle convection. J. Geophys. Res., 98, 969–76.
Gu, Y., Dziewonski, A. M. & Agee, C. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157, 57–67.
Honda, S. (1984) A preliminary analysis of convection in a mantle with a heterogeneous distribution of heat-producing elements. Phys. Earth Planet. Inter., 34, 68–76.
Honda, S. (1986) Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett., 13, 1454–7.
Nataf, H-C., Moreno, S. and Cardin, Ph. (1988) What is responsible for thermal coupling in layered convection?J. Phys. France, 49, 1707–14.
Phillips, B. R. and Bunge, H.-P. (2005) Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planet. Sci. Lett., 233, 121–35.
Schubert, G., Turcotte, D. and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge, Cambridge University Press.
Silver, P. G., Carlson, R. W. and Olson, P. (1988) Deep slabs, geochemical heterogeneity and the large-scale structure of mantle convection: Investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci., 16, 477–541.
Todesco, M. & Spera, F. (1992) Stability of a chemically layered upper mantle. Phys. Earth Planet. Inter., 71, 85–99.
van Keken, P. E. & Ballantine, C. (1998) Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett., 156, 19–32.
Wen, L. & Anderson, D. L. (1997) Layered mantle convection: a model for geoid and topography. Earth Planet. Sci. Lett., 146, 367–77.
Chapter 8. Let's take it from the top: the crust and upper mantle
References
Babuska, V. (1972) Elasticity and anisotropy of dunite and bronzitite. J. Geophys. Res., 77, 6955–65.
Christensen, N. I. and Lundquist, J. N. (1982) Pyroxene orientation within the upper mantle. Geol. Soc. Amer. Bull., 93, 279–88.
Christensen, N. I. and Smewing, J. D. (1981) Geology and seismic structure of the northern section of the Oman ophiolite. J. Geophys. Res., 86, 2545–55.
Clark, S. P., Jr. (1966) Handbook of Physical Constants. Geol. Soc. Amer. Mem. 97.
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York, Pergamon.
Duffy, T. S. and Anderson, D. L. (1988). Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.
Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–18.
Given, J. and Helmberger, D. (1981) Upper mantle structure of northwestern Eurasia. J. Geophys. Res., 85, 7183–94.
Grand, S. P. and HeImberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astr. Soc., 76, 399–438.
Grand, S. P. and Helmherger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89, 11 465–75.
Jordan, T. H. (1979) Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. In The Mantle Sample, eds. Boyd, F. R. and Meyer, H. O. A.Washington DC, American Geophysical Union, pp. 1–14.
Lehmann, I. (1961) S and the structure of the upper mantle, Geophys. J. R. Astron. Soc., 4, 124–38.
Manghnani, M. H. and Ramananotoandro, C. S. P. (1974) Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar. J. Geophys. Res., 79, 5427–46.
Mooney, W. D., Laske, G. and Masters, G. (1998) A new global crustal model at 5 × 5 degrees: CRUST5.1. J. Geophys. Res., 103, 727–47.
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35, 227–63.
Salisbury, M. and Christensen, N. L. (1978) The seismic velocity structure of a traverse through the Bay of Islands ophiolite complex, Newfoundland, an exposure of oceanic crust and upper mantle. J. Geophys. Res., 83, 805–17.
Sumino, Y. and Anderson, O. L. (1984) Elastic constants of minerals. In Handbook of Physical Properties of Rocks 3, ed. Carmichael, R. S.Boca Raton, FL, CRC Press, pp. 39–138.
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell.
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center: The Gulf of California. Geophys. J. R. Astr. Soc., 76, 697–723.
Further reading
Anderson, D. L. and Bass, J. D. (1984) Mineralogy and composition of the upper mantle. Geophys. Res. Lett., 11, 637–40.
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29, 8, doi: 10.1029/2002GL014768.
Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 591–621.
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. and Hung, S. H. (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–43.
Shimamura, H., Asada, T. and Kumazawa, M. (1977) High shear velocity layer in the upper mantle of the Western Pacific. Nature, 269, 680–2.
Weidner, D. J. (1986) Mantle models based on measured physical properties of minerals. In Chemistry and Physics of Terrestrial Planets, ed. Saxena, S. K.New York, Springer-Verlag, pp. 251–74.
Weidner, D. J., Sawamoto, H., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4. J. Geophys. Res., 89, 7852–60.
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P'P' seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.
Chapter 9. A laminated lumpy mantle
References
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29, 8, doi: 10.1029/2002GL014768.
