Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T22:53:24.264Z Has data issue: false hasContentIssue false

References and notes

Published online by Cambridge University Press:  05 June 2012

Don L. Anderson
Affiliation:
California Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–86.CrossRefGoogle Scholar
Bowen, N. L. (1928) The Evolution of Igneous Rocks. Princeton, NJ, Princeton University Press.Google Scholar
Bowie, W. (1927) Isostasy. New York, Dutton.Google Scholar
Bullen, K. E. (1975) The Earth's Density. London, Chapman and Hall.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press.Google Scholar
Daly, R. A. (1933) Igneous Rocks and the Depths of the Earth. New York, McGraw Hill.Google Scholar
Daly, R. A. (1940) Strength and Structure of the Earth. Englewood Cliffs, NJ, Prentice-Hall.Google Scholar
Darwin, G. H. (1879) On the bodily tides of viscous and semi-elastic spheroids and on the ocean tides upon a yielding nucleus. Phil. Trans. Roy. Soc. London A, 1970.CrossRef
Dietz, R. S. (1961) Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 854–7.CrossRefGoogle Scholar
Du Toit, A. L. (1937) Our Wandering Continents. Edinburgh, Oliver and Boyd.Google Scholar
Elder, J. (1976) The Bowels of the Earth. Oxford, Oxford University Press.Google Scholar
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49.
Gast, P. W. (1969) The isotopic compositon of lead from St. Helena and Ascension Islands. Earth Planet. Sci. Lett., 5, 353–9.
Gutenberg, Beno (1939) Internal Constitution of the Earth, ed. Gutenberg, B.New York, McGraw-Hill. (2nd Edition, New York, Dover Publications, 1951.)Google Scholar
Haskell, N. A. (1937) The viscosity of the asthenosphere. Am. J. Sci., 33, 22–30.CrossRefGoogle Scholar
Hess, H. H. (1962) History of ocean basins. In Petrologic Studies: A Volume in Honor of A. F. Buddington, eds. Engel, A. E. J., James, H. L. and Leonard, B. F.Boulder, CO, Geological Society of America, pp. 599–620.
Hirth, J. P. and Lothe, J. (1982) Theory of Dislocations, New York, John Wiley & Sons.Google Scholar
Holmes, A. (1928) Radioactivity and continental drift. Geol. Mag., 65, 236–8.Google Scholar
Holmes, A. (1944) Principles of Physical Geology. Edinburgh, Thomas and Sons Ltd.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 57, 680–4.CrossRefGoogle Scholar
Howard, L. N. (1963) Heat transport by turbulent convection. J. Fluid Mech., 17, 405–32.CrossRefGoogle Scholar
Jeffreys, H. (1926) The stability of a layer of fluid heated from below. Phil. Mag., 2, 833–44.CrossRefGoogle Scholar
Jeffreys, H. (1976) The Earth, Sixth Edition. Cambridge, Cambridge University Press.Google Scholar
Jeffreys, H. (1939) Theory of Probability. Oxford, Oxford University Press; with new editions in 1948 and in 1961 (also in the Oxford Classic Texts in the Physical Sciences series).Google Scholar
Jeffreys, H. and Swirles, B. (eds.) (1971–77) Collected Papers of Sir Harold Jeffreys on Geophysics and other Sciences (in six volumes). London, Gordon & Breach.Google Scholar
Kaula, W. M. (1968) An Introduction to Planetary Physics, the Terrestrial Planets, New York, John Wiley & Sons.Google Scholar
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–7.CrossRefGoogle Scholar
Pekeris, C. L. (1935) Thermal convection in the interior of the Earth. Mon. Not. R. Astron. Soc., Geophys. Suppl., 3, 343–67.CrossRefGoogle Scholar
Rayleigh, Lord (1916) On convection currents on a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag., 32, 529–46. (See also Pearson, J. R. A. (1958) On convection cells induced by surface tension. J. Fluid Mech., 4, 489–500.)Google Scholar
Rutherford, E. (1907) Some cosmical aspects of radioactivity. J. Roy. Astr. Soc. Canada, May–June, 145–65.Google Scholar
Thompson, D‘Arcy (1917) On Growth and Form. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Wegener, A. (1924) The Origin of Continents and Oceans. New York, Dutton.Google Scholar
Anders, E. (1968) Chemical processes in the early solar system, as inferred from meteorites. Acct. Chem. Res., 1, 289–98.CrossRefGoogle Scholar
Fuchs, L. H., Olsen, E. and Jensen, K. (1973) Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contrib. Earth Sci., 10, 39.
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.CrossRefGoogle Scholar
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973.CrossRefGoogle ScholarPubMed
Safronov, V. S. (1972) Accumulation of the planets. In On the Origin of the Solar System, ed. Reeves, H. Paris, Centre Nationale de Recherche Scientifique, pp. 89–113.
Abe, Y. (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter., 100, 27–39.CrossRefGoogle Scholar
Agee, C. B. (1990) A new look at differentiation of the Earth from melting experiments on the Allende meteorite. Nature, 346, 834–7.CrossRefGoogle Scholar
Cameron, A. G. W. (1997) The origin of the moon and the single impact hypothesis. Icarus, 126, 126–37.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E. (2001) The Moon-forming impact. Nature, 412, 708–12.Google Scholar
Carrigan, C. R. (1983) A heat pipe model for vertical, magma-filled conduits. J. Volc. Geotherm. Res., 16, 279–88.CrossRefGoogle Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 579–619.CrossRefGoogle Scholar
Murthy, V. R. (1991) Early differentiation of the earth and the problems of mantle siderophile elements: a new approach. Science, 253, 303–6.CrossRefGoogle Scholar
Ohtani, E. (1985) The primordial terrestrial magma ocean and its implications for the stratification of the mantle. Phys. Earth Planet. Inter., 38, 70–80.CrossRefGoogle Scholar
Ringwood, A. E. (1979) Origin of the Earth and Moon. New York, Springer-Verlag.CrossRefGoogle Scholar
Hartman, W., Phillips, R. and Taylor, G. (1986) Origin of the Moon. Houston, Lunar and Planetary Institute.Google Scholar
Taylor, S. R. (1982) Planetary Science, A Lunar Perspective. Houston, Lunar and Planetary Institute.Google Scholar
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell.Google Scholar
Weaver, B. L. and Tarney, J. (1984) Major and trace element composition of the continental lithosphere. Phys. Chem Earth, 15, 39–68.CrossRefGoogle Scholar
Anderson, D. L. (1972) The internal constitution of Mars. J. Geophys. Res., 77, 789–95.CrossRefGoogle Scholar
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci. Conf., 5, 1181–206.Google Scholar
Taylor, S. R. and McLennan, S. M. (1981) The composition and evolution of the Earth's crust; rare earth element evidence from sedimentary rocks. Phil. Trans. Roy. Soc. Lond. A, 301, 381–99.CrossRefGoogle Scholar
Anders, E. and Ebihara, M. (1982) Solar system abundances of the Elements. Geochim. Cosmochim. Acta, 46, 2363–80.CrossRefGoogle Scholar
Breneman, H. H. and Stone, E. C. (1985) Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. Lett. 294, L57–62.CrossRefGoogle Scholar
BVP, Basaltic Volcanism Study Project (1980) Basaltic Volcanism on the Terrestrial Planets. New York, Pergamon.
Drake, M. J. and Righter, K. (2002) Determining the composition of the Earth. Nature, 416, 39–44.CrossRefGoogle Scholar
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci.Conf., 5, 1181–206.Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.CrossRef
Javoy, M. (1995) The integral enstatite chondrite model of the Earth. Geophys. Res. Lett., 22, 2219–22.CrossRefGoogle Scholar
Mason, B. (1962) Meteorites. New York, John Wiley & Sons.Google Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973.CrossRefGoogle ScholarPubMed
Ringwood, A. E. (1977) Composition and Origin of the Earth. Publication No. 1299. Canberra, Research School of Earth Sciences, Australian National University.Google Scholar
Wood, J. A. (1962) Chondrules and the origin of the terrestrial planets. Nature, 194, 127–30.CrossRefGoogle Scholar
Anders, E. and Owen, T. (1977) Mars and Earth: origin and abundance of volatiles. Science, 198, 453–65.CrossRefGoogle ScholarPubMed
Cameron, A. G. W. (1982) Elementary and nuclidic abundances in the solar system. In Essays in Nuclear Astrophysics, eds. Barnes, C. A.et al. Cambridge, Cambridge University Press.
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.CrossRefGoogle Scholar
Mazor, E., Heymann, D. and Anders, E. (1970) Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta, 34, 781–824.CrossRefGoogle Scholar
von Zahn, V., Kumar, S., Niemann, H. and Prim, R. (1983) Composition of the Venus atmosphere. In Venus, eds. Hunten, D. M., Colin, L., Donahue, T. and Moroz, V.Tucson, University of Arizona Press, pp. 299–430.Google Scholar
Wacker, J. and Marti, K. (1983) Noble gas components of Albee Meteorite. Earth Planet. Sci. Lett., 62, 147–58.CrossRefGoogle Scholar
Wanke, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Hofmeister, H., Kruse, H., Jagoutz, E., Palme, C., Spettel, B., Thacker R. and Vilcsek, E. (1977) On chemistry of lunar samples and achondrites; Primary matter in the lunar highlands; A re-evaluation. Proc. Lunar Sci. Conf. 8th, 2191–13.Google Scholar
Weidenschilling, S. J. (1976) Accretion of the terrestrial planets. Icarus, 27, 161–70.CrossRefGoogle Scholar
Clare, B. W. and Kepert, D. L. (1991). The optimal packing of circles on a sphere. J. Math. Chem., 6, 325–49.CrossRefGoogle Scholar
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L. (eds.) (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388.Google Scholar
Morgan, W. J. (1971) Convective plumes in the lower mantle. Nature, 230, 42–3.CrossRefGoogle Scholar
Rowley, D. B. (2002) Rate of plate creation and destruction: 180 Ma to present. Geolog. Soc. Am. Bull., 114, 927–33.2.0.CO;2>CrossRefGoogle Scholar
Van Hunen, J., van den Berg, A. P. and Vlaar, N. (2002) On the role of subducting oceanic plateaus in the development of shallow flat subduction, Tectonophysics, 352, 317–33.CrossRefGoogle Scholar
Wilson, J. T. (1973) Mantle plumes and plate motions, Tectonophysics, 19, 149–64.CrossRefGoogle Scholar
Chappell, W. M. and Tullis, T. E. (1977) Evaluation of the forces that drive plates. J. Geophys. Res., 82, 1967–84.CrossRefGoogle Scholar
Chase, C. G. (1979) Asthenospheric counterflow: a kinematic model. Geophys. J. R. Astron. Soc., 56, 1–18.CrossRefGoogle Scholar
Chase, C. G. (1979) Subduction, the geoid, and lower mantle convection. Nature, 282, 464–8.CrossRefGoogle Scholar
Elder, J. W. (1967) Convective self-propulsion of continents. Nature, 214, 657–60.CrossRefGoogle Scholar
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49.
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43, 163–200.CrossRefGoogle Scholar
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63, 97–109.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84, 1031–48.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1981) A simple global model of plate dynamics and mantle convection. J. Geophys. Res., 86, 4843–67.CrossRefGoogle Scholar
Harper, J. F. (1978) Asthenosphere flow and plate motions. Geophys. J. R. Astr. Soc., 55, 87–110.CrossRefGoogle Scholar
Jacoby, W. R. (1970) Instability in the upper mantle and global plate movements. J. Geophys. Res., 75, 5671–80.CrossRefGoogle Scholar
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York, McGraw-Hill, pp. 386–405.Google Scholar
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85, 7031–44.CrossRefGoogle Scholar
Parmentier, E. M. and Oliver, J. E. (1979) A study of shallow global mantle flow due to the accretion and subduction of lithospheric plates. Geophys. J. R. Astr. Soc., 57, 1–21.CrossRefGoogle Scholar
Ramberg, H. (1967) Gravity, Deformation and the Earth's Crust. London, Academic Press.Google Scholar
Becker, T. W. and O'Connell, R. J. (2001) Predicting plate motions with mantle circulation models. Geochemistry, Geophysics, Geosystems 2, 2001GC000171.CrossRefGoogle Scholar
Bercovici, D. (1995) A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow. J. Geophys. Res., 100, 2013–30.CrossRefGoogle Scholar
Tackley, P. (2000) The quest for self-consistent generation of plate tectonics in mantle convection models. In History and Dynamics of Global Plate Motions, Geophys. Monogr. Ser., eds. Richards, M. A., Gordon, R. and Hilst, R.Washington, DC, American Geophysical Union, pp. 47–72.Google Scholar
Trompert, R. & Hansen, U. (1998) Mantle convection simulations with rheologies that generate plate-like behavior. Nature, 395, 686–9.CrossRefGoogle Scholar
Lithgow-Bertelloni, C. & Richards, M. A. (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78.CrossRefGoogle Scholar
Allen, R. & Tromp, J. (2005) Resolution of regional seismic models: Squeezing the Iceland anomaly. Geophys. J. Inter., 161, 373–86.CrossRefGoogle Scholar
Anderson, D. L. (2005) Scoring hotspots: The plume and plate paradigms. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 31–54.
Anderson, D. L. (2002) How many plates?Geology, 30, 411–14.2.0.CO;2>CrossRefGoogle Scholar
Anderson, D. L. and Natland, J. H. (2005) A brief history of the plume hypothesis and its competitors: Concept and controversy. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 119–46.Google Scholar
Anderson, D. L. and Schramm, K. A. (2005). Hotspot catalogs. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 19–30.
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3, 2001GC000168.CrossRefGoogle Scholar
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. (1998) Jamming, force chains and fragile matter. Phys. Rev. Lett., 81, 1841–4.CrossRefGoogle Scholar
Conrad, C. P. & Hager, B. H. (2001) Mantle convection with strong subduction zones. Geophys. J. Inter., 144, 271–88.CrossRefGoogle Scholar
Davies, G. F. (2000) Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge, Cambridge University Press.Google Scholar
Hager, B. H. (1984) Subducted slabs and the geoid; constraints on mantle theology and flow. J. Geophys. Res., 89, 6003–15.CrossRefGoogle Scholar
Hager, B. H., Clayton, R., Richards, M., Comer, R. and Dziewonski, A. (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313, 541–5.CrossRefGoogle Scholar
Rapp, R. H. (1981) The Earth's gravity field to degree and order 180 using Seaset altimeter data, terrestrial gravity data, and other data. Report 322, Dept. Geodetic. Sci. and Surv. Columbus, OH, Ohio State University.
Richards, M. A. and Hager, B. H. (1984) Geoid anomalies in a dynamic Earth. J. Geophys. Res., 89, 5987–6002.CrossRefGoogle Scholar
Darwin, G. (1877) On the influence of geological changes on the earth's axis of rotation. Phil. Trans. R. Soc. Lond. A, 167, 271–312.CrossRefGoogle Scholar
Goldreich, P. and Toomre, A. (1968) Some remarks on polar wandering. J. Geophys. Res., 74, 2555–67.CrossRefGoogle Scholar
Hager, B. H. and Richards, M. (1989) Long-wavelength variations in Earth's geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A, 328, 309–27.CrossRefGoogle Scholar
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York, McGraw-Hill, pp. 386–405.
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85, 7031–44.CrossRefGoogle Scholar
Parsons, B. and Sclater, J. G. (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82, 803–27.CrossRefGoogle Scholar
Anderson, D. L. (1979) Chemical stratification of the mantle. J. Geophys. Res., 84, 6297–8.CrossRefGoogle Scholar
Anderson, D. L. (2002) The case for irreversible chemical stratification of the mantle. Int. Geol. Rev., 44, 97–116.CrossRefGoogle Scholar
Ciskova, H., Cadek, O., van den Berg, A. P. & Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26, 1501–4.CrossRefGoogle Scholar
Ciskova, H. & Cadek, O. (1997) Effect of a viscosity interface at 1000 km depth on mantle convection. Studia geoph. geod., 41, 297–306.CrossRefGoogle Scholar
Glatzmaier, G. A. & Schubert, G. (1993) Three-dimensional spherical models of layered and whole mantle convection. J. Geophys. Res., 98, 969–76.CrossRefGoogle Scholar
Gu, Y., Dziewonski, A. M. & Agee, C. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157, 57–67.CrossRefGoogle Scholar
Honda, S. (1984) A preliminary analysis of convection in a mantle with a heterogeneous distribution of heat-producing elements. Phys. Earth Planet. Inter., 34, 68–76.CrossRefGoogle Scholar
Honda, S. (1986) Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett., 13, 1454–7.CrossRefGoogle Scholar
Nataf, H-C., Moreno, S. and Cardin, Ph. (1988) What is responsible for thermal coupling in layered convection?J. Phys. France, 49, 1707–14.Google Scholar
Phillips, B. R. and Bunge, H.-P. (2005) Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planet. Sci. Lett., 233, 121–35.CrossRefGoogle Scholar
Schubert, G., Turcotte, D. and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Silver, P. G., Carlson, R. W. and Olson, P. (1988) Deep slabs, geochemical heterogeneity and the large-scale structure of mantle convection: Investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci., 16, 477–541.CrossRefGoogle Scholar
Todesco, M. & Spera, F. (1992) Stability of a chemically layered upper mantle. Phys. Earth Planet. Inter., 71, 85–99.CrossRefGoogle Scholar
van Keken, P. E. & Ballantine, C. (1998) Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett., 156, 19–32.Google Scholar
Wen, L. & Anderson, D. L. (1997) Layered mantle convection: a model for geoid and topography. Earth Planet. Sci. Lett., 146, 367–77.CrossRefGoogle Scholar
Babuska, V. (1972) Elasticity and anisotropy of dunite and bronzitite. J. Geophys. Res., 77, 6955–65.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, J. N. (1982) Pyroxene orientation within the upper mantle. Geol. Soc. Amer. Bull., 93, 279–88.2.0.CO;2>CrossRefGoogle Scholar
Christensen, N. I. and Smewing, J. D. (1981) Geology and seismic structure of the northern section of the Oman ophiolite. J. Geophys. Res., 86, 2545–55.CrossRefGoogle Scholar
Clark, S. P., Jr. (1966) Handbook of Physical Constants. Geol. Soc. Amer. Mem. 97.Google Scholar
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York, Pergamon.Google Scholar
Duffy, T. S. and Anderson, D. L. (1988). Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Given, J. and Helmberger, D. (1981) Upper mantle structure of northwestern Eurasia. J. Geophys. Res., 85, 7183–94.CrossRefGoogle Scholar
Grand, S. P. and HeImberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astr. Soc., 76, 399–438.CrossRefGoogle Scholar
Grand, S. P. and Helmherger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89, 11 465–75.CrossRefGoogle Scholar
Jordan, T. H. (1979) Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. In The Mantle Sample, eds. Boyd, F. R. and Meyer, H. O. A.Washington DC, American Geophysical Union, pp. 1–14.Google Scholar
Lehmann, I. (1961) S and the structure of the upper mantle, Geophys. J. R. Astron. Soc., 4, 124–38.CrossRefGoogle Scholar
Manghnani, M. H. and Ramananotoandro, C. S. P. (1974) Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar. J. Geophys. Res., 79, 5427–46.CrossRefGoogle Scholar
Mooney, W. D., Laske, G. and Masters, G. (1998) A new global crustal model at 5 × 5 degrees: CRUST5.1. J. Geophys. Res., 103, 727–47.CrossRefGoogle Scholar
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35, 227–63.CrossRefGoogle Scholar
Salisbury, M. and Christensen, N. L. (1978) The seismic velocity structure of a traverse through the Bay of Islands ophiolite complex, Newfoundland, an exposure of oceanic crust and upper mantle. J. Geophys. Res., 83, 805–17.CrossRefGoogle Scholar
Sumino, Y. and Anderson, O. L. (1984) Elastic constants of minerals. In Handbook of Physical Properties of Rocks 3, ed. Carmichael, R. S.Boca Raton, FL, CRC Press, pp. 39–138.Google Scholar
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell.Google Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center: The Gulf of California. Geophys. J. R. Astr. Soc., 76, 697–723.CrossRefGoogle Scholar
Anderson, D. L. and Bass, J. D. (1984) Mineralogy and composition of the upper mantle. Geophys. Res. Lett., 11, 637–40.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29, 8, doi: 10.1029/2002GL014768.CrossRefGoogle Scholar
Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 591–621.CrossRefGoogle Scholar
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. and Hung, S. H. (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–43.CrossRefGoogle ScholarPubMed
Shimamura, H., Asada, T. and Kumazawa, M. (1977) High shear velocity layer in the upper mantle of the Western Pacific. Nature, 269, 680–2.CrossRefGoogle Scholar
Weidner, D. J. (1986) Mantle models based on measured physical properties of minerals. In Chemistry and Physics of Terrestrial Planets, ed. Saxena, S. K.New York, Springer-Verlag, pp. 251–74.