Revenaugh, J. & Sipkin, S. A. (1994) Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature, 369, 474–6.
Nolet, G. & Zielhuis, A. (1994) Low S velocities under the Tornquist–Teisseyre zone: evidence for water injection into the transition zone by subduction. J. Geophys. Res., 99, 15813–20.
Song, T., Helmberger, D. & Grand, S. (2004) Low velocity zone atop the 410 seismic discontinuity in the northwestern U. S. Nature, 427, 530–3.
Vinnik, L., Kumar, M. R., Kind, R. & Farra, V. (2003) Super-deep low-velocity layer beneath the Arabian plate. Geophys. Res. Lett., 30 (1415), doi:10.1029/2002GL016590.
Whitcomb, J. H. & Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.
Chapter 10. The bowels of the earth
References
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–86.
Lay, T. & Helmberger, D. V. (1983) Body-wave amplitude and travel-time correlations across North America. Bull. Seism. Soc. Am., 73, 17–30.
Lehmann, I. (1936) Bur. Centr. Seism. Inst. A 14, 3–31.
Julian, B., Davies, D. & Sheppard, R. (1972) a seismic wave that traverses the IC as a shear wave. Nature, 235, 317–18.
Further reading
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.
Wen, L. & Helmberger, D. V. (1998) Seismic evidence for an inner core transition zone. Science, 279, 1701–3.
Ishii, M. & Dziewonski, A. M. (2002) The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. PNAS, 99, 14026–30.
Chapter 11. Geotomography: heterogeneity of the mantle
References
Anderson, D. L. (2005) Scoring hotspots: the plume and plate paradigms, in Plates, Plumes, and Paradigms, pp. 31–54, ed. Foulger, G. R., Natland, J. H., Presnall, D. C., and Anderson, D. L., Boulder, C. O., Geological Society of America Special Paper 388.
Baig, A. M. and Dahlen, F. A. (2004) Travel time biases in random media and the S-wave discrepancy. Geophys. J. Inter., 158, 922–38.
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3, 2001GC000168.
Bijwaard, H., Spakman, W. and Engdahl, E. (1998) Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–78.
Dziewonski, A. M. (2005) The robust aspects of global seismic tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, pp. 147–54.
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43, 163–200.
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L., eds. (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388.
Grand, S. P. (1986) Shear velocity structure of the mantle beneath the North American plate, Ph.D. Thesis, California Institute of Technology.
Grand, S. P. (1994) Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 591–621.
Grand, S. P. and Helmberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astron. Soc., 76, 399–438.
Grand, S. P. and Helmberger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89, 11, 465–75.
Grand, S. P., van der Hilst, R. and Widiyantoro, S. (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today, 7, 1–7.
Gu, Y. J., Dziewonski, A. and Ekström, G. (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys. Res. Lett., 28, 4655–8.
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63, 97–109.
Hager, B. H. and Clayton, R. W. (1986) Constraints on the structure of mantle convection using seismic observations, flow models and the geoid. In Mantle Convection, ed. Peltier, W. R.New York, Gordon and Breach Science Publishers, pp. 657–763.
Ishii, M. and Tromp, J. (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Physics of the Earth and Planetary Interiors, 146, 113–24.
Nakanishi, I. and Anderson, D. L. (1983) Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part I, Analysis of great circle phase velocities. J. Geophys. Res., 88, 10267–83.
Nakanishi, I. and Anderson, D. L. (1984a) Aspherical heterogeneity of the mantle from phase velocities of mantle waves. Nature, 307, 117–21.
Nakanishi, I. and Anderson, D. L. (1984b). Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part II, Analysis by single-station method. Geophys. J. Roy. Astron. Soc., 78, 573–617.
Polet, J. and Anderson, D. L. (1995) Depth extent of cratons as inferred from tomographic studies. Geology, 23, 205–8.
Ray, T. W. and Anderson, D. L. (1994) Spherical disharmonics in the Earth sciences and the spatial solution; ridges; ridges, hotspots, slabs, geochemistry and tomography correlations. J. Geophys. Res., 99, 9605–14.
Scrivner, C. and Anderson, D. L. (1992) The effect of post Pangea subduction on global mantle tomography and convection. Geophys. Res. Lett., 19, 1053–6.
Shearer, P. M. and Earle, P. S. (2004) The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int., 158, 1103–17.
Shapiro, N. M. and Ritzwoller, M. H. (2004) Thermodynamic constraints on seismic inversions. Geophys. J. Int. 157, 1175–88, doi:10.1111/j.1365–246X.2004.02254.x, 2004.