Weidner, D. J., Sawamoto, H., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4. J. Geophys. Res., 89, 7852–60.CrossRefGoogle Scholar
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P'P' seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29, 8, doi: 10.1029/2002GL014768.CrossRefGoogle Scholar
Revenaugh, J. & Sipkin, S. A. (1994) Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature, 369, 474–6.CrossRefGoogle Scholar
Nolet, G. & Zielhuis, A. (1994) Low S velocities under the Tornquist–Teisseyre zone: evidence for water injection into the transition zone by subduction. J. Geophys. Res., 99, 15813–20.CrossRefGoogle Scholar
Song, T., Helmberger, D. & Grand, S. (2004) Low velocity zone atop the 410 seismic discontinuity in the northwestern U. S. Nature, 427, 530–3.CrossRefGoogle Scholar
Vinnik, L., Kumar, M. R., Kind, R. & Farra, V. (2003) Super-deep low-velocity layer beneath the Arabian plate. Geophys. Res. Lett., 30 (1415), doi:10.1029/2002GL016590.CrossRefGoogle Scholar
Whitcomb, J. H. & Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–86.CrossRefGoogle Scholar
Lay, T. & Helmberger, D. V. (1983) Body-wave amplitude and travel-time correlations across North America. Bull. Seism. Soc. Am., 73, 17–30.Google Scholar
Lehmann, I. (1936) Bur. Centr. Seism. Inst. A 14, 3–31.
Julian, B., Davies, D. & Sheppard, R. (1972) a seismic wave that traverses the IC as a shear wave. Nature, 235, 317–18.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Wen, L. & Helmberger, D. V. (1998) Seismic evidence for an inner core transition zone. Science, 279, 1701–3.CrossRefGoogle Scholar
Ishii, M. & Dziewonski, A. M. (2002) The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. PNAS, 99, 14026–30.CrossRefGoogle ScholarPubMed
Anderson, D. L. (2005) Scoring hotspots: the plume and plate paradigms, in Plates, Plumes, and Paradigms, pp. 31–54, ed. Foulger, G. R., Natland, J. H., Presnall, D. C., and Anderson, D. L., Boulder, C. O., Geological Society of America Special Paper 388.
Baig, A. M. and Dahlen, F. A. (2004) Travel time biases in random media and the S-wave discrepancy. Geophys. J. Inter., 158, 922–38.CrossRefGoogle Scholar
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3, 2001GC000168.CrossRefGoogle Scholar
Bijwaard, H., Spakman, W. and Engdahl, E. (1998) Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–78.CrossRefGoogle Scholar
Dziewonski, A. M. (2005) The robust aspects of global seismic tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, pp. 147–54.Google Scholar
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43, 163–200.CrossRefGoogle Scholar
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L., eds. (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388.
Grand, S. P. (1986) Shear velocity structure of the mantle beneath the North American plate, Ph.D. Thesis, California Institute of Technology.
Grand, S. P. (1994) Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 591–621.CrossRefGoogle Scholar
Grand, S. P. and Helmberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astron. Soc., 76, 399–438.CrossRefGoogle Scholar
Grand, S. P. and Helmberger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89, 11, 465–75.CrossRefGoogle Scholar
Grand, S. P., van der Hilst, R. and Widiyantoro, S. (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today, 7, 1–7.Google Scholar
Gu, Y. J., Dziewonski, A. and Ekström, G. (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys. Res. Lett., 28, 4655–8.CrossRefGoogle Scholar
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63, 97–109.CrossRefGoogle Scholar
Hager, B. H. and Clayton, R. W. (1986) Constraints on the structure of mantle convection using seismic observations, flow models and the geoid. In Mantle Convection, ed. Peltier, W. R.New York, Gordon and Breach Science Publishers, pp. 657–763.Google Scholar
Ishii, M. and Tromp, J. (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Physics of the Earth and Planetary Interiors, 146, 113–24.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1983) Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part I, Analysis of great circle phase velocities. J. Geophys. Res., 88, 10267–83.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1984a) Aspherical heterogeneity of the mantle from phase velocities of mantle waves. Nature, 307, 117–21.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1984b). Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part II, Analysis by single-station method. Geophys. J. Roy. Astron. Soc., 78, 573–617.CrossRefGoogle Scholar
Polet, J. and Anderson, D. L. (1995) Depth extent of cratons as inferred from tomographic studies. Geology, 23, 205–8.2.3.CO;2>CrossRefGoogle Scholar
Ray, T. W. and Anderson, D. L. (1994) Spherical disharmonics in the Earth sciences and the spatial solution; ridges; ridges, hotspots, slabs, geochemistry and tomography correlations. J. Geophys. Res., 99, 9605–14.CrossRefGoogle Scholar
Scrivner, C. and Anderson, D. L. (1992) The effect of post Pangea subduction on global mantle tomography and convection. Geophys. Res. Lett., 19, 1053–6.CrossRefGoogle Scholar
Shearer, P. M. and Earle, P. S. (2004) The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int., 158, 1103–17.CrossRefGoogle Scholar
Shapiro, N. M. and Ritzwoller, M. H. (2004) Thermodynamic constraints on seismic inversions. Geophys. J. Int. 157, 1175–88, doi:10.1111/j.1365–246X.2004.02254.x, 2004.CrossRefGoogle Scholar
Spakman, W. and Nolet, G. (1988) Imaging algorithms, accuracy and resolution in delay time tomography. In Mathematical Geophysics, eds. Reidel.
Spakman, W., Stein, S., Hilst, R. and Wortel., R. (1989). Resolution experiments for NW Pacific Subduction Zone Tomography. Geophys. Res. Lett., 16, 1097–100.CrossRefGoogle Scholar
Su, W.-J. and Dziewonski, A. M. (1991) Predominance of long-wavelength heterogeneity in the mantle. Nature, 352, 121–6.CrossRefGoogle Scholar
Su, W.-J. and Dziewonski, A. M. (1992) On the scale of mantle heterogeneity. Phys. Earth Planet. Inter. 74, 29–54.CrossRefGoogle Scholar
Tanimoto, T. (1991) Predominance of large-scale heterogeneity and the shift of velocity anomalies between the upper and lower mantle. J. Phys. Earth, 38, 493–509.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geopkys. Res. Lett., 11, 287–90.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1985) Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 sec. J. Geophys. Res., 90, 1842–58.CrossRefGoogle Scholar
Thoraval, C., Machetel, Ph. and Cazanave, A. (1995) Locally layered convection inferred from dynamic models of the Earth's mantle. Nature, 375, 777–80.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Vasco, D. W., Johnson, L. R. and Pulliam, J. (1995) Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-S_pS travel time residuals. J. Geophys. Res., 100, 24037–59.CrossRefGoogle Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an. active spreading center: The Gulf of California. Geophys. J. R. Astron. Soc., 76, 697–723.CrossRefGoogle Scholar
Wen, L. and Anderson, D. L. (1995) The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet. Sci. Lett., 133, 185–98.CrossRefGoogle Scholar
Wen, L. and Anderson, D. L. (1997) Slabs, hotspots, cratons and mantle convection revealed from residual seismic tomography in the upper mantle. Phys. Earth Planet. Inter., 99, 131–43.CrossRefGoogle Scholar
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Cizkova, H., Cadek, O., van den Berg, A. P. and Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26, 1501–4.CrossRefGoogle Scholar
Gu, Y., Dziewonski, A. M. and Agee, C. B. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157, 57–67.CrossRefGoogle Scholar
Ritsema, J. (2005) Global tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 11–18.Google Scholar
www.mantleplumes.org/TopPages/TheP3Book.html, Web Supplement
Vasco, D. W. and Johnson, L. R. (1998) Whole Earth structure estimated from seismic arrival times. J. Geophys. Res., 103, 2633–71.CrossRefGoogle Scholar
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Anderson, D. L. (1983) Kimberlites and the evolution of the mantle. In Kimberlites and Related Rocks, ed, J. Kornprobst, pp. 395–403.
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution, Earth Planet. Sci. Lett., 68, 361–78.CrossRefGoogle Scholar
Maaloe, S. and Steel, R. (1980) Mantle composition derived from the composition of lherzolites. Nature, 285, 321–2.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973–80.CrossRefGoogle ScholarPubMed
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis, Proc. Lunar Sci. Conf., 7, 1697–722.Google Scholar
Anderson, D. L. (1999) A theory of the Earth: Hutton and Humpty Dumpty and Holmes. In James Hutton – Present and Future, eds. Craig, G. and Hull, J.London, Geological Society of London, Special Publication 150, pp. 13–35.Google Scholar
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York, Pergamon.Google Scholar
Crawford, A. J., Falloon, T. J. and Green, D. H. (1989) Classification, petrogenesis and tectonic setting of boninites. In Boninites, ed. Crawford, A.London, Unwin Hyman, pp. 1–49.Google Scholar
Dawson, J. B. (1980) Kimberlites and their Xenoliths, Springer-Verlag, Berlin, 252 pp.CrossRefGoogle Scholar
Gill, J. B. (1976) Composition and age of Lau basin and ridge volcanic rocks; implications for evolution of an interarc basin and remnant arc. Geol. Soc. Am. Bull., 87, 1384–95.2.0.CO;2>CrossRefGoogle Scholar
Hawkins, J. W. (1977) Petrology and geochemical characteristics of marginal basin basalt. In Island Arcs, Deep Sea Trenches, and Back-Arc Basins, eds. Talwani, M. and Pittman, W. C. Washington, DC, American Geophysical Union, pp. 355–77.CrossRef
Parman, S. W., Grove, T. L. and Dann, J. C. (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys. Res. Lett., 28, 2513–16.CrossRefGoogle Scholar
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlite, Diatremes and Diamonds, eds. Boyd, F. R. and Meyer, H. Washington, DC, American Geophysical Union, pp. 300–12.CrossRef
Anderson, D. L. (1983a) Kimberlite and the evolution of the mantle. In Kimberlites and Related Rocks, ed. J. Kornprobst, pp. 395–403.
Anderson, D. L. (1983b) Chemical composition of the mantle. J. Geophys. Res., 88 suppl., B41–52.CrossRefGoogle Scholar
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution. Earth Planet. Sci. Lett., 68, 361–78.CrossRefGoogle Scholar
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science. Cambridge, MA, MIT Press, pp. 357–99.Google Scholar
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis. PLC, 7, 1697–722.Google Scholar
Taylor, S. (1982) Lunar and terrestrial crusts. Phys. Earth Planet. Inter., 29, 233.CrossRefGoogle Scholar
Basu, A. R. and Tatsumoto, M. (1982) Nd isotopes in kimberlites and mantle evolution. Terra Cog., 2, 2–14.Google Scholar
Beus, A. A. (1976) Geochemistry of the Lithosphere, Moscow, MIR Publications.Google Scholar
Boyd, F. R.(1986) High- and low-temperature garnet peridotite xenoliths and their possible relation to the lithosphere–asthenosphere boundary beneath southern Africa. In Mantle Xenoliths, ed. Nixon, P. New York, John Wiley & Sons, pp. 403–12.
Boyd, F. R. and Mertzman, S. A. (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. In Magmatic Processes: Physicochemical Principles, ed. Mysen, B. O.University Park, Pennsylvaniay, The Geochemical Society, Special Publication 1, pp. 13–24.Google Scholar
Clarke, D. B. (1970) Tertiary basalts of Baffin Bay; possible primary magma from the mantle. Contrib. Mineral. Petrol., Special Publication 1, 25, 203–24.CrossRefGoogle Scholar
Echeverria, L. M. (1980) Tertiary komatiites of Gorgona Island. Carnegie Instn. Wash. Ybk., 79, 340–4.Google Scholar
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Frey, F. A. (1980) The origin of pyroxenites and garnet pyroxenites from Salt Crater, Oahu, Hawaii: trace element evidence. Am. J. Sci., 280-A, 427–49.Google Scholar
Green, D. H. and Ringwood., A. (1963) Mineral assemblages in a model mantle composition. J. Geophys. Res., 68, 937–45.CrossRefGoogle Scholar
Green, D. H., Hibberson, W. and Jaques, A. (1979) Petrogenesis of mid-ocean ridge basalts. In The Earth: Its Origin, Structure and Evolution, ed. McElhinny, M. W.New York, Academic Press, pp. 265–95.Google Scholar
Jahn, B.-M., Auvray, B., Blais, S. et al. (1980) Trace element geochemistry and petrogenesis of Finnish greenstone belts. J. Petrol., 21, 201–44.CrossRefGoogle Scholar
Maaloe, S. and Aoki, K. (1977) The major element composition of the upper mantle estimated from the composition of Iherzolites. Contrib. Mineral. Petrol., 63, 161–73.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw-Hill.Google Scholar
Smyth, J. R. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; II, Primary phase compositions and origin. In Kimberlites, ed. Kornprobst, J.Amsterdam, Elsevier, pp. 121–31.Google Scholar
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlites, Diatremes, and Diamonds, eds. Boyd, F. R. and Meyer, H. O.Washington, DC, American Geophysical Union, pp. 300–12.Google Scholar
Bowen, N. L. (1928) The Evolution of the Igneous Rocks.Princeton, NJ, Princeton University Press.Google Scholar
Carmichael, I. S. E., Turner, F. and Verhoogen, J. (1974) Igneous Petrology. New York, McGraw-Hill.Google Scholar
Chen, C. and Frey, F. (1983) Origin of Hawaiian theiite and alkali basalt. Nature, 302, 785.CrossRefGoogle Scholar
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19, 463–513.CrossRefGoogle Scholar
Green, D. H. (1971) Composition of basaltic magmas as indicators of conditions of origin; application to oceanic volcanism. Phil. Trans. R. Soc., A268, 707–25.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15, 103–90.CrossRefGoogle Scholar
Hiyagon, H. and Ozima, M. (1986) Partition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta, 50, 2045–57.CrossRefGoogle Scholar
Jaques, A. and Green, D. (1980) Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeitic basalts. Contrib. Mineral. Petrol., 73, 287–310.CrossRefGoogle Scholar
Menzies, M., Rogers, N., Zindle, A. and Hawkesworth, C. (1987) In Mantle Metasomatism, ed. Menzies, M. A.New York, Academic Press.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part III, Inversion. J. Geophys. Res., 91, 7261–307.CrossRefGoogle Scholar
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rock. Earth Sci. Rev., 4, 69–133.CrossRefGoogle Scholar
Rigden, S. S., Ahrens, T. J. and Stolper, E. M. (1984) Densities of liquid silicates at high pressures. Science, 226, 1071–4.CrossRefGoogle ScholarPubMed
Ringwood, A. E. ((1962) Mineralogical constitution of the deep mantle. J. Geophys. Res., 67, 4005–10.CrossRefGoogle Scholar
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science.Cambridge, MA, MIT Press, pp. 357–99.Google Scholar
Ringwood, A. E. (1979) Origin of the Earth and Moon.New York, Springer-Verlag.CrossRefGoogle Scholar
Smyth, J. R., McCorrnick, T. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; I, Two unusual corundum-bearing kyanite eclogites. In Kimberlites, ed. Kornprobst, J.Amsterdam,Elsevier, pp. 109–19.Google Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center; the Gulf of California. Geophys. J. Roy. Astron. Soc., 76, 697–723.CrossRefGoogle Scholar
Anderson, D. L. (1998a) The helium paradoxes. Proc. Nat. Acad. Sci., 95, 4822–7.CrossRefGoogle Scholar
Anderson, D. L. (1998b) A model to explain the various paradoxes associated with mantle noble gas geochemistry. Proc. Nat. Acad. Sci., 95, 9087–92.CrossRefGoogle Scholar
Anderson, D. L. (2000a) The statistics of helium isotopes along the global spreading ridge system and the central limit theorem. Geophys. Res. Lett., 27, 2401–4.CrossRefGoogle Scholar
Anderson, D. L. (2000b) The statistics and distribution of helium in the mantle. Int. Geology Rev., 42, 289–311.CrossRefGoogle Scholar
Javoy, M. and Pineau, F. (1991) The volatiles record of a “popping” rock from the mid-Atlantic ridge at 14 N: Chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett., 107, 598–611.CrossRefGoogle Scholar
Sarda, P. and Graham, D. (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett., 97, 268–89.CrossRefGoogle Scholar
Seta, A., Matsumoto, T. and Matsuda, J.-I. (2001) Concurrent evolution of 3He/4He ratio in the Earth's mantle reservoirs for the first 2 Ga. Earth Planet. Sci. Lett., 188, 211–19.CrossRefGoogle Scholar
Staudacher, T., Sarda, P., Richardson, S. H., Allegre, C. J., Sagna, I. and Dmitriev, L. V. (1989) Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14∘N: geodynamic consequences. Earth Planet. Sci. Lett., 96, 119–33.CrossRefGoogle Scholar
Meibom, A., Anderson, D. L., Sleep, N., Frei, R., Chamberlain, C., Hren, M. and Wooden, J. (2003) Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?Earth Planet. Sci. Lett., 208, 197–204.CrossRefGoogle Scholar
Moreira, M., and Sarda, P. (2000) Noble gas constraints on degassing processes. Earth Planet. Sci. Lett., 176, 375–86.CrossRefGoogle Scholar
Chase, C. G. (1981) Oceanic island Pb; two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 277–84.CrossRefGoogle Scholar
Dalrymple, G. B. (2001) The age of the Earth in the twentieth century – a problem (mostly) solved. In The Age of the Earth – from 4004 BC to AD 2002, eds. Lewis, C. L. E. and Knell, S. J.London, The Geological Society, Special Publication 190, pp. 205–21.Google Scholar
Eiler, J. M. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Stable Isotope Geochemistry, eds. Valley, J. W. and Cole, D. R.Rev. Mineral., 43, 319–64.CrossRefGoogle Scholar
Eiler, J. M., Farley, K. A., Valley, J. W., Hauri, E., Craig, H., Hart, S. R. and Stolper, E. M. (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta, 61, 2281–93.CrossRefGoogle Scholar
Eiler, J. M., Valley, J. and Stolper, E. (1996a) Oxygen isotope ratios in olivine from the Hawaiian Scientific Drilling Project. J. Geophys. Res., 101, 11807–13.CrossRefGoogle Scholar
Eiler, J. M., Farley, K., Valley, J., Hofmann, A. and Stolper, E. (1996b) Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet. Sci. Lett., 144, 453–68.CrossRefGoogle Scholar
Meibom, A., Sleep, N. H., Chamberlain, C. P., Coleman, R. G., Frei, R., Hren, M. T., and Wooden, J. L. (2002) Re–Os isotopic evidence for long-lived heterogeneity and euilibration processes in the Earth's upper mantle. Nature, 418, 705–8.CrossRefGoogle Scholar
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–7.CrossRefGoogle Scholar
Roy-Barman, M. and Allegre, C. J. (1994) 187Os/186Os ratios of midocean ridge basalts and abyssal peridotites. Geochim. Cosmochim. Acta, 58, 5043–54.CrossRefGoogle Scholar
Shirey, S. B. and Walker, R. J. (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann. Rev. Earth Planet. Sci., 26, 423–500.CrossRefGoogle Scholar
Smith, A. D. (2003) Critical evaluation of Re–Os and Pt–Os isotopic evidence on the origin of intraplate volcanism. J. Geodyn., 36, 469–84.CrossRefGoogle Scholar
Armstrong, R. L. (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A, 301, 443–72.CrossRefGoogle Scholar
Chase, C. G. (1981) Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 277–84.CrossRefGoogle Scholar
Clarke, W. B., Beg, M. and Craig, H. (1969) Excess 3He in sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6, 213–20.CrossRefGoogle Scholar
Craig, H. and Lupton, J. (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett., 31, 369–85.CrossRefGoogle Scholar
Gast, P. W. (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta, 32, 1057–86.CrossRefGoogle Scholar
Anderson, D. L. (1981) Hotspots, basalts, and the evolution of the mantle. Science, 213, 82–9.CrossRefGoogle ScholarPubMed
Garlick, G., MacGregor, I. and Vogel, D. (1971) Oxygen isotope ratios in eclogites from kimberlites. Science, 171, 1025–7.CrossRefGoogle Scholar
Gregory, R. T. and Taylor, H. P. Jr. (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman. J. Geophys. Res., 86, 2737–55.CrossRefGoogle Scholar
Dalrymple, G. B. (1991) The Age of the Earth. Stanford, CA, Stanford University Press.Google Scholar
Hofmeister, A. M. (1999). Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699–706.CrossRefGoogle ScholarPubMed
Ishii, M. and Tromp, J. (1999) Normal mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science, 285, 1231–6.CrossRefGoogle ScholarPubMed
Meibom, A. and Anderson, D. L. (2003) The Statistical Upper Mantle Assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Meibom, A., Sleep, N. H., Zahnle, K. and Anderson, D. L. (2005) Models for noble gases in mantle geochemistry: Some observations and alternatives. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L. Boulder, CO, Geological Society of America, Special Paper 388, pp. 347–63.CrossRef
Reisberg, L. and Zindler, A. (1986) Extreme isotopic variations in the upper mantle; evidence from Ronda. Earth and Planetary Science Letters, 81, 29–45.CrossRefGoogle Scholar
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Ishii, M. and Tromp, J. (2004). Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive modes. Phys. Earth Planet. Inter., 146, 113–24.CrossRefGoogle Scholar
Karki, B. B., Stixrude, L. and Wentzcovitch, R. (2001) High-pressure elastic properties of major materials of Earth's mantle from first principles. Rev. Geophys., 39, 507–34.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1982) World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seis. Soc. Am., 72, 1185–94.Google Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1984) Anisotropy and shear-velocity heterogeneities in the upper mantle. Geophys. Res. Lett., 11, 109–12.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part 111, Inversion. J. Geophys. Res., 91, 7261–307.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Anderson, D. L. and Given, J. (1982) Absorption band Q model for the Earth. J. Geophys. Res., 87, 3893–904.CrossRefGoogle Scholar
Kanamori, H. and Anderson, D. L. (1977) Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys. Planet. Sci., 15, 105–12.CrossRefGoogle Scholar
Minster, J. B. and Anderson, D. L. (1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. Roy. Soc. London, 299, 319–56.CrossRefGoogle Scholar
Spetzler, H. and Anderson, D. L. (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. J. Geophys. Res., 73, 6051–60.CrossRefGoogle Scholar
Anderson, D. L., Ben-Menahem, A. and Archambeau, C. B. (1965) Attenuation of seismic energy in the upper mantle. J. Geophys. Res., 70, 1441–8.CrossRefGoogle Scholar
O'Connell, R. J. and Budiansky, B. (1978) Measures of dissipation in viscoelastic media. Geophys. Res. Lett., 5, 5–8.CrossRefGoogle Scholar
Anderson, D. L. and Dziewonski, A. M. (1982) Upper mantle anisotropy; evidence from free oscillations. Geophys. J. Royal Astr. Soc., 69, 383–404.CrossRefGoogle Scholar
Anderson, D. L., Minster, J. B. and Cole, D. (1974) The effect of oriented cracks on seismic velocities. J. Geophys. Res., 79, 4011–15.CrossRefGoogle Scholar
Ando, M. Y., Ishikawa and Yamazaki, F. (1983) Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 10, 5850–64.CrossRefGoogle Scholar
Babuska, V. (1981) Anisotropy of Vp and Vs in rock-forming minerals, J. Geophys., 50, 1–6.Google Scholar
Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67, 4427–40.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, S. (1982) Pyroxene orientation within the upper mantle. Bull. Geol. Soc. Am., 93, 279–88.2.0.CO;2>CrossRefGoogle Scholar
Christensen, N. I. and Salisbury, M. (1979) Seismic anisotropy in the upper mantle: Evidence from the Bay of Islands ophiolite complex. J. Geophys. Res., 84, B9, 4601–10.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Fukao, Y. (1984) Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 309, 695–8.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84, 1031–48CrossRefGoogle Scholar
Montagner, J.-P. (2002) Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett., 202, 263–74.CrossRefGoogle Scholar
Montagner, J.-P. and Nataf, H.-C. (1986) A simple method for inverting the azimuthal anisotropy of surface waves, J. Geophys. Res., 91, 511–20.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, Part III. Inversion, J. Geophys. Res., 91, 72161–3070.CrossRefGoogle Scholar
Nicolas, A. and Christensen, N. I. (1987) Formation of anisotropy in upper mantle peridotites. In Composition, Structure and Dynamics of the Lithosphere/Asthenosphere System, eds. Fuchs, K. and Froidevaux, C.Washington, DC, American Geophysical Union, pp. 111–23.Google Scholar
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35, 227–63.CrossRefGoogle Scholar
Sawamoto, H., Weidner, D. J., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the modified spinel phase of magnesium orthosilicate, Science, 224, 749–51.CrossRefGoogle ScholarPubMed
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geophys. Res. Lett., 11, 287–90.CrossRefGoogle Scholar
Christensen, N. I. and Crosson, R. (1968) Seismic anisotropy in the upper mantle. Tectonophysics, 6, 93–107.CrossRefGoogle Scholar
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102, 308–16.CrossRefGoogle Scholar
Morris, E. M., Raitt, R. and Shor, G. (1969) Velocity anisotropy and delay times of the mantle near Hawaii. J. Geophys. Res., 74, 4300–16.CrossRefGoogle Scholar
Raitt, R. W., Shor, G., Francis, T. and Morris, G. (1969) Anisotropy of the Pacific upper mantle. J. Geophys. Res., 74, 3095–109.CrossRefGoogle Scholar
Freer, R. (1981) Diffusion in silicate minerals: a data digest and guide to the literature. Contrib. Mineral. Petrol., 76, 440–54.CrossRefGoogle Scholar
Horai, K. (1971) Thermal conductivity of rock-forming minerals. J. Geophys. Res., 76, 1278–308.CrossRefGoogle Scholar
Horai, K. and Simmons, G. (1970) An empirical relationship between thermal conductivity and Debye temperature for silicates. J. Geophys. Res., 75, 678–82.CrossRefGoogle Scholar
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102, 308–16.CrossRefGoogle Scholar
Keyes, R. (1963) Continuum models of the effect of pressure on activated processes. In Solid under Pressure, eds. Paul, W. and Warschauer, D. M.New York, McGraw-Hill, pp. 71–99.
Kobayzshigy, A. (1974). Anisotropy of thermal diffusivity in olivine, pyroxene and dunite. J. Phys. Earth, 22, 359–73.Google Scholar
Minster, J. B. and Anderson, D. L. ((1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. R. Soc. London A, 299, 319–56.CrossRefGoogle Scholar
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Int., 33, 12–25.CrossRefGoogle Scholar
Schatz, J. F. and Simmons, G. (1972) Thermal conductivities of Earth materials at high temperatures. J. Geophys. Res., 77, 6966–83.CrossRefGoogle Scholar
Presnall, D. C. (1995) Phase diagrams of Earth-forming minerals. In Handbook of Physical Constants, Mineral Physics and Crystallography, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, AGU Reference Shelf 2.
Akaogi, M. and Akimoto, S. (1977) Pyroxene-garnet solid solution equilibrium. Phys. Earth Planet. Inter. 15, 90–106.CrossRefGoogle Scholar
Akimoto, S. (1972) The system MgO-FeO-SiO2 at high pressure and temperature. Tectonophysics, 13, 161–87.CrossRefGoogle Scholar
Ito, E. and Yamada, H. (1982) Stability relations of silicate spinels, ilmenite and perovskites. In High-Pressure Research in Geophysics, eds. Akimoto, S. and Manghnam, M.Dordrecht, Reidel, pp. 405–19.Google Scholar
Kato, T. and Kumazawa, M. (1985) Garnet phase of MgSiO, filling the pyroxene-ilmenite gap at very high temperature. Nature, 316, 803–5.CrossRefGoogle Scholar
Kuskov, O. L. and Galimzyanov, R. (1986) Thermodynamics of stable mineral assemblages of the mantle transition zone. In Chemistry and Physics of the Terrestrial Planets, ed. Saxena, S. K.New York, Springer-Verlag, pp. 310–61.Google Scholar
Litasov, K., Ohtani, E., Suzuki, A., Kawazoe, T. and Funakoshi, K. (2004) Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophys. Res. Lett., 31 (24) doi:10.1029/2004GL021306.CrossRefGoogle Scholar
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Inter., 33, 12–25.CrossRefGoogle Scholar
Ono, S., Ohishi, Y., Isshiki, M. and Watanuki, T. (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J. Geophys. Res., 110, B02208, doi: 10.1029/2004JB003196.CrossRefGoogle Scholar
Anderson, D. L. (1967) Phase changes in the upper mantle. Science, 157, 1165–73.CrossRefGoogle ScholarPubMed
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/
Donnelly, K. E., Goldsteina, S. L., Langmuir, C. H. and Spiegelman, M. (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett., 226, 347–66.CrossRefGoogle Scholar
Escrig, S, Capmas, F, Dupré, B. and Allègre, C. J. (2004) Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 431, 59–63.CrossRefGoogle ScholarPubMed
Escrig, S., Doucelance, R., Moreira, M. and Allegre, C. J. (2005) Os isotope systematics in Fogo Island: Evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem. Geol., 219, 93–113.CrossRefGoogle Scholar
Gao, S., Rudnick, R. L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Ling, W.-L., Ayers, J. and Wang, X.-C. (2004) Recycling lower continental crust in the North China craton. Nature, 432, 892–7.CrossRefGoogle ScholarPubMed
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Salters, V. J. M. and Stracke, A. (2004) Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5, Q05004, doi:10.1029/2003GC000597.#CrossRefGoogle Scholar
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. and Nikogosian, I. K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590–7. doi:10.1038/nature03411.CrossRefGoogle ScholarPubMed
Workman, R. K. & Hart, S. R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231, 53–63.CrossRefGoogle Scholar
Birch, F. (1958) Differentiation of the mantle. Bull. Geol. Soc. Am., 69, 483–6.CrossRefGoogle Scholar
Gerlach, D. C. (1990) Eruption rates and isotopic systematics of ocean islands: further evidence for small-scale heterogeneity in the upper mantle. Tectonophysics, 172, 273–89.CrossRefGoogle Scholar
Ito, K. and Kennedy, G. C. (1971) An experimental study of the basalt-garnet granulite–ecologite transition. In The Structure and Physical Properties of the Earth's Crust, ed. Heacock, J. G. Washington, DC, American Geophysical Union. Geophys. Monogr., 14, 303–14.
Kay, R. W. and Kay, S. (1993) Delamination and delamination magmatism. Tectonophysics, 219, 177–89.CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S. (2003) The composition of the continental crust. In The Crust, Vol. 3, Treatise on Geochemistry, vol. eds. Holland, H. D. and Turekian, K. K.Oxford, Elsevier, pp. 1–64.Google Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophysics, 33, 267–309.CrossRefGoogle Scholar
Hofmann, A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–29.CrossRefGoogle Scholar
Hofmann A. W. (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Treatise on Geochemistry, Vol. 2, eds. Carlson, R. W., Holland, H. D. and Turekian, K. K. pp. 61–101.
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean ridge basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: a study of quartz tholeiites to olivine melilitities from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19, 463–513.CrossRefGoogle Scholar
O'Hara, M. J., Saunders, A. and Mercy, E. (1975) Garnet peridotite, primary ultrabasic magma and eclogite; interpretation of upper mantle processes in kimberlite, Phys. Chem. Earth., 9, 571–604.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw Hill.Google Scholar
Anderson, D. L. (1985) Hotspot magmas can form by fractionation and contamination of MORB. Nature, 318, 145–9.CrossRefGoogle Scholar
DePaolo, D. J. and Wasserburg, G. (1979) Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources. Proc. Natl. Acad. Sci., 76, 3056.CrossRefGoogle ScholarPubMed
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci. Rev., 4, 69–133.CrossRefGoogle Scholar
McNutt, M. K. and Judge, A. (1990) The superswell and mantle dynamics beneath the South Pacific. Science, 248, 969–75.CrossRefGoogle ScholarPubMed
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophysics, 33, 267–309.CrossRefGoogle Scholar
Stein, C. and Stein, S. (1994) Comparison of plate and asthenospheric flow models for the evolution of oceanic lithosphere, Geophys. Res. Lett., 21, 709–12.CrossRefGoogle Scholar
Vitorello, I. and Pollack, H. N. (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J. Geophys. Res., 85, 983–95.CrossRefGoogle Scholar
DeLaughter, J., Stein, S. and Stein, C. (1999) Extraction of a lithospheric cooling signal from oceanwide geoid data. Earth Planet. Sci. Lett., 174, 173–81.CrossRefGoogle Scholar
Gubbins, D. (1977) Energetics of the Earth's core. J. Geophys., 43, 453.Google Scholar
Pollack, H. N., Hurter, S. and Johnson, J. (1993) Heat flow from the earth's interior: analysis of the global data set. Rev. Geophysics, 31, 267–80.CrossRefGoogle Scholar
Rudnick, R. L. and Nyblade, A. A. (1999) The composition and thickness of Archean continental roots: constraints from xenolith thermobarometry. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, eds. Fei, Y.-W., Bertka, C. M. and Mysen, B. O. Geochemical Society Special Publication 6, pp. 3–12.
Sclater, J., Parsons, B. and Jaupart, C. (1981) Oceans and continents: similarities and differences in the mechanism of heat transport. J Geophys. Res., 86, 11535–52.CrossRefGoogle Scholar
Stacey, F. D. & Stacey, C. H. B. (1999) Gravitational energy of core evolution: implications for thermal history and geodynamo power. Phys. Earth Planet. Inter., 110, 83–93.CrossRefGoogle Scholar
Stein, C. A. and Stein, S. A. (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99, 3081–95.CrossRefGoogle Scholar
Stein, C. A. and Stein, S. A. (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–8.CrossRefGoogle Scholar
Van Schmus, W. R. (1995) Natural radioactivity of the crust and mantle. In Global Earth Physics, A Handbook of Physical Constants, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, pp. 283–91.CrossRef
Herzen, R., Davis, E. E., Fisher, A., Stein, C. A. and Pollack, H. N. (2005) Comments on Earth's heat fluxes. Tectonophysics, doi:10.1016/j.tecto.2005.08.003.Google Scholar
Pollack, H., Hurter, S. and Johnson, J. (1993) Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 31, 267–80.CrossRefGoogle Scholar
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–86.CrossRefGoogle Scholar
Bowen, N. L. (1928) The Evolution of Igneous Rocks. Princeton, NJ, Princeton University Press.Google Scholar
Bowie, W. (1927) Isostasy. New York, Dutton.Google Scholar
Bullen, K. E. (1975) The Earth's Density. London, Chapman and Hall.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press.Google Scholar
Daly, R. A. (1933) Igneous Rocks and the Depths of the Earth. New York, McGraw Hill.Google Scholar
Daly, R. A. (1940) Strength and Structure of the Earth. Englewood Cliffs, NJ, Prentice-Hall.Google Scholar
Darwin, G. H. (1879) On the bodily tides of viscous and semi-elastic spheroids and on the ocean tides upon a yielding nucleus. Phil. Trans. Roy. Soc. London A, 1970.CrossRef
Dietz, R. S. (1961) Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 854–7.CrossRefGoogle Scholar
Du Toit, A. L. (1937) Our Wandering Continents. Edinburgh, Oliver and Boyd.Google Scholar
Elder, J. (1976) The Bowels of the Earth. Oxford, Oxford University Press.Google Scholar
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49.
Gast, P. W. (1969) The isotopic compositon of lead from St. Helena and Ascension Islands. Earth Planet. Sci. Lett., 5, 353–9.
Gutenberg, Beno (1939) Internal Constitution of the Earth, ed. Gutenberg, B.New York, McGraw-Hill. (2nd Edition, New York, Dover Publications, 1951.)Google Scholar
Haskell, N. A. (1937) The viscosity of the asthenosphere. Am. J. Sci., 33, 22–30.CrossRefGoogle Scholar
Hess, H. H. (1962) History of ocean basins. In Petrologic Studies: A Volume in Honor of A. F. Buddington, eds. Engel, A. E. J., James, H. L. and Leonard, B. F.Boulder, CO, Geological Society of America, pp. 599–620.
Hirth, J. P. and Lothe, J. (1982) Theory of Dislocations, New York, John Wiley & Sons.Google Scholar
Holmes, A. (1928) Radioactivity and continental drift. Geol. Mag., 65, 236–8.Google Scholar
Holmes, A. (1944) Principles of Physical Geology. Edinburgh, Thomas and Sons Ltd.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 57, 680–4.CrossRefGoogle Scholar
Howard, L. N. (1963) Heat transport by turbulent convection. J. Fluid Mech., 17, 405–32.CrossRefGoogle Scholar
Jeffreys, H. (1926) The stability of a layer of fluid heated from below. Phil. Mag., 2, 833–44.CrossRefGoogle Scholar
Jeffreys, H. (1976) The Earth, Sixth Edition. Cambridge, Cambridge University Press.Google Scholar
Jeffreys, H. (1939) Theory of Probability. Oxford, Oxford University Press; with new editions in 1948 and in 1961 (also in the Oxford Classic Texts in the Physical Sciences series).Google Scholar
Jeffreys, H. and Swirles, B. (eds.) (1971–77) Collected Papers of Sir Harold Jeffreys on Geophysics and other Sciences (in six volumes). London, Gordon & Breach.Google Scholar
Kaula, W. M. (1968) An Introduction to Planetary Physics, the Terrestrial Planets, New York, John Wiley & Sons.Google Scholar
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–7.CrossRefGoogle Scholar
Pekeris, C. L. (1935) Thermal convection in the interior of the Earth. Mon. Not. R. Astron. Soc., Geophys. Suppl., 3, 343–67.CrossRefGoogle Scholar
Rayleigh, Lord (1916) On convection currents on a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag., 32, 529–46. (See also Pearson, J. R. A. (1958) On convection cells induced by surface tension. J. Fluid Mech., 4, 489–500.)Google Scholar
Rutherford, E. (1907) Some cosmical aspects of radioactivity. J. Roy. Astr. Soc. Canada, May–June, 145–65.Google Scholar
Thompson, D‘Arcy (1917) On Growth and Form. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Wegener, A. (1924) The Origin of Continents and Oceans. New York, Dutton.Google Scholar
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–86.CrossRefGoogle Scholar
Bowen, N. L. (1928) The Evolution of Igneous Rocks. Princeton, NJ, Princeton University Press.Google Scholar
Bowie, W. (1927) Isostasy. New York, Dutton.Google Scholar
Bullen, K. E. (1975) The Earth's Density. London, Chapman and Hall.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press.Google Scholar
Daly, R. A. (1933) Igneous Rocks and the Depths of the Earth. New York, McGraw Hill.Google Scholar
Daly, R. A. (1940) Strength and Structure of the Earth. Englewood Cliffs, NJ, Prentice-Hall.Google Scholar
Darwin, G. H. (1879) On the bodily tides of viscous and semi-elastic spheroids and on the ocean tides upon a yielding nucleus. Phil. Trans. Roy. Soc. London A, 1970.CrossRef
Dietz, R. S. (1961) Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 854–7.CrossRefGoogle Scholar
Du Toit, A. L. (1937) Our Wandering Continents. Edinburgh, Oliver and Boyd.Google Scholar
Elder, J. (1976) The Bowels of the Earth. Oxford, Oxford University Press.Google Scholar
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49.
Gast, P. W. (1969) The isotopic compositon of lead from St. Helena and Ascension Islands. Earth Planet. Sci. Lett., 5, 353–9.
Gutenberg, Beno (1939) Internal Constitution of the Earth, ed. Gutenberg, B.New York, McGraw-Hill. (2nd Edition, New York, Dover Publications, 1951.)Google Scholar
Haskell, N. A. (1937) The viscosity of the asthenosphere. Am. J. Sci., 33, 22–30.CrossRefGoogle Scholar
Hess, H. H. (1962) History of ocean basins. In Petrologic Studies: A Volume in Honor of A. F. Buddington, eds. Engel, A. E. J., James, H. L. and Leonard, B. F.Boulder, CO, Geological Society of America, pp. 599–620.