Spakman, W. and Nolet, G. (1988) Imaging algorithms, accuracy and resolution in delay time tomography. In Mathematical Geophysics, eds. Reidel.
Spakman, W., Stein, S., Hilst, R. and Wortel., R. (1989). Resolution experiments for NW Pacific Subduction Zone Tomography. Geophys. Res. Lett., 16, 1097–100.
Su, W.-J. and Dziewonski, A. M. (1991) Predominance of long-wavelength heterogeneity in the mantle. Nature, 352, 121–6.
Su, W.-J. and Dziewonski, A. M. (1992) On the scale of mantle heterogeneity. Phys. Earth Planet. Inter. 74, 29–54.
Tanimoto, T. (1991) Predominance of large-scale heterogeneity and the shift of velocity anomalies between the upper and lower mantle. J. Phys. Earth, 38, 493–509.
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geopkys. Res. Lett., 11, 287–90.
Tanimoto, T. and Anderson, D. L. (1985) Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 sec. J. Geophys. Res., 90, 1842–58.
Thoraval, C., Machetel, Ph. and Cazanave, A. (1995) Locally layered convection inferred from dynamic models of the Earth's mantle. Nature, 375, 777–80.
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.
Vasco, D. W., Johnson, L. R. and Pulliam, J. (1995) Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-S_pS travel time residuals. J. Geophys. Res., 100, 24037–59.
Walck, M. C. (1984) The P-wave upper mantle structure beneath an. active spreading center: The Gulf of California. Geophys. J. R. Astron. Soc., 76, 697–723.
Wen, L. and Anderson, D. L. (1995) The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet. Sci. Lett., 133, 185–98.
Wen, L. and Anderson, D. L. (1997) Slabs, hotspots, cratons and mantle convection revealed from residual seismic tomography in the upper mantle. Phys. Earth Planet. Inter., 99, 131–43.
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.
Further reading
Cizkova, H., Cadek, O., van den Berg, A. P. and Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26, 1501–4.
Gu, Y., Dziewonski, A. M. and Agee, C. B. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157, 57–67.
Ritsema, J. (2005) Global tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 11–18.
www.mantleplumes.org/TopPages/TheP3Book.html, Web Supplement
Vasco, D. W. and Johnson, L. R. (1998) Whole Earth structure estimated from seismic arrival times. J. Geophys. Res., 103, 2633–71.
Chapter 12. Statistics and other damned lies
Further reading
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.
Chapter 13. Making an Earth
References
Anderson, D. L. (1983) Kimberlites and the evolution of the mantle. In Kimberlites and Related Rocks, ed, J. Kornprobst, pp. 395–403.
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution, Earth Planet. Sci. Lett., 68, 361–78.
Maaloe, S. and Steel, R. (1980) Mantle composition derived from the composition of lherzolites. Nature, 285, 321–2.
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973–80.
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis, Proc. Lunar Sci. Conf., 7, 1697–722.
Further reading
Anderson, D. L. (1999) A theory of the Earth: Hutton and Humpty Dumpty and Holmes. In James Hutton – Present and Future, eds. Craig, G. and Hull, J.London, Geological Society of London, Special Publication 150, pp. 13–35.
Chapter 14. Magmas: windows into the mantle
References
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York, Pergamon.
Crawford, A. J., Falloon, T. J. and Green, D. H. (1989) Classification, petrogenesis and tectonic setting of boninites. In Boninites, ed. Crawford, A.London, Unwin Hyman, pp. 1–49.
Dawson, J. B. (1980) Kimberlites and their Xenoliths, Springer-Verlag, Berlin, 252 pp.
Gill, J. B. (1976) Composition and age of Lau basin and ridge volcanic rocks; implications for evolution of an interarc basin and remnant arc. Geol. Soc. Am. Bull., 87, 1384–95.
Hawkins, J. W. (1977) Petrology and geochemical characteristics of marginal basin basalt. In Island Arcs, Deep Sea Trenches, and Back-Arc Basins, eds. Talwani, M. and Pittman, W. C. Washington, DC, American Geophysical Union, pp. 355–77.
Parman, S. W., Grove, T. L. and Dann, J. C. (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys. Res. Lett., 28, 2513–16.
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlite, Diatremes and Diamonds, eds. Boyd, F. R. and Meyer, H. Washington, DC, American Geophysical Union, pp. 300–12.