Hirth, J. P. and Lothe, J. (1982) Theory of Dislocations, New York, John Wiley & Sons.Google Scholar
Holmes, A. (1928) Radioactivity and continental drift. Geol. Mag., 65, 236–8.Google Scholar
Holmes, A. (1944) Principles of Physical Geology. Edinburgh, Thomas and Sons Ltd.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 57, 680–4.CrossRefGoogle Scholar
Howard, L. N. (1963) Heat transport by turbulent convection. J. Fluid Mech., 17, 405–32.CrossRefGoogle Scholar
Jeffreys, H. (1926) The stability of a layer of fluid heated from below. Phil. Mag., 2, 833–44.CrossRefGoogle Scholar
Jeffreys, H. (1976) The Earth, Sixth Edition. Cambridge, Cambridge University Press.Google Scholar
Jeffreys, H. (1939) Theory of Probability. Oxford, Oxford University Press; with new editions in 1948 and in 1961 (also in the Oxford Classic Texts in the Physical Sciences series).Google Scholar
Jeffreys, H. and Swirles, B. (eds.) (1971–77) Collected Papers of Sir Harold Jeffreys on Geophysics and other Sciences (in six volumes). London, Gordon & Breach.Google Scholar
Kaula, W. M. (1968) An Introduction to Planetary Physics, the Terrestrial Planets, New York, John Wiley & Sons.Google Scholar
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–7.CrossRefGoogle Scholar
Pekeris, C. L. (1935) Thermal convection in the interior of the Earth. Mon. Not. R. Astron. Soc., Geophys. Suppl., 3, 343–67.CrossRefGoogle Scholar
Rayleigh, Lord (1916) On convection currents on a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag., 32, 529–46. (See also Pearson, J. R. A. (1958) On convection cells induced by surface tension. J. Fluid Mech., 4, 489–500.)Google Scholar
Rutherford, E. (1907) Some cosmical aspects of radioactivity. J. Roy. Astr. Soc. Canada, May–June, 145–65.Google Scholar
Thompson, D‘Arcy (1917) On Growth and Form. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Wegener, A. (1924) The Origin of Continents and Oceans. New York, Dutton.Google Scholar
Anders, E. (1968) Chemical processes in the early solar system, as inferred from meteorites. Acct. Chem. Res., 1, 289–98.CrossRefGoogle Scholar
Fuchs, L. H., Olsen, E. and Jensen, K. (1973) Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contrib. Earth Sci., 10, 39.
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.CrossRefGoogle Scholar
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973.CrossRefGoogle ScholarPubMed
Safronov, V. S. (1972) Accumulation of the planets. In On the Origin of the Solar System, ed. Reeves, H. Paris, Centre Nationale de Recherche Scientifique, pp. 89–113.
Abe, Y. (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter., 100, 27–39.CrossRefGoogle Scholar
Agee, C. B. (1990) A new look at differentiation of the Earth from melting experiments on the Allende meteorite. Nature, 346, 834–7.CrossRefGoogle Scholar
Cameron, A. G. W. (1997) The origin of the moon and the single impact hypothesis. Icarus, 126, 126–37.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E. (2001) The Moon-forming impact. Nature, 412, 708–12.Google Scholar
Carrigan, C. R. (1983) A heat pipe model for vertical, magma-filled conduits. J. Volc. Geotherm. Res., 16, 279–88.CrossRefGoogle Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 579–619.CrossRefGoogle Scholar
Murthy, V. R. (1991) Early differentiation of the earth and the problems of mantle siderophile elements: a new approach. Science, 253, 303–6.CrossRefGoogle Scholar
Ohtani, E. (1985) The primordial terrestrial magma ocean and its implications for the stratification of the mantle. Phys. Earth Planet. Inter., 38, 70–80.CrossRefGoogle Scholar
Ringwood, A. E. (1979) Origin of the Earth and Moon. New York, Springer-Verlag.CrossRefGoogle Scholar
Anders, E. (1968) Chemical processes in the early solar system, as inferred from meteorites. Acct. Chem. Res., 1, 289–98.CrossRefGoogle Scholar
Fuchs, L. H., Olsen, E. and Jensen, K. (1973) Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contrib. Earth Sci., 10, 39.
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.CrossRefGoogle Scholar
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973.CrossRefGoogle ScholarPubMed
Safronov, V. S. (1972) Accumulation of the planets. In On the Origin of the Solar System, ed. Reeves, H. Paris, Centre Nationale de Recherche Scientifique, pp. 89–113.
Abe, Y. (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter., 100, 27–39.CrossRefGoogle Scholar
Agee, C. B. (1990) A new look at differentiation of the Earth from melting experiments on the Allende meteorite. Nature, 346, 834–7.CrossRefGoogle Scholar
Cameron, A. G. W. (1997) The origin of the moon and the single impact hypothesis. Icarus, 126, 126–37.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E. (2001) The Moon-forming impact. Nature, 412, 708–12.Google Scholar
Carrigan, C. R. (1983) A heat pipe model for vertical, magma-filled conduits. J. Volc. Geotherm. Res., 16, 279–88.CrossRefGoogle Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 579–619.CrossRefGoogle Scholar
Murthy, V. R. (1991) Early differentiation of the earth and the problems of mantle siderophile elements: a new approach. Science, 253, 303–6.CrossRefGoogle Scholar
Ohtani, E. (1985) The primordial terrestrial magma ocean and its implications for the stratification of the mantle. Phys. Earth Planet. Inter., 38, 70–80.CrossRefGoogle Scholar
Ringwood, A. E. (1979) Origin of the Earth and Moon. New York, Springer-Verlag.CrossRefGoogle Scholar
Hartman, W., Phillips, R. and Taylor, G. (1986) Origin of the Moon. Houston, Lunar and Planetary Institute.Google Scholar
Taylor, S. R. (1982) Planetary Science, A Lunar Perspective. Houston, Lunar and Planetary Institute.Google Scholar
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell.Google Scholar
Weaver, B. L. and Tarney, J. (1984) Major and trace element composition of the continental lithosphere. Phys. Chem Earth, 15, 39–68.CrossRefGoogle Scholar
Anderson, D. L. (1972) The internal constitution of Mars. J. Geophys. Res., 77, 789–95.CrossRefGoogle Scholar
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci. Conf., 5, 1181–206.Google Scholar
Taylor, S. R. and McLennan, S. M. (1981) The composition and evolution of the Earth's crust; rare earth element evidence from sedimentary rocks. Phil. Trans. Roy. Soc. Lond. A, 301, 381–99.CrossRefGoogle Scholar
Hartman, W., Phillips, R. and Taylor, G. (1986) Origin of the Moon. Houston, Lunar and Planetary Institute.Google Scholar
Taylor, S. R. (1982) Planetary Science, A Lunar Perspective. Houston, Lunar and Planetary Institute.Google Scholar
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell.Google Scholar
Weaver, B. L. and Tarney, J. (1984) Major and trace element composition of the continental lithosphere. Phys. Chem Earth, 15, 39–68.CrossRefGoogle Scholar
Anderson, D. L. (1972) The internal constitution of Mars. J. Geophys. Res., 77, 789–95.CrossRefGoogle Scholar
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci. Conf., 5, 1181–206.Google Scholar
Taylor, S. R. and McLennan, S. M. (1981) The composition and evolution of the Earth's crust; rare earth element evidence from sedimentary rocks. Phil. Trans. Roy. Soc. Lond. A, 301, 381–99.CrossRefGoogle Scholar
Anders, E. and Ebihara, M. (1982) Solar system abundances of the Elements. Geochim. Cosmochim. Acta, 46, 2363–80.CrossRefGoogle Scholar
Breneman, H. H. and Stone, E. C. (1985) Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. Lett. 294, L57–62.CrossRefGoogle Scholar
BVP, Basaltic Volcanism Study Project (1980) Basaltic Volcanism on the Terrestrial Planets. New York, Pergamon.
Drake, M. J. and Righter, K. (2002) Determining the composition of the Earth. Nature, 416, 39–44.CrossRefGoogle Scholar
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci.Conf., 5, 1181–206.Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.CrossRef
Javoy, M. (1995) The integral enstatite chondrite model of the Earth. Geophys. Res. Lett., 22, 2219–22.CrossRefGoogle Scholar
Mason, B. (1962) Meteorites. New York, John Wiley & Sons.Google Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973.CrossRefGoogle ScholarPubMed
Ringwood, A. E. (1977) Composition and Origin of the Earth. Publication No. 1299. Canberra, Research School of Earth Sciences, Australian National University.Google Scholar
Wood, J. A. (1962) Chondrules and the origin of the terrestrial planets. Nature, 194, 127–30.CrossRefGoogle Scholar
Anders, E. and Owen, T. (1977) Mars and Earth: origin and abundance of volatiles. Science, 198, 453–65.CrossRefGoogle ScholarPubMed
Cameron, A. G. W. (1982) Elementary and nuclidic abundances in the solar system. In Essays in Nuclear Astrophysics, eds. Barnes, C. A.et al. Cambridge, Cambridge University Press.
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.CrossRefGoogle Scholar
Mazor, E., Heymann, D. and Anders, E. (1970) Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta, 34, 781–824.CrossRefGoogle Scholar
von Zahn, V., Kumar, S., Niemann, H. and Prim, R. (1983) Composition of the Venus atmosphere. In Venus, eds. Hunten, D. M., Colin, L., Donahue, T. and Moroz, V.Tucson, University of Arizona Press, pp. 299–430.Google Scholar
Wacker, J. and Marti, K. (1983) Noble gas components of Albee Meteorite. Earth Planet. Sci. Lett., 62, 147–58.CrossRefGoogle Scholar
Wanke, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Hofmeister, H., Kruse, H., Jagoutz, E., Palme, C., Spettel, B., Thacker R. and Vilcsek, E. (1977) On chemistry of lunar samples and achondrites; Primary matter in the lunar highlands; A re-evaluation. Proc. Lunar Sci. Conf. 8th, 2191–13.Google Scholar
Weidenschilling, S. J. (1976) Accretion of the terrestrial planets. Icarus, 27, 161–70.CrossRefGoogle Scholar
Anders, E. and Ebihara, M. (1982) Solar system abundances of the Elements. Geochim. Cosmochim. Acta, 46, 2363–80.CrossRefGoogle Scholar
Breneman, H. H. and Stone, E. C. (1985) Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. Lett. 294, L57–62.CrossRefGoogle Scholar
BVP, Basaltic Volcanism Study Project (1980) Basaltic Volcanism on the Terrestrial Planets. New York, Pergamon.
Drake, M. J. and Righter, K. (2002) Determining the composition of the Earth. Nature, 416, 39–44.CrossRefGoogle Scholar
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci.Conf., 5, 1181–206.Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.CrossRef
Javoy, M. (1995) The integral enstatite chondrite model of the Earth. Geophys. Res. Lett., 22, 2219–22.CrossRefGoogle Scholar
Mason, B. (1962) Meteorites. New York, John Wiley & Sons.Google Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973.CrossRefGoogle ScholarPubMed
Ringwood, A. E. (1977) Composition and Origin of the Earth. Publication No. 1299. Canberra, Research School of Earth Sciences, Australian National University.Google Scholar
Wood, J. A. (1962) Chondrules and the origin of the terrestrial planets. Nature, 194, 127–30.CrossRefGoogle Scholar
Anders, E. and Owen, T. (1977) Mars and Earth: origin and abundance of volatiles. Science, 198, 453–65.CrossRefGoogle ScholarPubMed
Cameron, A. G. W. (1982) Elementary and nuclidic abundances in the solar system. In Essays in Nuclear Astrophysics, eds. Barnes, C. A.et al. Cambridge, Cambridge University Press.
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.CrossRefGoogle Scholar
Mazor, E., Heymann, D. and Anders, E. (1970) Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta, 34, 781–824.CrossRefGoogle Scholar
von Zahn, V., Kumar, S., Niemann, H. and Prim, R. (1983) Composition of the Venus atmosphere. In Venus, eds. Hunten, D. M., Colin, L., Donahue, T. and Moroz, V.Tucson, University of Arizona Press, pp. 299–430.Google Scholar
Wacker, J. and Marti, K. (1983) Noble gas components of Albee Meteorite. Earth Planet. Sci. Lett., 62, 147–58.CrossRefGoogle Scholar
Wanke, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Hofmeister, H., Kruse, H., Jagoutz, E., Palme, C., Spettel, B., Thacker R. and Vilcsek, E. (1977) On chemistry of lunar samples and achondrites; Primary matter in the lunar highlands; A re-evaluation. Proc. Lunar Sci. Conf. 8th, 2191–13.Google Scholar
Weidenschilling, S. J. (1976) Accretion of the terrestrial planets. Icarus, 27, 161–70.CrossRefGoogle Scholar
Clare, B. W. and Kepert, D. L. (1991). The optimal packing of circles on a sphere. J. Math. Chem., 6, 325–49.CrossRefGoogle Scholar
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L. (eds.) (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388.Google Scholar
Morgan, W. J. (1971) Convective plumes in the lower mantle. Nature, 230, 42–3.CrossRefGoogle Scholar
Rowley, D. B. (2002) Rate of plate creation and destruction: 180 Ma to present. Geolog. Soc. Am. Bull., 114, 927–33.2.0.CO;2>CrossRefGoogle Scholar
Van Hunen, J., van den Berg, A. P. and Vlaar, N. (2002) On the role of subducting oceanic plateaus in the development of shallow flat subduction, Tectonophysics, 352, 317–33.CrossRefGoogle Scholar
Wilson, J. T. (1973) Mantle plumes and plate motions, Tectonophysics, 19, 149–64.CrossRefGoogle Scholar
Chappell, W. M. and Tullis, T. E. (1977) Evaluation of the forces that drive plates. J. Geophys. Res., 82, 1967–84.CrossRefGoogle Scholar
Chase, C. G. (1979) Asthenospheric counterflow: a kinematic model. Geophys. J. R. Astron. Soc., 56, 1–18.CrossRefGoogle Scholar
Chase, C. G. (1979) Subduction, the geoid, and lower mantle convection. Nature, 282, 464–8.CrossRefGoogle Scholar
Elder, J. W. (1967) Convective self-propulsion of continents. Nature, 214, 657–60.CrossRefGoogle Scholar
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49.
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43, 163–200.CrossRefGoogle Scholar
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63, 97–109.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84, 1031–48.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1981) A simple global model of plate dynamics and mantle convection. J. Geophys. Res., 86, 4843–67.CrossRefGoogle Scholar
Harper, J. F. (1978) Asthenosphere flow and plate motions. Geophys. J. R. Astr. Soc., 55, 87–110.CrossRefGoogle Scholar
Jacoby, W. R. (1970) Instability in the upper mantle and global plate movements. J. Geophys. Res., 75, 5671–80.CrossRefGoogle Scholar
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York, McGraw-Hill, pp. 386–405.Google Scholar
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85, 7031–44.CrossRefGoogle Scholar
Parmentier, E. M. and Oliver, J. E. (1979) A study of shallow global mantle flow due to the accretion and subduction of lithospheric plates. Geophys. J. R. Astr. Soc., 57, 1–21.CrossRefGoogle Scholar
Ramberg, H. (1967) Gravity, Deformation and the Earth's Crust. London, Academic Press.Google Scholar
Becker, T. W. and O'Connell, R. J. (2001) Predicting plate motions with mantle circulation models. Geochemistry, Geophysics, Geosystems 2, 2001GC000171.CrossRefGoogle Scholar
Bercovici, D. (1995) A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow. J. Geophys. Res., 100, 2013–30.CrossRefGoogle Scholar
Tackley, P. (2000) The quest for self-consistent generation of plate tectonics in mantle convection models. In History and Dynamics of Global Plate Motions, Geophys. Monogr. Ser., eds. Richards, M. A., Gordon, R. and Hilst, R.Washington, DC, American Geophysical Union, pp. 47–72.Google Scholar
Trompert, R. & Hansen, U. (1998) Mantle convection simulations with rheologies that generate plate-like behavior. Nature, 395, 686–9.CrossRefGoogle Scholar
Lithgow-Bertelloni, C. & Richards, M. A. (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78.CrossRefGoogle Scholar
Clare, B. W. and Kepert, D. L. (1991). The optimal packing of circles on a sphere. J. Math. Chem., 6, 325–49.CrossRefGoogle Scholar
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L. (eds.) (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388.Google Scholar
Morgan, W. J. (1971) Convective plumes in the lower mantle. Nature, 230, 42–3.CrossRefGoogle Scholar
Rowley, D. B. (2002) Rate of plate creation and destruction: 180 Ma to present. Geolog. Soc. Am. Bull., 114, 927–33.2.0.CO;2>CrossRefGoogle Scholar
Van Hunen, J., van den Berg, A. P. and Vlaar, N. (2002) On the role of subducting oceanic plateaus in the development of shallow flat subduction, Tectonophysics, 352, 317–33.CrossRefGoogle Scholar
Wilson, J. T. (1973) Mantle plumes and plate motions, Tectonophysics, 19, 149–64.CrossRefGoogle Scholar
Chappell, W. M. and Tullis, T. E. (1977) Evaluation of the forces that drive plates. J. Geophys. Res., 82, 1967–84.CrossRefGoogle Scholar
Chase, C. G. (1979) Asthenospheric counterflow: a kinematic model. Geophys. J. R. Astron. Soc., 56, 1–18.CrossRefGoogle Scholar
Chase, C. G. (1979) Subduction, the geoid, and lower mantle convection. Nature, 282, 464–8.CrossRefGoogle Scholar
Elder, J. W. (1967) Convective self-propulsion of continents. Nature, 214, 657–60.CrossRefGoogle Scholar
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49.
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43, 163–200.CrossRefGoogle Scholar
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63, 97–109.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84, 1031–48.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1981) A simple global model of plate dynamics and mantle convection. J. Geophys. Res., 86, 4843–67.CrossRefGoogle Scholar
Harper, J. F. (1978) Asthenosphere flow and plate motions. Geophys. J. R. Astr. Soc., 55, 87–110.CrossRefGoogle Scholar
Jacoby, W. R. (1970) Instability in the upper mantle and global plate movements. J. Geophys. Res., 75, 5671–80.CrossRefGoogle Scholar
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York, McGraw-Hill, pp. 386–405.Google Scholar
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85, 7031–44.CrossRefGoogle Scholar
Parmentier, E. M. and Oliver, J. E. (1979) A study of shallow global mantle flow due to the accretion and subduction of lithospheric plates. Geophys. J. R. Astr. Soc., 57, 1–21.CrossRefGoogle Scholar
Ramberg, H. (1967) Gravity, Deformation and the Earth's Crust. London, Academic Press.Google Scholar
Becker, T. W. and O'Connell, R. J. (2001) Predicting plate motions with mantle circulation models. Geochemistry, Geophysics, Geosystems 2, 2001GC000171.CrossRefGoogle Scholar
Bercovici, D. (1995) A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow. J. Geophys. Res., 100, 2013–30.CrossRefGoogle Scholar
Tackley, P. (2000) The quest for self-consistent generation of plate tectonics in mantle convection models. In History and Dynamics of Global Plate Motions, Geophys. Monogr. Ser., eds. Richards, M. A., Gordon, R. and Hilst, R.Washington, DC, American Geophysical Union, pp. 47–72.Google Scholar
Trompert, R. & Hansen, U. (1998) Mantle convection simulations with rheologies that generate plate-like behavior. Nature, 395, 686–9.CrossRefGoogle Scholar
Lithgow-Bertelloni, C. & Richards, M. A. (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78.CrossRefGoogle Scholar
Allen, R. & Tromp, J. (2005) Resolution of regional seismic models: Squeezing the Iceland anomaly. Geophys. J. Inter., 161, 373–86.CrossRefGoogle Scholar
Anderson, D. L. (2005) Scoring hotspots: The plume and plate paradigms. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 31–54.
Anderson, D. L. (2002) How many plates?Geology, 30, 411–14.2.0.CO;2>CrossRefGoogle Scholar
Anderson, D. L. and Natland, J. H. (2005) A brief history of the plume hypothesis and its competitors: Concept and controversy. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 119–46.Google Scholar
Anderson, D. L. and Schramm, K. A. (2005). Hotspot catalogs. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 19–30.
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3, 2001GC000168.CrossRefGoogle Scholar
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. (1998) Jamming, force chains and fragile matter. Phys. Rev. Lett., 81, 1841–4.CrossRefGoogle Scholar
Conrad, C. P. & Hager, B. H. (2001) Mantle convection with strong subduction zones. Geophys. J. Inter., 144, 271–88.CrossRefGoogle Scholar
Davies, G. F. (2000) Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge, Cambridge University Press.Google Scholar
Allen, R. & Tromp, J. (2005) Resolution of regional seismic models: Squeezing the Iceland anomaly. Geophys. J. Inter., 161, 373–86.CrossRefGoogle Scholar
Anderson, D. L. (2005) Scoring hotspots: The plume and plate paradigms. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 31–54.
Anderson, D. L. (2002) How many plates?Geology, 30, 411–14.2.0.CO;2>CrossRefGoogle Scholar
Anderson, D. L. and Natland, J. H. (2005) A brief history of the plume hypothesis and its competitors: Concept and controversy. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 119–46.Google Scholar
Anderson, D. L. and Schramm, K. A. (2005). Hotspot catalogs. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 19–30.
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3, 2001GC000168.CrossRefGoogle Scholar
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. (1998) Jamming, force chains and fragile matter. Phys. Rev. Lett., 81, 1841–4.CrossRefGoogle Scholar
Conrad, C. P. & Hager, B. H. (2001) Mantle convection with strong subduction zones. Geophys. J. Inter., 144, 271–88.CrossRefGoogle Scholar
Davies, G. F. (2000) Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge, Cambridge University Press.Google Scholar
Hager, B. H. (1984) Subducted slabs and the geoid; constraints on mantle theology and flow. J. Geophys. Res., 89, 6003–15.CrossRefGoogle Scholar
Hager, B. H., Clayton, R., Richards, M., Comer, R. and Dziewonski, A. (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313, 541–5.CrossRefGoogle Scholar
Rapp, R. H. (1981) The Earth's gravity field to degree and order 180 using Seaset altimeter data, terrestrial gravity data, and other data. Report 322, Dept. Geodetic. Sci. and Surv. Columbus, OH, Ohio State University.
Richards, M. A. and Hager, B. H. (1984) Geoid anomalies in a dynamic Earth. J. Geophys. Res., 89, 5987–6002.CrossRefGoogle Scholar
Darwin, G. (1877) On the influence of geological changes on the earth's axis of rotation. Phil. Trans. R. Soc. Lond. A, 167, 271–312.CrossRefGoogle Scholar
Goldreich, P. and Toomre, A. (1968) Some remarks on polar wandering. J. Geophys. Res., 74, 2555–67.CrossRefGoogle Scholar
Hager, B. H. and Richards, M. (1989) Long-wavelength variations in Earth's geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A, 328, 309–27.CrossRefGoogle Scholar
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York, McGraw-Hill, pp. 386–405.
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85, 7031–44.CrossRefGoogle Scholar
Parsons, B. and Sclater, J. G. (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82, 803–27.CrossRefGoogle Scholar
Hager, B. H. (1984) Subducted slabs and the geoid; constraints on mantle theology and flow. J. Geophys. Res., 89, 6003–15.CrossRefGoogle Scholar
Hager, B. H., Clayton, R., Richards, M., Comer, R. and Dziewonski, A. (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313, 541–5.CrossRefGoogle Scholar
Rapp, R. H. (1981) The Earth's gravity field to degree and order 180 using Seaset altimeter data, terrestrial gravity data, and other data. Report 322, Dept. Geodetic. Sci. and Surv. Columbus, OH, Ohio State University.
Richards, M. A. and Hager, B. H. (1984) Geoid anomalies in a dynamic Earth. J. Geophys. Res., 89, 5987–6002.CrossRefGoogle Scholar
Darwin, G. (1877) On the influence of geological changes on the earth's axis of rotation. Phil. Trans. R. Soc. Lond. A, 167, 271–312.CrossRefGoogle Scholar
Goldreich, P. and Toomre, A. (1968) Some remarks on polar wandering. J. Geophys. Res., 74, 2555–67.CrossRefGoogle Scholar
Hager, B. H. and Richards, M. (1989) Long-wavelength variations in Earth's geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A, 328, 309–27.CrossRefGoogle Scholar
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York, McGraw-Hill, pp. 386–405.
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85, 7031–44.CrossRefGoogle Scholar
Parsons, B. and Sclater, J. G. (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82, 803–27.CrossRefGoogle Scholar
Anderson, D. L. (1979) Chemical stratification of the mantle. J. Geophys. Res., 84, 6297–8.CrossRefGoogle Scholar
Anderson, D. L. (2002) The case for irreversible chemical stratification of the mantle. Int. Geol. Rev., 44, 97–116.CrossRefGoogle Scholar
Ciskova, H., Cadek, O., van den Berg, A. P. & Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26, 1501–4.CrossRefGoogle Scholar
Ciskova, H. & Cadek, O. (1997) Effect of a viscosity interface at 1000 km depth on mantle convection. Studia geoph. geod., 41, 297–306.CrossRefGoogle Scholar
Glatzmaier, G. A. & Schubert, G. (1993) Three-dimensional spherical models of layered and whole mantle convection. J. Geophys. Res., 98, 969–76.CrossRefGoogle Scholar
Gu, Y., Dziewonski, A. M. & Agee, C. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157, 57–67.CrossRefGoogle Scholar
Honda, S. (1984) A preliminary analysis of convection in a mantle with a heterogeneous distribution of heat-producing elements. Phys. Earth Planet. Inter., 34, 68–76.CrossRefGoogle Scholar
Honda, S. (1986) Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett., 13, 1454–7.CrossRefGoogle Scholar
Nataf, H-C., Moreno, S. and Cardin, Ph. (1988) What is responsible for thermal coupling in layered convection?J. Phys. France, 49, 1707–14.Google Scholar
Phillips, B. R. and Bunge, H.-P. (2005) Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planet. Sci. Lett., 233, 121–35.CrossRefGoogle Scholar
Schubert, G., Turcotte, D. and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Silver, P. G., Carlson, R. W. and Olson, P. (1988) Deep slabs, geochemical heterogeneity and the large-scale structure of mantle convection: Investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci., 16, 477–541.CrossRefGoogle Scholar
Todesco, M. & Spera, F. (1992) Stability of a chemically layered upper mantle. Phys. Earth Planet. Inter., 71, 85–99.CrossRefGoogle Scholar
van Keken, P. E. & Ballantine, C. (1998) Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett., 156, 19–32.Google Scholar
Wen, L. & Anderson, D. L. (1997) Layered mantle convection: a model for geoid and topography. Earth Planet. Sci. Lett., 146, 367–77.CrossRefGoogle Scholar
Anderson, D. L. (1979) Chemical stratification of the mantle. J. Geophys. Res., 84, 6297–8.CrossRefGoogle Scholar
Anderson, D. L. (2002) The case for irreversible chemical stratification of the mantle. Int. Geol. Rev., 44, 97–116.CrossRefGoogle Scholar
Ciskova, H., Cadek, O., van den Berg, A. P. & Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26, 1501–4.CrossRefGoogle Scholar
Ciskova, H. & Cadek, O. (1997) Effect of a viscosity interface at 1000 km depth on mantle convection. Studia geoph. geod., 41, 297–306.CrossRefGoogle Scholar
Glatzmaier, G. A. & Schubert, G. (1993) Three-dimensional spherical models of layered and whole mantle convection. J. Geophys. Res., 98, 969–76.CrossRefGoogle Scholar
Gu, Y., Dziewonski, A. M. & Agee, C. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157, 57–67.CrossRefGoogle Scholar
Honda, S. (1984) A preliminary analysis of convection in a mantle with a heterogeneous distribution of heat-producing elements. Phys. Earth Planet. Inter., 34, 68–76.CrossRefGoogle Scholar
Honda, S. (1986) Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett., 13, 1454–7.CrossRefGoogle Scholar
Nataf, H-C., Moreno, S. and Cardin, Ph. (1988) What is responsible for thermal coupling in layered convection?J. Phys. France, 49, 1707–14.Google Scholar
Phillips, B. R. and Bunge, H.-P. (2005) Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planet. Sci. Lett., 233, 121–35.CrossRefGoogle Scholar
Schubert, G., Turcotte, D. and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Silver, P. G., Carlson, R. W. and Olson, P. (1988) Deep slabs, geochemical heterogeneity and the large-scale structure of mantle convection: Investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci., 16, 477–541.CrossRefGoogle Scholar
Todesco, M. & Spera, F. (1992) Stability of a chemically layered upper mantle. Phys. Earth Planet. Inter., 71, 85–99.CrossRefGoogle Scholar
van Keken, P. E. & Ballantine, C. (1998) Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett., 156, 19–32.Google Scholar
Wen, L. & Anderson, D. L. (1997) Layered mantle convection: a model for geoid and topography. Earth Planet. Sci. Lett., 146, 367–77.CrossRefGoogle Scholar
Babuska, V. (1972) Elasticity and anisotropy of dunite and bronzitite. J. Geophys. Res., 77, 6955–65.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, J. N. (1982) Pyroxene orientation within the upper mantle. Geol. Soc. Amer. Bull., 93, 279–88.2.0.CO;2>CrossRefGoogle Scholar
Christensen, N. I. and Smewing, J. D. (1981) Geology and seismic structure of the northern section of the Oman ophiolite. J. Geophys. Res., 86, 2545–55.CrossRefGoogle Scholar
Clark, S. P., Jr. (1966) Handbook of Physical Constants. Geol. Soc. Amer. Mem. 97.Google Scholar
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York, Pergamon.Google Scholar
Duffy, T. S. and Anderson, D. L. (1988). Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Given, J. and Helmberger, D. (1981) Upper mantle structure of northwestern Eurasia. J. Geophys. Res., 85, 7183–94.CrossRefGoogle Scholar
Grand, S. P. and HeImberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astr. Soc., 76, 399–438.CrossRefGoogle Scholar
Grand, S. P. and Helmherger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89, 11 465–75.CrossRefGoogle Scholar
Jordan, T. H. (1979) Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. In The Mantle Sample, eds. Boyd, F. R. and Meyer, H. O. A.Washington DC, American Geophysical Union, pp. 1–14.Google Scholar
Lehmann, I. (1961) S and the structure of the upper mantle, Geophys. J. R. Astron. Soc., 4, 124–38.CrossRefGoogle Scholar
Manghnani, M. H. and Ramananotoandro, C. S. P. (1974) Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar. J. Geophys. Res., 79, 5427–46.CrossRefGoogle Scholar
Mooney, W. D., Laske, G. and Masters, G. (1998) A new global crustal model at 5 × 5 degrees: CRUST5.1. J. Geophys. Res., 103, 727–47.CrossRefGoogle Scholar
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35, 227–63.CrossRefGoogle Scholar
Salisbury, M. and Christensen, N. L. (1978) The seismic velocity structure of a traverse through the Bay of Islands ophiolite complex, Newfoundland, an exposure of oceanic crust and upper mantle. J. Geophys. Res., 83, 805–17.CrossRefGoogle Scholar
Sumino, Y. and Anderson, O. L. (1984) Elastic constants of minerals. In Handbook of Physical Properties of Rocks 3, ed. Carmichael, R. S.Boca Raton, FL, CRC Press, pp. 39–138.Google Scholar
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell.Google Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center: The Gulf of California. Geophys. J. R. Astr. Soc., 76, 697–723.CrossRefGoogle Scholar
Anderson, D. L. and Bass, J. D. (1984) Mineralogy and composition of the upper mantle. Geophys. Res. Lett., 11, 637–40.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29, 8, doi: 10.1029/2002GL014768.CrossRefGoogle Scholar
Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 591–621.CrossRefGoogle Scholar
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. and Hung, S. H. (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–43.CrossRefGoogle ScholarPubMed
Shimamura, H., Asada, T. and Kumazawa, M. (1977) High shear velocity layer in the upper mantle of the Western Pacific. Nature, 269, 680–2.CrossRefGoogle Scholar
Weidner, D. J. (1986) Mantle models based on measured physical properties of minerals. In Chemistry and Physics of Terrestrial Planets, ed. Saxena, S. K.New York, Springer-Verlag, pp. 251–74.
Weidner, D. J., Sawamoto, H., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4. J. Geophys. Res., 89, 7852–60.CrossRefGoogle Scholar
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P'P' seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Babuska, V. (1972) Elasticity and anisotropy of dunite and bronzitite. J. Geophys. Res., 77, 6955–65.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, J. N. (1982) Pyroxene orientation within the upper mantle. Geol. Soc. Amer. Bull., 93, 279–88.2.0.CO;2>CrossRefGoogle Scholar
Christensen, N. I. and Smewing, J. D. (1981) Geology and seismic structure of the northern section of the Oman ophiolite. J. Geophys. Res., 86, 2545–55.CrossRefGoogle Scholar
Clark, S. P., Jr. (1966) Handbook of Physical Constants. Geol. Soc. Amer. Mem. 97.Google Scholar
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York, Pergamon.Google Scholar
Duffy, T. S. and Anderson, D. L. (1988). Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Given, J. and Helmberger, D. (1981) Upper mantle structure of northwestern Eurasia. J. Geophys. Res., 85, 7183–94.CrossRefGoogle Scholar
Grand, S. P. and HeImberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astr. Soc., 76, 399–438.CrossRefGoogle Scholar
Grand, S. P. and Helmherger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89, 11 465–75.CrossRefGoogle Scholar
Jordan, T. H. (1979) Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. In The Mantle Sample, eds. Boyd, F. R. and Meyer, H. O. A.Washington DC, American Geophysical Union, pp. 1–14.Google Scholar
Lehmann, I. (1961) S and the structure of the upper mantle, Geophys. J. R. Astron. Soc., 4, 124–38.CrossRefGoogle Scholar
Manghnani, M. H. and Ramananotoandro, C. S. P. (1974) Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar. J. Geophys. Res., 79, 5427–46.CrossRefGoogle Scholar
Mooney, W. D., Laske, G. and Masters, G. (1998) A new global crustal model at 5 × 5 degrees: CRUST5.1. J. Geophys. Res., 103, 727–47.CrossRefGoogle Scholar
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35, 227–63.CrossRefGoogle Scholar
Salisbury, M. and Christensen, N. L. (1978) The seismic velocity structure of a traverse through the Bay of Islands ophiolite complex, Newfoundland, an exposure of oceanic crust and upper mantle. J. Geophys. Res., 83, 805–17.CrossRefGoogle Scholar
Sumino, Y. and Anderson, O. L. (1984) Elastic constants of minerals. In Handbook of Physical Properties of Rocks 3, ed. Carmichael, R. S.Boca Raton, FL, CRC Press, pp. 39–138.Google Scholar
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell.Google Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center: The Gulf of California. Geophys. J. R. Astr. Soc., 76, 697–723.CrossRefGoogle Scholar
Anderson, D. L. and Bass, J. D. (1984) Mineralogy and composition of the upper mantle. Geophys. Res. Lett., 11, 637–40.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29, 8, doi: 10.1029/2002GL014768.CrossRefGoogle Scholar
Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 591–621.CrossRefGoogle Scholar
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. and Hung, S. H. (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–43.CrossRefGoogle ScholarPubMed
Shimamura, H., Asada, T. and Kumazawa, M. (1977) High shear velocity layer in the upper mantle of the Western Pacific. Nature, 269, 680–2.CrossRefGoogle Scholar
Weidner, D. J. (1986) Mantle models based on measured physical properties of minerals. In Chemistry and Physics of Terrestrial Planets, ed. Saxena, S. K.New York, Springer-Verlag, pp. 251–74.
Weidner, D. J., Sawamoto, H., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4. J. Geophys. Res., 89, 7852–60.CrossRefGoogle Scholar
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P'P' seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29, 8, doi: 10.1029/2002GL014768.CrossRefGoogle Scholar
Revenaugh, J. & Sipkin, S. A. (1994) Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature, 369, 474–6.CrossRefGoogle Scholar
Nolet, G. & Zielhuis, A. (1994) Low S velocities under the Tornquist–Teisseyre zone: evidence for water injection into the transition zone by subduction. J. Geophys. Res., 99, 15813–20.CrossRefGoogle Scholar
Song, T., Helmberger, D. & Grand, S. (2004) Low velocity zone atop the 410 seismic discontinuity in the northwestern U. S. Nature, 427, 530–3.CrossRefGoogle Scholar
Vinnik, L., Kumar, M. R., Kind, R. & Farra, V. (2003) Super-deep low-velocity layer beneath the Arabian plate. Geophys. Res. Lett., 30 (1415), doi:10.1029/2002GL016590.CrossRefGoogle Scholar
Whitcomb, J. H. & Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29, 8, doi: 10.1029/2002GL014768.CrossRefGoogle Scholar
Revenaugh, J. & Sipkin, S. A. (1994) Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature, 369, 474–6.CrossRefGoogle Scholar
Nolet, G. & Zielhuis, A. (1994) Low S velocities under the Tornquist–Teisseyre zone: evidence for water injection into the transition zone by subduction. J. Geophys. Res., 99, 15813–20.CrossRefGoogle Scholar
Song, T., Helmberger, D. & Grand, S. (2004) Low velocity zone atop the 410 seismic discontinuity in the northwestern U. S. Nature, 427, 530–3.CrossRefGoogle Scholar
Vinnik, L., Kumar, M. R., Kind, R. & Farra, V. (2003) Super-deep low-velocity layer beneath the Arabian plate. Geophys. Res. Lett., 30 (1415), doi:10.1029/2002GL016590.CrossRefGoogle Scholar
Whitcomb, J. H. & Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–86.CrossRefGoogle Scholar
Lay, T. & Helmberger, D. V. (1983) Body-wave amplitude and travel-time correlations across North America. Bull. Seism. Soc. Am., 73, 17–30.Google Scholar
Lehmann, I. (1936) Bur. Centr. Seism. Inst. A 14, 3–31.
Julian, B., Davies, D. & Sheppard, R. (1972) a seismic wave that traverses the IC as a shear wave. Nature, 235, 317–18.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Wen, L. & Helmberger, D. V. (1998) Seismic evidence for an inner core transition zone. Science, 279, 1701–3.CrossRefGoogle Scholar
Ishii, M. & Dziewonski, A. M. (2002) The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. PNAS, 99, 14026–30.CrossRefGoogle ScholarPubMed
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57, 227–86.CrossRefGoogle Scholar
Lay, T. & Helmberger, D. V. (1983) Body-wave amplitude and travel-time correlations across North America. Bull. Seism. Soc. Am., 73, 17–30.Google Scholar
Lehmann, I. (1936) Bur. Centr. Seism. Inst. A 14, 3–31.
Julian, B., Davies, D. & Sheppard, R. (1972) a seismic wave that traverses the IC as a shear wave. Nature, 235, 317–18.CrossRefGoogle Scholar
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge, Cambridge University Press.Google Scholar
Wen, L. & Helmberger, D. V. (1998) Seismic evidence for an inner core transition zone. Science, 279, 1701–3.CrossRefGoogle Scholar
Ishii, M. & Dziewonski, A. M. (2002) The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. PNAS, 99, 14026–30.CrossRefGoogle ScholarPubMed
Anderson, D. L. (2005) Scoring hotspots: the plume and plate paradigms, in Plates, Plumes, and Paradigms, pp. 31–54, ed. Foulger, G. R., Natland, J. H., Presnall, D. C., and Anderson, D. L., Boulder, C. O., Geological Society of America Special Paper 388.
Baig, A. M. and Dahlen, F. A. (2004) Travel time biases in random media and the S-wave discrepancy. Geophys. J. Inter., 158, 922–38.CrossRefGoogle Scholar
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3, 2001GC000168.CrossRefGoogle Scholar
Bijwaard, H., Spakman, W. and Engdahl, E. (1998) Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–78.CrossRefGoogle Scholar
Dziewonski, A. M. (2005) The robust aspects of global seismic tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, pp. 147–54.Google Scholar
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43, 163–200.CrossRefGoogle Scholar
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L., eds. (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388.
Grand, S. P. (1986) Shear velocity structure of the mantle beneath the North American plate, Ph.D. Thesis, California Institute of Technology.
Grand, S. P. (1994) Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 591–621.CrossRefGoogle Scholar
Grand, S. P. and Helmberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astron. Soc., 76, 399–438.CrossRefGoogle Scholar
Grand, S. P. and Helmberger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89, 11, 465–75.CrossRefGoogle Scholar
Grand, S. P., van der Hilst, R. and Widiyantoro, S. (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today, 7, 1–7.Google Scholar
Gu, Y. J., Dziewonski, A. and Ekström, G. (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys. Res. Lett., 28, 4655–8.CrossRefGoogle Scholar
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63, 97–109.CrossRefGoogle Scholar
Hager, B. H. and Clayton, R. W. (1986) Constraints on the structure of mantle convection using seismic observations, flow models and the geoid. In Mantle Convection, ed. Peltier, W. R.New York, Gordon and Breach Science Publishers, pp. 657–763.Google Scholar
Ishii, M. and Tromp, J. (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Physics of the Earth and Planetary Interiors, 146, 113–24.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1983) Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part I, Analysis of great circle phase velocities. J. Geophys. Res., 88, 10267–83.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1984a) Aspherical heterogeneity of the mantle from phase velocities of mantle waves. Nature, 307, 117–21.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1984b). Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part II, Analysis by single-station method. Geophys. J. Roy. Astron. Soc., 78, 573–617.CrossRefGoogle Scholar
Polet, J. and Anderson, D. L. (1995) Depth extent of cratons as inferred from tomographic studies. Geology, 23, 205–8.2.3.CO;2>CrossRefGoogle Scholar
Ray, T. W. and Anderson, D. L. (1994) Spherical disharmonics in the Earth sciences and the spatial solution; ridges; ridges, hotspots, slabs, geochemistry and tomography correlations. J. Geophys. Res., 99, 9605–14.CrossRefGoogle Scholar
Scrivner, C. and Anderson, D. L. (1992) The effect of post Pangea subduction on global mantle tomography and convection. Geophys. Res. Lett., 19, 1053–6.CrossRefGoogle Scholar
Shearer, P. M. and Earle, P. S. (2004) The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int., 158, 1103–17.CrossRefGoogle Scholar
Shapiro, N. M. and Ritzwoller, M. H. (2004) Thermodynamic constraints on seismic inversions. Geophys. J. Int. 157, 1175–88, doi:10.1111/j.1365–246X.2004.02254.x, 2004.CrossRefGoogle Scholar
Spakman, W. and Nolet, G. (1988) Imaging algorithms, accuracy and resolution in delay time tomography. In Mathematical Geophysics, eds. Reidel.