Further reading
Anderson, D. L. (1983a) Kimberlite and the evolution of the mantle. In Kimberlites and Related Rocks, ed. J. Kornprobst, pp. 395–403.
Anderson, D. L. (1983b) Chemical composition of the mantle. J. Geophys. Res., 88 suppl., B41–52.
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution. Earth Planet. Sci. Lett., 68, 361–78.
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science. Cambridge, MA, MIT Press, pp. 357–99.
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis. PLC, 7, 1697–722.
Taylor, S. (1982) Lunar and terrestrial crusts. Phys. Earth Planet. Inter., 29, 233.
Chapter 15. The hard rock cafe
References
Basu, A. R. and Tatsumoto, M. (1982) Nd isotopes in kimberlites and mantle evolution. Terra Cog., 2, 2–14.
Beus, A. A. (1976) Geochemistry of the Lithosphere, Moscow, MIR Publications.
Boyd, F. R.(1986) High- and low-temperature garnet peridotite xenoliths and their possible relation to the lithosphere–asthenosphere boundary beneath southern Africa. In Mantle Xenoliths, ed. Nixon, P. New York, John Wiley & Sons, pp. 403–12.
Boyd, F. R. and Mertzman, S. A. (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. In Magmatic Processes: Physicochemical Principles, ed. Mysen, B. O.University Park, Pennsylvaniay, The Geochemical Society, Special Publication 1, pp. 13–24.
Clarke, D. B. (1970) Tertiary basalts of Baffin Bay; possible primary magma from the mantle. Contrib. Mineral. Petrol., Special Publication 1, 25, 203–24.
Echeverria, L. M. (1980) Tertiary komatiites of Gorgona Island. Carnegie Instn. Wash. Ybk., 79, 340–4.
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–18.
Frey, F. A. (1980) The origin of pyroxenites and garnet pyroxenites from Salt Crater, Oahu, Hawaii: trace element evidence. Am. J. Sci., 280-A, 427–49.
Green, D. H. and Ringwood., A. (1963) Mineral assemblages in a model mantle composition. J. Geophys. Res., 68, 937–45.
Green, D. H., Hibberson, W. and Jaques, A. (1979) Petrogenesis of mid-ocean ridge basalts. In The Earth: Its Origin, Structure and Evolution, ed. McElhinny, M. W.New York, Academic Press, pp. 265–95.
Jahn, B.-M., Auvray, B., Blais, S. et al. (1980) Trace element geochemistry and petrogenesis of Finnish greenstone belts. J. Petrol., 21, 201–44.
Maaloe, S. and Aoki, K. (1977) The major element composition of the upper mantle estimated from the composition of Iherzolites. Contrib. Mineral. Petrol., 63, 161–73.
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw-Hill.
Smyth, J. R. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; II, Primary phase compositions and origin. In Kimberlites, ed. Kornprobst, J.Amsterdam, Elsevier, pp. 121–31.
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlites, Diatremes, and Diamonds, eds. Boyd, F. R. and Meyer, H. O.Washington, DC, American Geophysical Union, pp. 300–12.
Further reading
Bowen, N. L. (1928) The Evolution of the Igneous Rocks.Princeton, NJ, Princeton University Press.
Carmichael, I. S. E., Turner, F. and Verhoogen, J. (1974) Igneous Petrology. New York, McGraw-Hill.
Chen, C. and Frey, F. (1983) Origin of Hawaiian theiite and alkali basalt. Nature, 302, 785.
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19, 463–513.
Green, D. H. (1971) Composition of basaltic magmas as indicators of conditions of origin; application to oceanic volcanism. Phil. Trans. R. Soc., A268, 707–25.
Green, D. H. and Ringwood, A. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15, 103–90.
Hiyagon, H. and Ozima, M. (1986) Partition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta, 50, 2045–57.
Jaques, A. and Green, D. (1980) Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeitic basalts. Contrib. Mineral. Petrol., 73, 287–310.
Menzies, M., Rogers, N., Zindle, A. and Hawkesworth, C. (1987) In Mantle Metasomatism, ed. Menzies, M. A.New York, Academic Press.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part III, Inversion. J. Geophys. Res., 91, 7261–307.
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rock. Earth Sci. Rev., 4, 69–133.
Rigden, S. S., Ahrens, T. J. and Stolper, E. M. (1984) Densities of liquid silicates at high pressures. Science, 226, 1071–4.
Ringwood, A. E. ((1962) Mineralogical constitution of the deep mantle. J. Geophys. Res., 67, 4005–10.