Spakman, W., Stein, S., Hilst, R. and Wortel., R. (1989). Resolution experiments for NW Pacific Subduction Zone Tomography. Geophys. Res. Lett., 16, 1097–100.CrossRefGoogle Scholar
Su, W.-J. and Dziewonski, A. M. (1991) Predominance of long-wavelength heterogeneity in the mantle. Nature, 352, 121–6.CrossRefGoogle Scholar
Su, W.-J. and Dziewonski, A. M. (1992) On the scale of mantle heterogeneity. Phys. Earth Planet. Inter. 74, 29–54.CrossRefGoogle Scholar
Tanimoto, T. (1991) Predominance of large-scale heterogeneity and the shift of velocity anomalies between the upper and lower mantle. J. Phys. Earth, 38, 493–509.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geopkys. Res. Lett., 11, 287–90.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1985) Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 sec. J. Geophys. Res., 90, 1842–58.CrossRefGoogle Scholar
Thoraval, C., Machetel, Ph. and Cazanave, A. (1995) Locally layered convection inferred from dynamic models of the Earth's mantle. Nature, 375, 777–80.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Vasco, D. W., Johnson, L. R. and Pulliam, J. (1995) Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-S_pS travel time residuals. J. Geophys. Res., 100, 24037–59.CrossRefGoogle Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an. active spreading center: The Gulf of California. Geophys. J. R. Astron. Soc., 76, 697–723.CrossRefGoogle Scholar
Wen, L. and Anderson, D. L. (1995) The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet. Sci. Lett., 133, 185–98.CrossRefGoogle Scholar
Wen, L. and Anderson, D. L. (1997) Slabs, hotspots, cratons and mantle convection revealed from residual seismic tomography in the upper mantle. Phys. Earth Planet. Inter., 99, 131–43.CrossRefGoogle Scholar
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Cizkova, H., Cadek, O., van den Berg, A. P. and Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26, 1501–4.CrossRefGoogle Scholar
Gu, Y., Dziewonski, A. M. and Agee, C. B. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157, 57–67.CrossRefGoogle Scholar
Ritsema, J. (2005) Global tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 11–18.Google Scholar
www.mantleplumes.org/TopPages/TheP3Book.html, Web Supplement
Vasco, D. W. and Johnson, L. R. (1998) Whole Earth structure estimated from seismic arrival times. J. Geophys. Res., 103, 2633–71.CrossRefGoogle Scholar
Anderson, D. L. (2005) Scoring hotspots: the plume and plate paradigms, in Plates, Plumes, and Paradigms, pp. 31–54, ed. Foulger, G. R., Natland, J. H., Presnall, D. C., and Anderson, D. L., Boulder, C. O., Geological Society of America Special Paper 388.
Baig, A. M. and Dahlen, F. A. (2004) Travel time biases in random media and the S-wave discrepancy. Geophys. J. Inter., 158, 922–38.CrossRefGoogle Scholar
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3, 2001GC000168.CrossRefGoogle Scholar
Bijwaard, H., Spakman, W. and Engdahl, E. (1998) Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–78.CrossRefGoogle Scholar
Dziewonski, A. M. (2005) The robust aspects of global seismic tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, pp. 147–54.Google Scholar
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43, 163–200.CrossRefGoogle Scholar
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L., eds. (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388.
Grand, S. P. (1986) Shear velocity structure of the mantle beneath the North American plate, Ph.D. Thesis, California Institute of Technology.
Grand, S. P. (1994) Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 591–621.CrossRefGoogle Scholar
Grand, S. P. and Helmberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astron. Soc., 76, 399–438.CrossRefGoogle Scholar
Grand, S. P. and Helmberger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89, 11, 465–75.CrossRefGoogle Scholar
Grand, S. P., van der Hilst, R. and Widiyantoro, S. (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today, 7, 1–7.Google Scholar
Gu, Y. J., Dziewonski, A. and Ekström, G. (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys. Res. Lett., 28, 4655–8.CrossRefGoogle Scholar
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63, 97–109.CrossRefGoogle Scholar
Hager, B. H. and Clayton, R. W. (1986) Constraints on the structure of mantle convection using seismic observations, flow models and the geoid. In Mantle Convection, ed. Peltier, W. R.New York, Gordon and Breach Science Publishers, pp. 657–763.Google Scholar
Ishii, M. and Tromp, J. (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Physics of the Earth and Planetary Interiors, 146, 113–24.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1983) Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part I, Analysis of great circle phase velocities. J. Geophys. Res., 88, 10267–83.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1984a) Aspherical heterogeneity of the mantle from phase velocities of mantle waves. Nature, 307, 117–21.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1984b). Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part II, Analysis by single-station method. Geophys. J. Roy. Astron. Soc., 78, 573–617.CrossRefGoogle Scholar
Polet, J. and Anderson, D. L. (1995) Depth extent of cratons as inferred from tomographic studies. Geology, 23, 205–8.2.3.CO;2>CrossRefGoogle Scholar
Ray, T. W. and Anderson, D. L. (1994) Spherical disharmonics in the Earth sciences and the spatial solution; ridges; ridges, hotspots, slabs, geochemistry and tomography correlations. J. Geophys. Res., 99, 9605–14.CrossRefGoogle Scholar
Scrivner, C. and Anderson, D. L. (1992) The effect of post Pangea subduction on global mantle tomography and convection. Geophys. Res. Lett., 19, 1053–6.CrossRefGoogle Scholar
Shearer, P. M. and Earle, P. S. (2004) The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int., 158, 1103–17.CrossRefGoogle Scholar
Shapiro, N. M. and Ritzwoller, M. H. (2004) Thermodynamic constraints on seismic inversions. Geophys. J. Int. 157, 1175–88, doi:10.1111/j.1365–246X.2004.02254.x, 2004.CrossRefGoogle Scholar
Spakman, W. and Nolet, G. (1988) Imaging algorithms, accuracy and resolution in delay time tomography. In Mathematical Geophysics, eds. Reidel.
Spakman, W., Stein, S., Hilst, R. and Wortel., R. (1989). Resolution experiments for NW Pacific Subduction Zone Tomography. Geophys. Res. Lett., 16, 1097–100.CrossRefGoogle Scholar
Su, W.-J. and Dziewonski, A. M. (1991) Predominance of long-wavelength heterogeneity in the mantle. Nature, 352, 121–6.CrossRefGoogle Scholar
Su, W.-J. and Dziewonski, A. M. (1992) On the scale of mantle heterogeneity. Phys. Earth Planet. Inter. 74, 29–54.CrossRefGoogle Scholar
Tanimoto, T. (1991) Predominance of large-scale heterogeneity and the shift of velocity anomalies between the upper and lower mantle. J. Phys. Earth, 38, 493–509.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geopkys. Res. Lett., 11, 287–90.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1985) Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 sec. J. Geophys. Res., 90, 1842–58.CrossRefGoogle Scholar
Thoraval, C., Machetel, Ph. and Cazanave, A. (1995) Locally layered convection inferred from dynamic models of the Earth's mantle. Nature, 375, 777–80.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Vasco, D. W., Johnson, L. R. and Pulliam, J. (1995) Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-S_pS travel time residuals. J. Geophys. Res., 100, 24037–59.CrossRefGoogle Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an. active spreading center: The Gulf of California. Geophys. J. R. Astron. Soc., 76, 697–723.CrossRefGoogle Scholar
Wen, L. and Anderson, D. L. (1995) The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet. Sci. Lett., 133, 185–98.CrossRefGoogle Scholar
Wen, L. and Anderson, D. L. (1997) Slabs, hotspots, cratons and mantle convection revealed from residual seismic tomography in the upper mantle. Phys. Earth Planet. Inter., 99, 131–43.CrossRefGoogle Scholar
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75, 5713–28.CrossRefGoogle Scholar
Cizkova, H., Cadek, O., van den Berg, A. P. and Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26, 1501–4.CrossRefGoogle Scholar
Gu, Y., Dziewonski, A. M. and Agee, C. B. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157, 57–67.CrossRefGoogle Scholar
Ritsema, J. (2005) Global tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO, Geological Society of America, Special Paper 388, pp. 11–18.Google Scholar
www.mantleplumes.org/TopPages/TheP3Book.html, Web Supplement
Vasco, D. W. and Johnson, L. R. (1998) Whole Earth structure estimated from seismic arrival times. J. Geophys. Res., 103, 2633–71.CrossRefGoogle Scholar
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Anderson, D. L. (1983) Kimberlites and the evolution of the mantle. In Kimberlites and Related Rocks, ed, J. Kornprobst, pp. 395–403.
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution, Earth Planet. Sci. Lett., 68, 361–78.CrossRefGoogle Scholar
Maaloe, S. and Steel, R. (1980) Mantle composition derived from the composition of lherzolites. Nature, 285, 321–2.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973–80.CrossRefGoogle ScholarPubMed
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis, Proc. Lunar Sci. Conf., 7, 1697–722.Google Scholar
Anderson, D. L. (1999) A theory of the Earth: Hutton and Humpty Dumpty and Holmes. In James Hutton – Present and Future, eds. Craig, G. and Hull, J.London, Geological Society of London, Special Publication 150, pp. 13–35.Google Scholar
Anderson, D. L. (1983) Kimberlites and the evolution of the mantle. In Kimberlites and Related Rocks, ed, J. Kornprobst, pp. 395–403.
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution, Earth Planet. Sci. Lett., 68, 361–78.CrossRefGoogle Scholar
Maaloe, S. and Steel, R. (1980) Mantle composition derived from the composition of lherzolites. Nature, 285, 321–2.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973–80.CrossRefGoogle ScholarPubMed
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis, Proc. Lunar Sci. Conf., 7, 1697–722.Google Scholar
Anderson, D. L. (1999) A theory of the Earth: Hutton and Humpty Dumpty and Holmes. In James Hutton – Present and Future, eds. Craig, G. and Hull, J.London, Geological Society of London, Special Publication 150, pp. 13–35.Google Scholar
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York, Pergamon.Google Scholar
Crawford, A. J., Falloon, T. J. and Green, D. H. (1989) Classification, petrogenesis and tectonic setting of boninites. In Boninites, ed. Crawford, A.London, Unwin Hyman, pp. 1–49.Google Scholar
Dawson, J. B. (1980) Kimberlites and their Xenoliths, Springer-Verlag, Berlin, 252 pp.CrossRefGoogle Scholar
Gill, J. B. (1976) Composition and age of Lau basin and ridge volcanic rocks; implications for evolution of an interarc basin and remnant arc. Geol. Soc. Am. Bull., 87, 1384–95.2.0.CO;2>CrossRefGoogle Scholar
Hawkins, J. W. (1977) Petrology and geochemical characteristics of marginal basin basalt. In Island Arcs, Deep Sea Trenches, and Back-Arc Basins, eds. Talwani, M. and Pittman, W. C. Washington, DC, American Geophysical Union, pp. 355–77.CrossRef
Parman, S. W., Grove, T. L. and Dann, J. C. (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys. Res. Lett., 28, 2513–16.CrossRefGoogle Scholar
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlite, Diatremes and Diamonds, eds. Boyd, F. R. and Meyer, H. Washington, DC, American Geophysical Union, pp. 300–12.CrossRef
Anderson, D. L. (1983a) Kimberlite and the evolution of the mantle. In Kimberlites and Related Rocks, ed. J. Kornprobst, pp. 395–403.
Anderson, D. L. (1983b) Chemical composition of the mantle. J. Geophys. Res., 88 suppl., B41–52.CrossRefGoogle Scholar
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution. Earth Planet. Sci. Lett., 68, 361–78.CrossRefGoogle Scholar
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science. Cambridge, MA, MIT Press, pp. 357–99.Google Scholar
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis. PLC, 7, 1697–722.Google Scholar
Taylor, S. (1982) Lunar and terrestrial crusts. Phys. Earth Planet. Inter., 29, 233.CrossRefGoogle Scholar
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York, Pergamon.Google Scholar
Crawford, A. J., Falloon, T. J. and Green, D. H. (1989) Classification, petrogenesis and tectonic setting of boninites. In Boninites, ed. Crawford, A.London, Unwin Hyman, pp. 1–49.Google Scholar
Dawson, J. B. (1980) Kimberlites and their Xenoliths, Springer-Verlag, Berlin, 252 pp.CrossRefGoogle Scholar
Gill, J. B. (1976) Composition and age of Lau basin and ridge volcanic rocks; implications for evolution of an interarc basin and remnant arc. Geol. Soc. Am. Bull., 87, 1384–95.2.0.CO;2>CrossRefGoogle Scholar
Hawkins, J. W. (1977) Petrology and geochemical characteristics of marginal basin basalt. In Island Arcs, Deep Sea Trenches, and Back-Arc Basins, eds. Talwani, M. and Pittman, W. C. Washington, DC, American Geophysical Union, pp. 355–77.CrossRef
Parman, S. W., Grove, T. L. and Dann, J. C. (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys. Res. Lett., 28, 2513–16.CrossRefGoogle Scholar
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlite, Diatremes and Diamonds, eds. Boyd, F. R. and Meyer, H. Washington, DC, American Geophysical Union, pp. 300–12.CrossRef
Anderson, D. L. (1983a) Kimberlite and the evolution of the mantle. In Kimberlites and Related Rocks, ed. J. Kornprobst, pp. 395–403.
Anderson, D. L. (1983b) Chemical composition of the mantle. J. Geophys. Res., 88 suppl., B41–52.CrossRefGoogle Scholar
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution. Earth Planet. Sci. Lett., 68, 361–78.CrossRefGoogle Scholar
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science. Cambridge, MA, MIT Press, pp. 357–99.Google Scholar
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis. PLC, 7, 1697–722.Google Scholar
Taylor, S. (1982) Lunar and terrestrial crusts. Phys. Earth Planet. Inter., 29, 233.CrossRefGoogle Scholar
Basu, A. R. and Tatsumoto, M. (1982) Nd isotopes in kimberlites and mantle evolution. Terra Cog., 2, 2–14.Google Scholar
Beus, A. A. (1976) Geochemistry of the Lithosphere, Moscow, MIR Publications.Google Scholar
Boyd, F. R.(1986) High- and low-temperature garnet peridotite xenoliths and their possible relation to the lithosphere–asthenosphere boundary beneath southern Africa. In Mantle Xenoliths, ed. Nixon, P. New York, John Wiley & Sons, pp. 403–12.
Boyd, F. R. and Mertzman, S. A. (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. In Magmatic Processes: Physicochemical Principles, ed. Mysen, B. O.University Park, Pennsylvaniay, The Geochemical Society, Special Publication 1, pp. 13–24.Google Scholar
Clarke, D. B. (1970) Tertiary basalts of Baffin Bay; possible primary magma from the mantle. Contrib. Mineral. Petrol., Special Publication 1, 25, 203–24.CrossRefGoogle Scholar
Echeverria, L. M. (1980) Tertiary komatiites of Gorgona Island. Carnegie Instn. Wash. Ybk., 79, 340–4.Google Scholar
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Frey, F. A. (1980) The origin of pyroxenites and garnet pyroxenites from Salt Crater, Oahu, Hawaii: trace element evidence. Am. J. Sci., 280-A, 427–49.Google Scholar
Green, D. H. and Ringwood., A. (1963) Mineral assemblages in a model mantle composition. J. Geophys. Res., 68, 937–45.CrossRefGoogle Scholar
Green, D. H., Hibberson, W. and Jaques, A. (1979) Petrogenesis of mid-ocean ridge basalts. In The Earth: Its Origin, Structure and Evolution, ed. McElhinny, M. W.New York, Academic Press, pp. 265–95.Google Scholar
Jahn, B.-M., Auvray, B., Blais, S. et al. (1980) Trace element geochemistry and petrogenesis of Finnish greenstone belts. J. Petrol., 21, 201–44.CrossRefGoogle Scholar
Maaloe, S. and Aoki, K. (1977) The major element composition of the upper mantle estimated from the composition of Iherzolites. Contrib. Mineral. Petrol., 63, 161–73.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw-Hill.Google Scholar
Smyth, J. R. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; II, Primary phase compositions and origin. In Kimberlites, ed. Kornprobst, J.Amsterdam, Elsevier, pp. 121–31.Google Scholar
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlites, Diatremes, and Diamonds, eds. Boyd, F. R. and Meyer, H. O.Washington, DC, American Geophysical Union, pp. 300–12.Google Scholar
Bowen, N. L. (1928) The Evolution of the Igneous Rocks.Princeton, NJ, Princeton University Press.Google Scholar
Carmichael, I. S. E., Turner, F. and Verhoogen, J. (1974) Igneous Petrology. New York, McGraw-Hill.Google Scholar
Chen, C. and Frey, F. (1983) Origin of Hawaiian theiite and alkali basalt. Nature, 302, 785.CrossRefGoogle Scholar
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19, 463–513.CrossRefGoogle Scholar
Green, D. H. (1971) Composition of basaltic magmas as indicators of conditions of origin; application to oceanic volcanism. Phil. Trans. R. Soc., A268, 707–25.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15, 103–90.CrossRefGoogle Scholar
Hiyagon, H. and Ozima, M. (1986) Partition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta, 50, 2045–57.CrossRefGoogle Scholar
Jaques, A. and Green, D. (1980) Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeitic basalts. Contrib. Mineral. Petrol., 73, 287–310.CrossRefGoogle Scholar
Menzies, M., Rogers, N., Zindle, A. and Hawkesworth, C. (1987) In Mantle Metasomatism, ed. Menzies, M. A.New York, Academic Press.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part III, Inversion. J. Geophys. Res., 91, 7261–307.CrossRefGoogle Scholar
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rock. Earth Sci. Rev., 4, 69–133.CrossRefGoogle Scholar
Rigden, S. S., Ahrens, T. J. and Stolper, E. M. (1984) Densities of liquid silicates at high pressures. Science, 226, 1071–4.CrossRefGoogle ScholarPubMed
Ringwood, A. E. ((1962) Mineralogical constitution of the deep mantle. J. Geophys. Res., 67, 4005–10.CrossRefGoogle Scholar
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science.Cambridge, MA, MIT Press, pp. 357–99.Google Scholar
Ringwood, A. E. (1979) Origin of the Earth and Moon.New York, Springer-Verlag.CrossRefGoogle Scholar
Smyth, J. R., McCorrnick, T. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; I, Two unusual corundum-bearing kyanite eclogites. In Kimberlites, ed. Kornprobst, J.Amsterdam,Elsevier, pp. 109–19.Google Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center; the Gulf of California. Geophys. J. Roy. Astron. Soc., 76, 697–723.CrossRefGoogle Scholar
Basu, A. R. and Tatsumoto, M. (1982) Nd isotopes in kimberlites and mantle evolution. Terra Cog., 2, 2–14.Google Scholar
Beus, A. A. (1976) Geochemistry of the Lithosphere, Moscow, MIR Publications.Google Scholar
Boyd, F. R.(1986) High- and low-temperature garnet peridotite xenoliths and their possible relation to the lithosphere–asthenosphere boundary beneath southern Africa. In Mantle Xenoliths, ed. Nixon, P. New York, John Wiley & Sons, pp. 403–12.
Boyd, F. R. and Mertzman, S. A. (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. In Magmatic Processes: Physicochemical Principles, ed. Mysen, B. O.University Park, Pennsylvaniay, The Geochemical Society, Special Publication 1, pp. 13–24.Google Scholar
Clarke, D. B. (1970) Tertiary basalts of Baffin Bay; possible primary magma from the mantle. Contrib. Mineral. Petrol., Special Publication 1, 25, 203–24.CrossRefGoogle Scholar
Echeverria, L. M. (1980) Tertiary komatiites of Gorgona Island. Carnegie Instn. Wash. Ybk., 79, 340–4.Google Scholar
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Frey, F. A. (1980) The origin of pyroxenites and garnet pyroxenites from Salt Crater, Oahu, Hawaii: trace element evidence. Am. J. Sci., 280-A, 427–49.Google Scholar
Green, D. H. and Ringwood., A. (1963) Mineral assemblages in a model mantle composition. J. Geophys. Res., 68, 937–45.CrossRefGoogle Scholar
Green, D. H., Hibberson, W. and Jaques, A. (1979) Petrogenesis of mid-ocean ridge basalts. In The Earth: Its Origin, Structure and Evolution, ed. McElhinny, M. W.New York, Academic Press, pp. 265–95.Google Scholar
Jahn, B.-M., Auvray, B., Blais, S. et al. (1980) Trace element geochemistry and petrogenesis of Finnish greenstone belts. J. Petrol., 21, 201–44.CrossRefGoogle Scholar
Maaloe, S. and Aoki, K. (1977) The major element composition of the upper mantle estimated from the composition of Iherzolites. Contrib. Mineral. Petrol., 63, 161–73.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw-Hill.Google Scholar
Smyth, J. R. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; II, Primary phase compositions and origin. In Kimberlites, ed. Kornprobst, J.Amsterdam, Elsevier, pp. 121–31.Google Scholar
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlites, Diatremes, and Diamonds, eds. Boyd, F. R. and Meyer, H. O.Washington, DC, American Geophysical Union, pp. 300–12.Google Scholar
Bowen, N. L. (1928) The Evolution of the Igneous Rocks.Princeton, NJ, Princeton University Press.Google Scholar
Carmichael, I. S. E., Turner, F. and Verhoogen, J. (1974) Igneous Petrology. New York, McGraw-Hill.Google Scholar
Chen, C. and Frey, F. (1983) Origin of Hawaiian theiite and alkali basalt. Nature, 302, 785.CrossRefGoogle Scholar
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19, 463–513.CrossRefGoogle Scholar
Green, D. H. (1971) Composition of basaltic magmas as indicators of conditions of origin; application to oceanic volcanism. Phil. Trans. R. Soc., A268, 707–25.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15, 103–90.CrossRefGoogle Scholar
Hiyagon, H. and Ozima, M. (1986) Partition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta, 50, 2045–57.CrossRefGoogle Scholar
Jaques, A. and Green, D. (1980) Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeitic basalts. Contrib. Mineral. Petrol., 73, 287–310.CrossRefGoogle Scholar
Menzies, M., Rogers, N., Zindle, A. and Hawkesworth, C. (1987) In Mantle Metasomatism, ed. Menzies, M. A.New York, Academic Press.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part III, Inversion. J. Geophys. Res., 91, 7261–307.CrossRefGoogle Scholar
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rock. Earth Sci. Rev., 4, 69–133.CrossRefGoogle Scholar
Rigden, S. S., Ahrens, T. J. and Stolper, E. M. (1984) Densities of liquid silicates at high pressures. Science, 226, 1071–4.CrossRefGoogle ScholarPubMed
Ringwood, A. E. ((1962) Mineralogical constitution of the deep mantle. J. Geophys. Res., 67, 4005–10.CrossRefGoogle Scholar
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science.Cambridge, MA, MIT Press, pp. 357–99.Google Scholar
Ringwood, A. E. (1979) Origin of the Earth and Moon.New York, Springer-Verlag.CrossRefGoogle Scholar
Smyth, J. R., McCorrnick, T. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; I, Two unusual corundum-bearing kyanite eclogites. In Kimberlites, ed. Kornprobst, J.Amsterdam,Elsevier, pp. 109–19.Google Scholar
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center; the Gulf of California. Geophys. J. Roy. Astron. Soc., 76, 697–723.CrossRefGoogle Scholar
Anderson, D. L. (1998a) The helium paradoxes. Proc. Nat. Acad. Sci., 95, 4822–7.CrossRefGoogle Scholar
Anderson, D. L. (1998b) A model to explain the various paradoxes associated with mantle noble gas geochemistry. Proc. Nat. Acad. Sci., 95, 9087–92.CrossRefGoogle Scholar
Anderson, D. L. (2000a) The statistics of helium isotopes along the global spreading ridge system and the central limit theorem. Geophys. Res. Lett., 27, 2401–4.CrossRefGoogle Scholar
Anderson, D. L. (2000b) The statistics and distribution of helium in the mantle. Int. Geology Rev., 42, 289–311.CrossRefGoogle Scholar
Javoy, M. and Pineau, F. (1991) The volatiles record of a “popping” rock from the mid-Atlantic ridge at 14 N: Chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett., 107, 598–611.CrossRefGoogle Scholar
Sarda, P. and Graham, D. (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett., 97, 268–89.CrossRefGoogle Scholar
Seta, A., Matsumoto, T. and Matsuda, J.-I. (2001) Concurrent evolution of 3He/4He ratio in the Earth's mantle reservoirs for the first 2 Ga. Earth Planet. Sci. Lett., 188, 211–19.CrossRefGoogle Scholar
Staudacher, T., Sarda, P., Richardson, S. H., Allegre, C. J., Sagna, I. and Dmitriev, L. V. (1989) Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14∘N: geodynamic consequences. Earth Planet. Sci. Lett., 96, 119–33.CrossRefGoogle Scholar
Meibom, A., Anderson, D. L., Sleep, N., Frei, R., Chamberlain, C., Hren, M. and Wooden, J. (2003) Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?Earth Planet. Sci. Lett., 208, 197–204.CrossRefGoogle Scholar
Moreira, M., and Sarda, P. (2000) Noble gas constraints on degassing processes. Earth Planet. Sci. Lett., 176, 375–86.CrossRefGoogle Scholar
Anderson, D. L. (1998a) The helium paradoxes. Proc. Nat. Acad. Sci., 95, 4822–7.CrossRefGoogle Scholar
Anderson, D. L. (1998b) A model to explain the various paradoxes associated with mantle noble gas geochemistry. Proc. Nat. Acad. Sci., 95, 9087–92.CrossRefGoogle Scholar
Anderson, D. L. (2000a) The statistics of helium isotopes along the global spreading ridge system and the central limit theorem. Geophys. Res. Lett., 27, 2401–4.CrossRefGoogle Scholar
Anderson, D. L. (2000b) The statistics and distribution of helium in the mantle. Int. Geology Rev., 42, 289–311.CrossRefGoogle Scholar
Javoy, M. and Pineau, F. (1991) The volatiles record of a “popping” rock from the mid-Atlantic ridge at 14 N: Chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett., 107, 598–611.CrossRefGoogle Scholar
Sarda, P. and Graham, D. (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett., 97, 268–89.CrossRefGoogle Scholar
Seta, A., Matsumoto, T. and Matsuda, J.-I. (2001) Concurrent evolution of 3He/4He ratio in the Earth's mantle reservoirs for the first 2 Ga. Earth Planet. Sci. Lett., 188, 211–19.CrossRefGoogle Scholar
Staudacher, T., Sarda, P., Richardson, S. H., Allegre, C. J., Sagna, I. and Dmitriev, L. V. (1989) Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14∘N: geodynamic consequences. Earth Planet. Sci. Lett., 96, 119–33.CrossRefGoogle Scholar
Meibom, A., Anderson, D. L., Sleep, N., Frei, R., Chamberlain, C., Hren, M. and Wooden, J. (2003) Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?Earth Planet. Sci. Lett., 208, 197–204.CrossRefGoogle Scholar
Moreira, M., and Sarda, P. (2000) Noble gas constraints on degassing processes. Earth Planet. Sci. Lett., 176, 375–86.CrossRefGoogle Scholar
Chase, C. G. (1981) Oceanic island Pb; two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 277–84.CrossRefGoogle Scholar
Dalrymple, G. B. (2001) The age of the Earth in the twentieth century – a problem (mostly) solved. In The Age of the Earth – from 4004 BC to AD 2002, eds. Lewis, C. L. E. and Knell, S. J.London, The Geological Society, Special Publication 190, pp. 205–21.Google Scholar
Eiler, J. M. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Stable Isotope Geochemistry, eds. Valley, J. W. and Cole, D. R.Rev. Mineral., 43, 319–64.CrossRefGoogle Scholar
Eiler, J. M., Farley, K. A., Valley, J. W., Hauri, E., Craig, H., Hart, S. R. and Stolper, E. M. (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta, 61, 2281–93.CrossRefGoogle Scholar
Eiler, J. M., Valley, J. and Stolper, E. (1996a) Oxygen isotope ratios in olivine from the Hawaiian Scientific Drilling Project. J. Geophys. Res., 101, 11807–13.CrossRefGoogle Scholar
Eiler, J. M., Farley, K., Valley, J., Hofmann, A. and Stolper, E. (1996b) Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet. Sci. Lett., 144, 453–68.CrossRefGoogle Scholar
Meibom, A., Sleep, N. H., Chamberlain, C. P., Coleman, R. G., Frei, R., Hren, M. T., and Wooden, J. L. (2002) Re–Os isotopic evidence for long-lived heterogeneity and euilibration processes in the Earth's upper mantle. Nature, 418, 705–8.CrossRefGoogle Scholar
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–7.CrossRefGoogle Scholar
Roy-Barman, M. and Allegre, C. J. (1994) 187Os/186Os ratios of midocean ridge basalts and abyssal peridotites. Geochim. Cosmochim. Acta, 58, 5043–54.CrossRefGoogle Scholar
Shirey, S. B. and Walker, R. J. (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann. Rev. Earth Planet. Sci., 26, 423–500.CrossRefGoogle Scholar
Smith, A. D. (2003) Critical evaluation of Re–Os and Pt–Os isotopic evidence on the origin of intraplate volcanism. J. Geodyn., 36, 469–84.CrossRefGoogle Scholar
Armstrong, R. L. (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A, 301, 443–72.CrossRefGoogle Scholar
Chase, C. G. (1981) Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 277–84.CrossRefGoogle Scholar
Clarke, W. B., Beg, M. and Craig, H. (1969) Excess 3He in sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6, 213–20.CrossRefGoogle Scholar
Craig, H. and Lupton, J. (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett., 31, 369–85.CrossRefGoogle Scholar
Gast, P. W. (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta, 32, 1057–86.CrossRefGoogle Scholar
Anderson, D. L. (1981) Hotspots, basalts, and the evolution of the mantle. Science, 213, 82–9.CrossRefGoogle ScholarPubMed
Garlick, G., MacGregor, I. and Vogel, D. (1971) Oxygen isotope ratios in eclogites from kimberlites. Science, 171, 1025–7.CrossRefGoogle Scholar
Gregory, R. T. and Taylor, H. P. Jr. (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman. J. Geophys. Res., 86, 2737–55.CrossRefGoogle Scholar
Dalrymple, G. B. (1991) The Age of the Earth. Stanford, CA, Stanford University Press.Google Scholar
Hofmeister, A. M. (1999). Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699–706.CrossRefGoogle ScholarPubMed
Ishii, M. and Tromp, J. (1999) Normal mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science, 285, 1231–6.CrossRefGoogle ScholarPubMed
Meibom, A. and Anderson, D. L. (2003) The Statistical Upper Mantle Assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Meibom, A., Sleep, N. H., Zahnle, K. and Anderson, D. L. (2005) Models for noble gases in mantle geochemistry: Some observations and alternatives. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L. Boulder, CO, Geological Society of America, Special Paper 388, pp. 347–63.CrossRef
Reisberg, L. and Zindler, A. (1986) Extreme isotopic variations in the upper mantle; evidence from Ronda. Earth and Planetary Science Letters, 81, 29–45.CrossRefGoogle Scholar
Chase, C. G. (1981) Oceanic island Pb; two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 277–84.CrossRefGoogle Scholar
Dalrymple, G. B. (2001) The age of the Earth in the twentieth century – a problem (mostly) solved. In The Age of the Earth – from 4004 BC to AD 2002, eds. Lewis, C. L. E. and Knell, S. J.London, The Geological Society, Special Publication 190, pp. 205–21.Google Scholar
Eiler, J. M. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Stable Isotope Geochemistry, eds. Valley, J. W. and Cole, D. R.Rev. Mineral., 43, 319–64.CrossRefGoogle Scholar
Eiler, J. M., Farley, K. A., Valley, J. W., Hauri, E., Craig, H., Hart, S. R. and Stolper, E. M. (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta, 61, 2281–93.CrossRefGoogle Scholar
Eiler, J. M., Valley, J. and Stolper, E. (1996a) Oxygen isotope ratios in olivine from the Hawaiian Scientific Drilling Project. J. Geophys. Res., 101, 11807–13.CrossRefGoogle Scholar
Eiler, J. M., Farley, K., Valley, J., Hofmann, A. and Stolper, E. (1996b) Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet. Sci. Lett., 144, 453–68.CrossRefGoogle Scholar
Meibom, A., Sleep, N. H., Chamberlain, C. P., Coleman, R. G., Frei, R., Hren, M. T., and Wooden, J. L. (2002) Re–Os isotopic evidence for long-lived heterogeneity and euilibration processes in the Earth's upper mantle. Nature, 418, 705–8.CrossRefGoogle Scholar
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10, 230–7.CrossRefGoogle Scholar
Roy-Barman, M. and Allegre, C. J. (1994) 187Os/186Os ratios of midocean ridge basalts and abyssal peridotites. Geochim. Cosmochim. Acta, 58, 5043–54.CrossRefGoogle Scholar
Shirey, S. B. and Walker, R. J. (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann. Rev. Earth Planet. Sci., 26, 423–500.CrossRefGoogle Scholar
Smith, A. D. (2003) Critical evaluation of Re–Os and Pt–Os isotopic evidence on the origin of intraplate volcanism. J. Geodyn., 36, 469–84.CrossRefGoogle Scholar
Armstrong, R. L. (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A, 301, 443–72.CrossRefGoogle Scholar
Chase, C. G. (1981) Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 277–84.CrossRefGoogle Scholar
Clarke, W. B., Beg, M. and Craig, H. (1969) Excess 3He in sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6, 213–20.CrossRefGoogle Scholar
Craig, H. and Lupton, J. (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett., 31, 369–85.CrossRefGoogle Scholar
Gast, P. W. (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta, 32, 1057–86.CrossRefGoogle Scholar
Anderson, D. L. (1981) Hotspots, basalts, and the evolution of the mantle. Science, 213, 82–9.CrossRefGoogle ScholarPubMed
Garlick, G., MacGregor, I. and Vogel, D. (1971) Oxygen isotope ratios in eclogites from kimberlites. Science, 171, 1025–7.CrossRefGoogle Scholar
Gregory, R. T. and Taylor, H. P. Jr. (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman. J. Geophys. Res., 86, 2737–55.CrossRefGoogle Scholar
Dalrymple, G. B. (1991) The Age of the Earth. Stanford, CA, Stanford University Press.Google Scholar
Hofmeister, A. M. (1999). Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699–706.CrossRefGoogle ScholarPubMed
Ishii, M. and Tromp, J. (1999) Normal mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science, 285, 1231–6.CrossRefGoogle ScholarPubMed
Meibom, A. and Anderson, D. L. (2003) The Statistical Upper Mantle Assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Meibom, A., Sleep, N. H., Zahnle, K. and Anderson, D. L. (2005) Models for noble gases in mantle geochemistry: Some observations and alternatives. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L. Boulder, CO, Geological Society of America, Special Paper 388, pp. 347–63.CrossRef
Reisberg, L. and Zindler, A. (1986) Extreme isotopic variations in the upper mantle; evidence from Ronda. Earth and Planetary Science Letters, 81, 29–45.CrossRefGoogle Scholar
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Ishii, M. and Tromp, J. (2004). Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive modes. Phys. Earth Planet. Inter., 146, 113–24.CrossRefGoogle Scholar
Karki, B. B., Stixrude, L. and Wentzcovitch, R. (2001) High-pressure elastic properties of major materials of Earth's mantle from first principles. Rev. Geophys., 39, 507–34.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1982) World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seis. Soc. Am., 72, 1185–94.Google Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1984) Anisotropy and shear-velocity heterogeneities in the upper mantle. Geophys. Res. Lett., 11, 109–12.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part 111, Inversion. J. Geophys. Res., 91, 7261–307.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94, 1895–912.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Ishii, M. and Tromp, J. (2004). Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive modes. Phys. Earth Planet. Inter., 146, 113–24.CrossRefGoogle Scholar
Karki, B. B., Stixrude, L. and Wentzcovitch, R. (2001) High-pressure elastic properties of major materials of Earth's mantle from first principles. Rev. Geophys., 39, 507–34.CrossRefGoogle Scholar
Nakanishi, I. and Anderson, D. L. (1982) World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seis. Soc. Am., 72, 1185–94.Google Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1984) Anisotropy and shear-velocity heterogeneities in the upper mantle. Geophys. Res. Lett., 11, 109–12.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part 111, Inversion. J. Geophys. Res., 91, 7261–307.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–6.CrossRefGoogle ScholarPubMed
Anderson, D. L. and Given, J. (1982) Absorption band Q model for the Earth. J. Geophys. Res., 87, 3893–904.CrossRefGoogle Scholar
Kanamori, H. and Anderson, D. L. (1977) Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys. Planet. Sci., 15, 105–12.CrossRefGoogle Scholar
Minster, J. B. and Anderson, D. L. (1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. Roy. Soc. London, 299, 319–56.CrossRefGoogle Scholar
Spetzler, H. and Anderson, D. L. (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. J. Geophys. Res., 73, 6051–60.CrossRefGoogle Scholar
Anderson, D. L., Ben-Menahem, A. and Archambeau, C. B. (1965) Attenuation of seismic energy in the upper mantle. J. Geophys. Res., 70, 1441–8.CrossRefGoogle Scholar
O'Connell, R. J. and Budiansky, B. (1978) Measures of dissipation in viscoelastic media. Geophys. Res. Lett., 5, 5–8.CrossRefGoogle Scholar
Anderson, D. L. and Given, J. (1982) Absorption band Q model for the Earth. J. Geophys. Res., 87, 3893–904.CrossRefGoogle Scholar
Kanamori, H. and Anderson, D. L. (1977) Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys. Planet. Sci., 15, 105–12.CrossRefGoogle Scholar
Minster, J. B. and Anderson, D. L. (1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. Roy. Soc. London, 299, 319–56.CrossRefGoogle Scholar
Spetzler, H. and Anderson, D. L. (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. J. Geophys. Res., 73, 6051–60.CrossRefGoogle Scholar
Anderson, D. L., Ben-Menahem, A. and Archambeau, C. B. (1965) Attenuation of seismic energy in the upper mantle. J. Geophys. Res., 70, 1441–8.CrossRefGoogle Scholar
O'Connell, R. J. and Budiansky, B. (1978) Measures of dissipation in viscoelastic media. Geophys. Res. Lett., 5, 5–8.CrossRefGoogle Scholar
Anderson, D. L. and Dziewonski, A. M. (1982) Upper mantle anisotropy; evidence from free oscillations. Geophys. J. Royal Astr. Soc., 69, 383–404.CrossRefGoogle Scholar
Anderson, D. L., Minster, J. B. and Cole, D. (1974) The effect of oriented cracks on seismic velocities. J. Geophys. Res., 79, 4011–15.CrossRefGoogle Scholar
Ando, M. Y., Ishikawa and Yamazaki, F. (1983) Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 10, 5850–64.CrossRefGoogle Scholar
Babuska, V. (1981) Anisotropy of Vp and Vs in rock-forming minerals, J. Geophys., 50, 1–6.Google Scholar
Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67, 4427–40.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, S. (1982) Pyroxene orientation within the upper mantle. Bull. Geol. Soc. Am., 93, 279–88.2.0.CO;2>CrossRefGoogle Scholar
Christensen, N. I. and Salisbury, M. (1979) Seismic anisotropy in the upper mantle: Evidence from the Bay of Islands ophiolite complex. J. Geophys. Res., 84, B9, 4601–10.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Fukao, Y. (1984) Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 309, 695–8.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84, 1031–48CrossRefGoogle Scholar
Montagner, J.-P. (2002) Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett., 202, 263–74.CrossRefGoogle Scholar
Montagner, J.-P. and Nataf, H.-C. (1986) A simple method for inverting the azimuthal anisotropy of surface waves, J. Geophys. Res., 91, 511–20.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, Part III. Inversion, J. Geophys. Res., 91, 72161–3070.CrossRefGoogle Scholar
Nicolas, A. and Christensen, N. I. (1987) Formation of anisotropy in upper mantle peridotites. In Composition, Structure and Dynamics of the Lithosphere/Asthenosphere System, eds. Fuchs, K. and Froidevaux, C.Washington, DC, American Geophysical Union, pp. 111–23.Google Scholar
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35, 227–63.CrossRefGoogle Scholar
Sawamoto, H., Weidner, D. J., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the modified spinel phase of magnesium orthosilicate, Science, 224, 749–51.CrossRefGoogle ScholarPubMed
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geophys. Res. Lett., 11, 287–90.CrossRefGoogle Scholar
Christensen, N. I. and Crosson, R. (1968) Seismic anisotropy in the upper mantle. Tectonophysics, 6, 93–107.CrossRefGoogle Scholar
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102, 308–16.CrossRefGoogle Scholar
Morris, E. M., Raitt, R. and Shor, G. (1969) Velocity anisotropy and delay times of the mantle near Hawaii. J. Geophys. Res., 74, 4300–16.CrossRefGoogle Scholar
Raitt, R. W., Shor, G., Francis, T. and Morris, G. (1969) Anisotropy of the Pacific upper mantle. J. Geophys. Res., 74, 3095–109.CrossRefGoogle Scholar
Anderson, D. L. and Dziewonski, A. M. (1982) Upper mantle anisotropy; evidence from free oscillations. Geophys. J. Royal Astr. Soc., 69, 383–404.CrossRefGoogle Scholar
Anderson, D. L., Minster, J. B. and Cole, D. (1974) The effect of oriented cracks on seismic velocities. J. Geophys. Res., 79, 4011–15.CrossRefGoogle Scholar
Ando, M. Y., Ishikawa and Yamazaki, F. (1983) Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 10, 5850–64.CrossRefGoogle Scholar
Babuska, V. (1981) Anisotropy of Vp and Vs in rock-forming minerals, J. Geophys., 50, 1–6.Google Scholar
Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67, 4427–40.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, S. (1982) Pyroxene orientation within the upper mantle. Bull. Geol. Soc. Am., 93, 279–88.2.0.CO;2>CrossRefGoogle Scholar
Christensen, N. I. and Salisbury, M. (1979) Seismic anisotropy in the upper mantle: Evidence from the Bay of Islands ophiolite complex. J. Geophys. Res., 84, B9, 4601–10.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
Fukao, Y. (1984) Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 309, 695–8.CrossRefGoogle Scholar
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84, 1031–48CrossRefGoogle Scholar
Montagner, J.-P. (2002) Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett., 202, 263–74.CrossRefGoogle Scholar
Montagner, J.-P. and Nataf, H.-C. (1986) A simple method for inverting the azimuthal anisotropy of surface waves, J. Geophys. Res., 91, 511–20.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, Part III. Inversion, J. Geophys. Res., 91, 72161–3070.CrossRefGoogle Scholar
Nicolas, A. and Christensen, N. I. (1987) Formation of anisotropy in upper mantle peridotites. In Composition, Structure and Dynamics of the Lithosphere/Asthenosphere System, eds. Fuchs, K. and Froidevaux, C.Washington, DC, American Geophysical Union, pp. 111–23.Google Scholar
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35, 227–63.CrossRefGoogle Scholar
Sawamoto, H., Weidner, D. J., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the modified spinel phase of magnesium orthosilicate, Science, 224, 749–51.CrossRefGoogle ScholarPubMed
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geophys. Res. Lett., 11, 287–90.CrossRefGoogle Scholar
Christensen, N. I. and Crosson, R. (1968) Seismic anisotropy in the upper mantle. Tectonophysics, 6, 93–107.CrossRefGoogle Scholar
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102, 308–16.CrossRefGoogle Scholar
Morris, E. M., Raitt, R. and Shor, G. (1969) Velocity anisotropy and delay times of the mantle near Hawaii. J. Geophys. Res., 74, 4300–16.CrossRefGoogle Scholar
Raitt, R. W., Shor, G., Francis, T. and Morris, G. (1969) Anisotropy of the Pacific upper mantle. J. Geophys. Res., 74, 3095–109.CrossRefGoogle Scholar
Freer, R. (1981) Diffusion in silicate minerals: a data digest and guide to the literature. Contrib. Mineral. Petrol., 76, 440–54.CrossRefGoogle Scholar
Horai, K. (1971) Thermal conductivity of rock-forming minerals. J. Geophys. Res., 76, 1278–308.CrossRefGoogle Scholar
Horai, K. and Simmons, G. (1970) An empirical relationship between thermal conductivity and Debye temperature for silicates. J. Geophys. Res., 75, 678–82.CrossRefGoogle Scholar
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102, 308–16.CrossRefGoogle Scholar
Keyes, R. (1963) Continuum models of the effect of pressure on activated processes. In Solid under Pressure, eds. Paul, W. and Warschauer, D. M.New York, McGraw-Hill, pp. 71–99.