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science.Cambridge, MA, MIT Press, pp. 357–99.
Ringwood, A. E. (1979) Origin of the Earth and Moon.New York, Springer-Verlag.
Smyth, J. R., McCorrnick, T. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; I, Two unusual corundum-bearing kyanite eclogites. In Kimberlites, ed. Kornprobst, J.Amsterdam,Elsevier, pp. 109–19.
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center; the Gulf of California. Geophys. J. Roy. Astron. Soc., 76, 697–723.
Chapter 16. Noble gas isotopes
References
Anderson, D. L. (1998a) The helium paradoxes. Proc. Nat. Acad. Sci., 95, 4822–7.
Anderson, D. L. (1998b) A model to explain the various paradoxes associated with mantle noble gas geochemistry. Proc. Nat. Acad. Sci., 95, 9087–92.
Anderson, D. L. (2000a) The statistics of helium isotopes along the global spreading ridge system and the central limit theorem. Geophys. Res. Lett., 27, 2401–4.
Anderson, D. L. (2000b) The statistics and distribution of helium in the mantle. Int. Geology Rev., 42, 289–311.
Javoy, M. and Pineau, F. (1991) The volatiles record of a “popping” rock from the mid-Atlantic ridge at 14 N: Chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett., 107, 598–611.
Sarda, P. and Graham, D. (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett., 97, 268–89.
Seta, A., Matsumoto, T. and Matsuda, J.-I. (2001) Concurrent evolution of 3He/4He ratio in the Earth's mantle reservoirs for the first 2 Ga. Earth Planet. Sci. Lett., 188, 211–19.
Staudacher, T., Sarda, P., Richardson, S. H., Allegre, C. J., Sagna, I. and Dmitriev, L. V. (1989) Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14∘N: geodynamic consequences. Earth Planet. Sci. Lett., 96, 119–33.
Further reading
Meibom, A., Anderson, D. L., Sleep, N., Frei, R., Chamberlain, C., Hren, M. and Wooden, J. (2003) Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?Earth Planet. Sci. Lett., 208, 197–204.
Moreira, M., and Sarda, P. (2000) Noble gas constraints on degassing processes. Earth Planet. Sci. Lett., 176, 375–86.
Chapter 17. The other isotopes
References
Chase, C. G. (1981) Oceanic island Pb; two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 277–84.
Dalrymple, G. B. (2001) The age of the Earth in the twentieth century – a problem (mostly) solved. In The Age of the Earth – from 4004 BC to AD 2002, eds. Lewis, C. L. E. and Knell, S. J.London, The Geological Society, Special Publication 190, pp. 205–21.
Eiler, J. M. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Stable Isotope Geochemistry, eds. Valley, J. W. and Cole, D. R.Rev. Mineral., 43, 319–64.
Eiler, J. M., Farley, K. A., Valley, J. W., Hauri, E., Craig, H., Hart, S. R. and Stolper, E. M. (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta, 61, 2281–93.
Eiler, J. M., Valley, J. and Stolper, E. (1996a) Oxygen isotope ratios in olivine from the Hawaiian Scientific Drilling Project. J. Geophys. Res., 101, 11807–13.
Eiler, J. M., Farley, K., Valley, J., Hofmann, A. and Stolper, E. (1996b) Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet. Sci. Lett., 144, 453–68.
Meibom, A., Sleep, N. H., Chamberlain, C. P., Coleman, R. G., Frei, R., Hren, M. T., and Wooden, J. L. (2002) Re–Os isotopic evidence for long-lived heterogeneity and euilibration processes in the Earth's upper mantle. Nature, 418, 705–8.
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–7.
Roy-Barman, M. and Allegre, C. J. (1994) 187Os/186Os ratios of midocean ridge basalts and abyssal peridotites. Geochim. Cosmochim. Acta, 58, 5043–54.
Shirey, S. B. and Walker, R. J. (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann. Rev. Earth Planet. Sci., 26, 423–500.
Smith, A. D. (2003) Critical evaluation of Re–Os and Pt–Os isotopic evidence on the origin of intraplate volcanism. J. Geodyn., 36, 469–84.
Mantle geochemistry
Armstrong, R. L. (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A, 301, 443–72.
Chase, C. G. (1981) Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 277–84.
Clarke, W. B., Beg, M. and Craig, H. (1969) Excess 3He in sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6, 213–20.
Craig, H. and Lupton, J. (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett., 31, 369–85.
Gast, P. W. (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta, 32, 1057–86.
Further reading
Anderson, D. L. (1981) Hotspots, basalts, and the evolution of the mantle. Science, 213, 82–9.
Garlick, G., MacGregor, I. and Vogel, D. (1971) Oxygen isotope ratios in eclogites from kimberlites. Science, 171, 1025–7.
Gregory, R. T. and Taylor, H. P. Jr. (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman. J. Geophys. Res., 86, 2737–55.
Dalrymple, G. B. (1991) The Age of the Earth. Stanford, CA, Stanford University Press.
Hofmeister, A. M. (1999). Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699–706.
Ishii, M. and Tromp, J. (1999) Normal mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science, 285, 1231–6.
Meibom, A. and Anderson, D. L. (2003) The Statistical Upper Mantle Assemblage. Earth Planet. Sci. Lett., 217, 123–39.
Meibom, A., Sleep, N. H., Zahnle, K. and Anderson, D. L. (2005) Models for noble gases in mantle geochemistry: Some observations and alternatives. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L. Boulder, CO, Geological Society of America, Special Paper 388, pp. 347–63.
Reisberg, L. and Zindler, A. (1986) Extreme isotopic variations in the upper mantle; evidence from Ronda. Earth and Planetary Science Letters, 81, 29–45.
Chapter 18. Elasticity and solid state physics
Further reading
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.
Ishii, M. and Tromp, J. (2004). Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive modes. Phys. Earth Planet. Inter., 146, 113–24.
Karki, B. B., Stixrude, L. and Wentzcovitch, R. (2001) High-pressure elastic properties of major materials of Earth's mantle from first principles. Rev. Geophys., 39, 507–34.
Nakanishi, I. and Anderson, D. L. (1982) World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seis. Soc. Am., 72, 1185–94.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1984) Anisotropy and shear-velocity heterogeneities in the upper mantle. Geophys. Res. Lett., 11, 109–12.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part 111, Inversion. J. Geophys. Res., 91, 7261–307.
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.
Chapter 19. Dissipation
References
Anderson, D. L. and Given, J. (1982) Absorption band Q model for the Earth. J. Geophys. Res., 87, 3893–904.
Kanamori, H. and Anderson, D. L. (1977) Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys. Planet. Sci., 15, 105–12.
Minster, J. B. and Anderson, D. L. (1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. Roy. Soc. London, 299, 319–56.
Spetzler, H. and Anderson, D. L. (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. J. Geophys. Res., 73, 6051–60.
Selected reading
Anderson, D. L., Ben-Menahem, A. and Archambeau, C. B. (1965) Attenuation of seismic energy in the upper mantle. J. Geophys. Res., 70, 1441–8.
O'Connell, R. J. and Budiansky, B. (1978) Measures of dissipation in viscoelastic media. Geophys. Res. Lett., 5, 5–8.
Chapter 20. Fabric of the mantle
References
Anderson, D. L. and Dziewonski, A. M. (1982) Upper mantle anisotropy; evidence from free oscillations. Geophys. J. Royal Astr. Soc., 69, 383–404.
Anderson, D. L., Minster, J. B. and Cole, D. (1974) The effect of oriented cracks on seismic velocities. J. Geophys. Res., 79, 4011–15.
Ando, M. Y., Ishikawa and Yamazaki, F. (1983) Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 10, 5850–64.
Babuska, V. (1981) Anisotropy of Vp and Vs in rock-forming minerals, J. Geophys., 50, 1–6.
Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67, 4427–40.
Christensen, N. I. and Lundquist, S. (1982) Pyroxene orientation within the upper mantle. Bull. Geol. Soc. Am., 93, 279–88.
Christensen, N. I. and Salisbury, M. (1979) Seismic anisotropy in the upper mantle: Evidence from the Bay of Islands ophiolite complex. J. Geophys. Res., 84, B9, 4601–10.
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.
Fukao, Y. (1984) Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 309, 695–8.
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84, 1031–48
Montagner, J.-P. (2002) Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett., 202, 263–74.
Montagner, J.-P. and Nataf, H.-C. (1986) A simple method for inverting the azimuthal anisotropy of surface waves, J. Geophys. Res., 91, 511–20.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, Part III. Inversion, J. Geophys. Res., 91, 72161–3070.
Nicolas, A. and Christensen, N. I. (1987) Formation of anisotropy in upper mantle peridotites. In Composition, Structure and Dynamics of the Lithosphere/Asthenosphere System, eds. Fuchs, K. and Froidevaux, C.Washington, DC, American Geophysical Union, pp. 111–23.
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35, 227–63.
Sawamoto, H., Weidner, D. J., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the modified spinel phase of magnesium orthosilicate, Science, 224, 749–51.
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geophys. Res. Lett., 11, 287–90.
Further reading
Christensen, N. I. and Crosson, R. (1968) Seismic anisotropy in the upper mantle. Tectonophysics, 6, 93–107.
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102, 308–16.
Morris, E. M., Raitt, R. and Shor, G. (1969) Velocity anisotropy and delay times of the mantle near Hawaii. J. Geophys. Res., 74, 4300–16.
Raitt, R. W., Shor, G., Francis, T. and Morris, G. (1969) Anisotropy of the Pacific upper mantle. J. Geophys. Res., 74, 3095–109.
Chapter 21. Nonelastic and transport properties
References
Freer, R. (1981) Diffusion in silicate minerals: a data digest and guide to the literature. Contrib. Mineral. Petrol., 76, 440–54.
Horai, K. (1971) Thermal conductivity of rock-forming minerals. J. Geophys. Res., 76, 1278–308.
Horai, K. and Simmons, G. (1970) An empirical relationship between thermal conductivity and Debye temperature for silicates. J. Geophys. Res., 75, 678–82.
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102, 308–16.
Keyes, R. (1963) Continuum models of the effect of pressure on activated processes. In Solid under Pressure, eds. Paul, W. and Warschauer, D. M.New York, McGraw-Hill, pp. 71–99.
Kobayzshigy, A. (1974). Anisotropy of thermal diffusivity in olivine, pyroxene and dunite. J. Phys. Earth, 22, 359–73.
Further reading
Minster, J. B. and Anderson, D. L. ((1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. R. Soc. London A, 299, 319–56.
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Int., 33, 12–25.
Schatz, J. F. and Simmons, G. (1972) Thermal conductivities of Earth materials at high temperatures. J. Geophys. Res., 77, 6966–83.
Chapter 22. Squeezing: phase changes and mantle mineralogy
References
Presnall, D. C. (1995) Phase diagrams of Earth-forming minerals. In Handbook of Physical Constants, Mineral Physics and Crystallography, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, AGU Reference Shelf 2.
Further reading
Akaogi, M. and Akimoto, S. (1977) Pyroxene-garnet solid solution equilibrium. Phys. Earth Planet. Inter. 15, 90–106.
Akimoto, S. (1972) The system MgO-FeO-SiO2 at high pressure and temperature. Tectonophysics, 13, 161–87.
Ito, E. and Yamada, H. (1982) Stability relations of silicate spinels, ilmenite and perovskites. In High-Pressure Research in Geophysics, eds. Akimoto, S. and Manghnam, M.Dordrecht, Reidel, pp. 405–19.
Kato, T. and Kumazawa, M. (1985) Garnet phase of MgSiO, filling the pyroxene-ilmenite gap at very high temperature. Nature, 316, 803–5.
Kuskov, O. L. and Galimzyanov, R. (1986) Thermodynamics of stable mineral assemblages of the mantle transition zone. In Chemistry and Physics of the Terrestrial Planets, ed. Saxena, S. K.New York, Springer-Verlag, pp. 310–61.
Litasov, K., Ohtani, E., Suzuki, A., Kawazoe, T. and Funakoshi, K. (2004) Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophys. Res. Lett., 31 (24) doi:10.1029/2004GL021306.
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Inter., 33, 12–25.
Ono, S., Ohishi, Y., Isshiki, M. and Watanuki, T. (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J. Geophys. Res., 110, B02208, doi: 10.1029/2004JB003196.
Chapter 23. The upper mantle
References
Anderson, D. L. (1967) Phase changes in the upper mantle. Science, 157, 1165–73.
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/
Donnelly, K. E., Goldsteina, S. L., Langmuir, C. H. and Spiegelman, M. (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett., 226, 347–66.
Escrig, S, Capmas, F, Dupré, B. and Allègre, C. J. (2004) Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 431, 59–63.
Escrig, S., Doucelance, R., Moreira, M. and Allegre, C. J. (2005) Os isotope systematics in Fogo Island: Evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem. Geol., 219, 93–113.
Gao, S., Rudnick, R. L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Ling, W.-L., Ayers, J. and Wang, X.-C. (2004) Recycling lower continental crust in the North China craton. Nature, 432, 892–7.
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.
Salters, V. J. M. and Stracke, A. (2004) Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5, Q05004, doi:10.1029/2003GC000597.#
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. and Nikogosian, I. K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590–7. doi:10.1038/nature03411.
Workman, R. K. & Hart, S. R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231, 53–63.
Chemical heterogeneity of the mantle
Birch, F. (1958) Differentiation of the mantle. Bull. Geol. Soc. Am., 69, 483–6.
Gerlach, D. C. (1990) Eruption rates and isotopic systematics of ocean islands: further evidence for small-scale heterogeneity in the upper mantle. Tectonophysics, 172, 273–89.
Ito, K. and Kennedy, G. C. (1971) An experimental study of the basalt-garnet granulite–ecologite transition. In The Structure and Physical Properties of the Earth's Crust, ed. Heacock, J. G. Washington, DC, American Geophysical Union. Geophys. Monogr., 14, 303–14.
Kay, R. W. and Kay, S. (1993) Delamination and delamination magmatism. Tectonophysics, 219, 177–89.
Rudnick, R. L. and Gao, S. (2003) The composition of the continental crust. In The Crust, Vol. 3, Treatise on Geochemistry, vol. eds. Holland, H. D. and Turekian, K. K.Oxford, Elsevier, pp. 1–64.
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophysics, 33, 267–309.
Chapter 24. The nature and cause of mantle heterogeneity
Further reading
Hofmann, A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–29.
Hofmann A. W. (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Treatise on Geochemistry, Vol. 2, eds. Carlson, R. W., Holland, H. D. and Turekian, K. K. pp. 61–101.
Chapter 25. Crystallization of the mantle
References
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean ridge basalts. Nature, 278, 514–18.
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: a study of quartz tholeiites to olivine melilitities from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19, 463–513.
O'Hara, M. J., Saunders, A. and Mercy, E. (1975) Garnet peridotite, primary ultrabasic magma and eclogite; interpretation of upper mantle processes in kimberlite, Phys. Chem. Earth., 9, 571–604.
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw Hill.
Further reading
Anderson, D. L. (1985) Hotspot magmas can form by fractionation and contamination of MORB. Nature, 318, 145–9.
DePaolo, D. J. and Wasserburg, G. (1979) Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources. Proc. Natl. Acad. Sci., 76, 3056.
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci. Rev., 4, 69–133.
Chapter 26. Terrestrial heat flow
References
McNutt, M. K. and Judge, A. (1990) The superswell and mantle dynamics beneath the South Pacific. Science, 248, 969–75.
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophysics, 33, 267–309.
Stein, C. and Stein, S. (1994) Comparison of plate and asthenospheric flow models for the evolution of oceanic lithosphere, Geophys. Res. Lett., 21, 709–12.
Vitorello, I. and Pollack, H. N. (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J. Geophys. Res., 85, 983–95.
Selected reading
DeLaughter, J., Stein, S. and Stein, C. (1999) Extraction of a lithospheric cooling signal from oceanwide geoid data. Earth Planet. Sci. Lett., 174, 173–81.
Gubbins, D. (1977) Energetics of the Earth's core. J. Geophys., 43, 453.
Pollack, H. N., Hurter, S. and Johnson, J. (1993) Heat flow from the earth's interior: analysis of the global data set. Rev. Geophysics, 31, 267–80.
Rudnick, R. L. and Nyblade, A. A. (1999) The composition and thickness of Archean continental roots: constraints from xenolith thermobarometry. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, eds. Fei, Y.-W., Bertka, C. M. and Mysen, B. O. Geochemical Society Special Publication 6, pp. 3–12.
Sclater, J., Parsons, B. and Jaupart, C. (1981) Oceans and continents: similarities and differences in the mechanism of heat transport. J Geophys. Res., 86, 11535–52.
Stacey, F. D. & Stacey, C. H. B. (1999) Gravitational energy of core evolution: implications for thermal history and geodynamo power. Phys. Earth Planet. Inter., 110, 83–93.
Stein, C. A. and Stein, S. A. (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99, 3081–95.
Stein, C. A. and Stein, S. A. (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–8.
Van Schmus, W. R. (1995) Natural radioactivity of the crust and mantle. In Global Earth Physics, A Handbook of Physical Constants, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, pp. 283–91.
Herzen, R., Davis, E. E., Fisher, A., Stein, C. A. and Pollack, H. N. (2005) Comments on Earth's heat fluxes. Tectonophysics, doi:10.1016/j.tecto.2005.08.003.
Further reading
Pollack, H., Hurter, S. and Johnson, J. (1993) Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 31, 267–80.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.