Kobayzshigy, A. (1974). Anisotropy of thermal diffusivity in olivine, pyroxene and dunite. J. Phys. Earth, 22, 359–73.Google Scholar
Minster, J. B. and Anderson, D. L. ((1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. R. Soc. London A, 299, 319–56.CrossRefGoogle Scholar
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Int., 33, 12–25.CrossRefGoogle Scholar
Schatz, J. F. and Simmons, G. (1972) Thermal conductivities of Earth materials at high temperatures. J. Geophys. Res., 77, 6966–83.CrossRefGoogle Scholar
Freer, R. (1981) Diffusion in silicate minerals: a data digest and guide to the literature. Contrib. Mineral. Petrol., 76, 440–54.CrossRefGoogle Scholar
Horai, K. (1971) Thermal conductivity of rock-forming minerals. J. Geophys. Res., 76, 1278–308.CrossRefGoogle Scholar
Horai, K. and Simmons, G. (1970) An empirical relationship between thermal conductivity and Debye temperature for silicates. J. Geophys. Res., 75, 678–82.CrossRefGoogle Scholar
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102, 308–16.CrossRefGoogle Scholar
Keyes, R. (1963) Continuum models of the effect of pressure on activated processes. In Solid under Pressure, eds. Paul, W. and Warschauer, D. M.New York, McGraw-Hill, pp. 71–99.
Kobayzshigy, A. (1974). Anisotropy of thermal diffusivity in olivine, pyroxene and dunite. J. Phys. Earth, 22, 359–73.Google Scholar
Minster, J. B. and Anderson, D. L. ((1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. R. Soc. London A, 299, 319–56.CrossRefGoogle Scholar
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Int., 33, 12–25.CrossRefGoogle Scholar
Schatz, J. F. and Simmons, G. (1972) Thermal conductivities of Earth materials at high temperatures. J. Geophys. Res., 77, 6966–83.CrossRefGoogle Scholar
Presnall, D. C. (1995) Phase diagrams of Earth-forming minerals. In Handbook of Physical Constants, Mineral Physics and Crystallography, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, AGU Reference Shelf 2.
Akaogi, M. and Akimoto, S. (1977) Pyroxene-garnet solid solution equilibrium. Phys. Earth Planet. Inter. 15, 90–106.CrossRefGoogle Scholar
Akimoto, S. (1972) The system MgO-FeO-SiO2 at high pressure and temperature. Tectonophysics, 13, 161–87.CrossRefGoogle Scholar
Ito, E. and Yamada, H. (1982) Stability relations of silicate spinels, ilmenite and perovskites. In High-Pressure Research in Geophysics, eds. Akimoto, S. and Manghnam, M.Dordrecht, Reidel, pp. 405–19.Google Scholar
Kato, T. and Kumazawa, M. (1985) Garnet phase of MgSiO, filling the pyroxene-ilmenite gap at very high temperature. Nature, 316, 803–5.CrossRefGoogle Scholar
Kuskov, O. L. and Galimzyanov, R. (1986) Thermodynamics of stable mineral assemblages of the mantle transition zone. In Chemistry and Physics of the Terrestrial Planets, ed. Saxena, S. K.New York, Springer-Verlag, pp. 310–61.Google Scholar
Litasov, K., Ohtani, E., Suzuki, A., Kawazoe, T. and Funakoshi, K. (2004) Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophys. Res. Lett., 31 (24) doi:10.1029/2004GL021306.CrossRefGoogle Scholar
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Inter., 33, 12–25.CrossRefGoogle Scholar
Ono, S., Ohishi, Y., Isshiki, M. and Watanuki, T. (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J. Geophys. Res., 110, B02208, doi: 10.1029/2004JB003196.CrossRefGoogle Scholar
Presnall, D. C. (1995) Phase diagrams of Earth-forming minerals. In Handbook of Physical Constants, Mineral Physics and Crystallography, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, AGU Reference Shelf 2.
Akaogi, M. and Akimoto, S. (1977) Pyroxene-garnet solid solution equilibrium. Phys. Earth Planet. Inter. 15, 90–106.CrossRefGoogle Scholar
Akimoto, S. (1972) The system MgO-FeO-SiO2 at high pressure and temperature. Tectonophysics, 13, 161–87.CrossRefGoogle Scholar
Ito, E. and Yamada, H. (1982) Stability relations of silicate spinels, ilmenite and perovskites. In High-Pressure Research in Geophysics, eds. Akimoto, S. and Manghnam, M.Dordrecht, Reidel, pp. 405–19.Google Scholar
Kato, T. and Kumazawa, M. (1985) Garnet phase of MgSiO, filling the pyroxene-ilmenite gap at very high temperature. Nature, 316, 803–5.CrossRefGoogle Scholar
Kuskov, O. L. and Galimzyanov, R. (1986) Thermodynamics of stable mineral assemblages of the mantle transition zone. In Chemistry and Physics of the Terrestrial Planets, ed. Saxena, S. K.New York, Springer-Verlag, pp. 310–61.Google Scholar
Litasov, K., Ohtani, E., Suzuki, A., Kawazoe, T. and Funakoshi, K. (2004) Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophys. Res. Lett., 31 (24) doi:10.1029/2004GL021306.CrossRefGoogle Scholar
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Inter., 33, 12–25.CrossRefGoogle Scholar
Ono, S., Ohishi, Y., Isshiki, M. and Watanuki, T. (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J. Geophys. Res., 110, B02208, doi: 10.1029/2004JB003196.CrossRefGoogle Scholar
Anderson, D. L. (1967) Phase changes in the upper mantle. Science, 157, 1165–73.CrossRefGoogle ScholarPubMed
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/
Donnelly, K. E., Goldsteina, S. L., Langmuir, C. H. and Spiegelman, M. (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett., 226, 347–66.CrossRefGoogle Scholar
Escrig, S, Capmas, F, Dupré, B. and Allègre, C. J. (2004) Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 431, 59–63.CrossRefGoogle ScholarPubMed
Escrig, S., Doucelance, R., Moreira, M. and Allegre, C. J. (2005) Os isotope systematics in Fogo Island: Evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem. Geol., 219, 93–113.CrossRefGoogle Scholar
Gao, S., Rudnick, R. L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Ling, W.-L., Ayers, J. and Wang, X.-C. (2004) Recycling lower continental crust in the North China craton. Nature, 432, 892–7.CrossRefGoogle ScholarPubMed
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Salters, V. J. M. and Stracke, A. (2004) Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5, Q05004, doi:10.1029/2003GC000597.#CrossRefGoogle Scholar
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. and Nikogosian, I. K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590–7. doi:10.1038/nature03411.CrossRefGoogle ScholarPubMed
Workman, R. K. & Hart, S. R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231, 53–63.CrossRefGoogle Scholar
Birch, F. (1958) Differentiation of the mantle. Bull. Geol. Soc. Am., 69, 483–6.CrossRefGoogle Scholar
Gerlach, D. C. (1990) Eruption rates and isotopic systematics of ocean islands: further evidence for small-scale heterogeneity in the upper mantle. Tectonophysics, 172, 273–89.CrossRefGoogle Scholar
Ito, K. and Kennedy, G. C. (1971) An experimental study of the basalt-garnet granulite–ecologite transition. In The Structure and Physical Properties of the Earth's Crust, ed. Heacock, J. G. Washington, DC, American Geophysical Union. Geophys. Monogr., 14, 303–14.
Kay, R. W. and Kay, S. (1993) Delamination and delamination magmatism. Tectonophysics, 219, 177–89.CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S. (2003) The composition of the continental crust. In The Crust, Vol. 3, Treatise on Geochemistry, vol. eds. Holland, H. D. and Turekian, K. K.Oxford, Elsevier, pp. 1–64.Google Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophysics, 33, 267–309.CrossRefGoogle Scholar
Anderson, D. L. (1967) Phase changes in the upper mantle. Science, 157, 1165–73.CrossRefGoogle ScholarPubMed
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/
Donnelly, K. E., Goldsteina, S. L., Langmuir, C. H. and Spiegelman, M. (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett., 226, 347–66.CrossRefGoogle Scholar
Escrig, S, Capmas, F, Dupré, B. and Allègre, C. J. (2004) Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 431, 59–63.CrossRefGoogle ScholarPubMed
Escrig, S., Doucelance, R., Moreira, M. and Allegre, C. J. (2005) Os isotope systematics in Fogo Island: Evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem. Geol., 219, 93–113.CrossRefGoogle Scholar
Gao, S., Rudnick, R. L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Ling, W.-L., Ayers, J. and Wang, X.-C. (2004) Recycling lower continental crust in the North China craton. Nature, 432, 892–7.CrossRefGoogle ScholarPubMed
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Salters, V. J. M. and Stracke, A. (2004) Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5, Q05004, doi:10.1029/2003GC000597.#CrossRefGoogle Scholar
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. and Nikogosian, I. K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590–7. doi:10.1038/nature03411.CrossRefGoogle ScholarPubMed
Workman, R. K. & Hart, S. R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231, 53–63.CrossRefGoogle Scholar
Birch, F. (1958) Differentiation of the mantle. Bull. Geol. Soc. Am., 69, 483–6.CrossRefGoogle Scholar
Gerlach, D. C. (1990) Eruption rates and isotopic systematics of ocean islands: further evidence for small-scale heterogeneity in the upper mantle. Tectonophysics, 172, 273–89.CrossRefGoogle Scholar
Ito, K. and Kennedy, G. C. (1971) An experimental study of the basalt-garnet granulite–ecologite transition. In The Structure and Physical Properties of the Earth's Crust, ed. Heacock, J. G. Washington, DC, American Geophysical Union. Geophys. Monogr., 14, 303–14.
Kay, R. W. and Kay, S. (1993) Delamination and delamination magmatism. Tectonophysics, 219, 177–89.CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S. (2003) The composition of the continental crust. In The Crust, Vol. 3, Treatise on Geochemistry, vol. eds. Holland, H. D. and Turekian, K. K.Oxford, Elsevier, pp. 1–64.Google Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophysics, 33, 267–309.CrossRefGoogle Scholar
Hofmann, A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–29.CrossRefGoogle Scholar
Hofmann A. W. (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Treatise on Geochemistry, Vol. 2, eds. Carlson, R. W., Holland, H. D. and Turekian, K. K. pp. 61–101.
Hofmann, A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–29.CrossRefGoogle Scholar
Hofmann A. W. (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Treatise on Geochemistry, Vol. 2, eds. Carlson, R. W., Holland, H. D. and Turekian, K. K. pp. 61–101.
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean ridge basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: a study of quartz tholeiites to olivine melilitities from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19, 463–513.CrossRefGoogle Scholar
O'Hara, M. J., Saunders, A. and Mercy, E. (1975) Garnet peridotite, primary ultrabasic magma and eclogite; interpretation of upper mantle processes in kimberlite, Phys. Chem. Earth., 9, 571–604.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw Hill.Google Scholar
Anderson, D. L. (1985) Hotspot magmas can form by fractionation and contamination of MORB. Nature, 318, 145–9.CrossRefGoogle Scholar
DePaolo, D. J. and Wasserburg, G. (1979) Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources. Proc. Natl. Acad. Sci., 76, 3056.CrossRefGoogle ScholarPubMed
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci. Rev., 4, 69–133.CrossRefGoogle Scholar
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean ridge basalts. Nature, 278, 514–18.CrossRefGoogle Scholar
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: a study of quartz tholeiites to olivine melilitities from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19, 463–513.CrossRefGoogle Scholar
O'Hara, M. J., Saunders, A. and Mercy, E. (1975) Garnet peridotite, primary ultrabasic magma and eclogite; interpretation of upper mantle processes in kimberlite, Phys. Chem. Earth., 9, 571–604.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw Hill.Google Scholar
Anderson, D. L. (1985) Hotspot magmas can form by fractionation and contamination of MORB. Nature, 318, 145–9.CrossRefGoogle Scholar
DePaolo, D. J. and Wasserburg, G. (1979) Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources. Proc. Natl. Acad. Sci., 76, 3056.CrossRefGoogle ScholarPubMed
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci. Rev., 4, 69–133.CrossRefGoogle Scholar
McNutt, M. K. and Judge, A. (1990) The superswell and mantle dynamics beneath the South Pacific. Science, 248, 969–75.CrossRefGoogle ScholarPubMed
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophysics, 33, 267–309.CrossRefGoogle Scholar
Stein, C. and Stein, S. (1994) Comparison of plate and asthenospheric flow models for the evolution of oceanic lithosphere, Geophys. Res. Lett., 21, 709–12.CrossRefGoogle Scholar
Vitorello, I. and Pollack, H. N. (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J. Geophys. Res., 85, 983–95.CrossRefGoogle Scholar
DeLaughter, J., Stein, S. and Stein, C. (1999) Extraction of a lithospheric cooling signal from oceanwide geoid data. Earth Planet. Sci. Lett., 174, 173–81.CrossRefGoogle Scholar
Gubbins, D. (1977) Energetics of the Earth's core. J. Geophys., 43, 453.Google Scholar
Pollack, H. N., Hurter, S. and Johnson, J. (1993) Heat flow from the earth's interior: analysis of the global data set. Rev. Geophysics, 31, 267–80.CrossRefGoogle Scholar
Rudnick, R. L. and Nyblade, A. A. (1999) The composition and thickness of Archean continental roots: constraints from xenolith thermobarometry. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, eds. Fei, Y.-W., Bertka, C. M. and Mysen, B. O. Geochemical Society Special Publication 6, pp. 3–12.
Sclater, J., Parsons, B. and Jaupart, C. (1981) Oceans and continents: similarities and differences in the mechanism of heat transport. J Geophys. Res., 86, 11535–52.CrossRefGoogle Scholar
Stacey, F. D. & Stacey, C. H. B. (1999) Gravitational energy of core evolution: implications for thermal history and geodynamo power. Phys. Earth Planet. Inter., 110, 83–93.CrossRefGoogle Scholar
Stein, C. A. and Stein, S. A. (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99, 3081–95.CrossRefGoogle Scholar
Stein, C. A. and Stein, S. A. (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–8.CrossRefGoogle Scholar
Van Schmus, W. R. (1995) Natural radioactivity of the crust and mantle. In Global Earth Physics, A Handbook of Physical Constants, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, pp. 283–91.CrossRef
Herzen, R., Davis, E. E., Fisher, A., Stein, C. A. and Pollack, H. N. (2005) Comments on Earth's heat fluxes. Tectonophysics, doi:10.1016/j.tecto.2005.08.003.Google Scholar
Pollack, H., Hurter, S. and Johnson, J. (1993) Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 31, 267–80.CrossRefGoogle Scholar
McNutt, M. K. and Judge, A. (1990) The superswell and mantle dynamics beneath the South Pacific. Science, 248, 969–75.CrossRefGoogle ScholarPubMed
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophysics, 33, 267–309.CrossRefGoogle Scholar
Stein, C. and Stein, S. (1994) Comparison of plate and asthenospheric flow models for the evolution of oceanic lithosphere, Geophys. Res. Lett., 21, 709–12.CrossRefGoogle Scholar
Vitorello, I. and Pollack, H. N. (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J. Geophys. Res., 85, 983–95.CrossRefGoogle Scholar
DeLaughter, J., Stein, S. and Stein, C. (1999) Extraction of a lithospheric cooling signal from oceanwide geoid data. Earth Planet. Sci. Lett., 174, 173–81.CrossRefGoogle Scholar
Gubbins, D. (1977) Energetics of the Earth's core. J. Geophys., 43, 453.Google Scholar
Pollack, H. N., Hurter, S. and Johnson, J. (1993) Heat flow from the earth's interior: analysis of the global data set. Rev. Geophysics, 31, 267–80.CrossRefGoogle Scholar
Rudnick, R. L. and Nyblade, A. A. (1999) The composition and thickness of Archean continental roots: constraints from xenolith thermobarometry. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, eds. Fei, Y.-W., Bertka, C. M. and Mysen, B. O. Geochemical Society Special Publication 6, pp. 3–12.
Sclater, J., Parsons, B. and Jaupart, C. (1981) Oceans and continents: similarities and differences in the mechanism of heat transport. J Geophys. Res., 86, 11535–52.CrossRefGoogle Scholar
Stacey, F. D. & Stacey, C. H. B. (1999) Gravitational energy of core evolution: implications for thermal history and geodynamo power. Phys. Earth Planet. Inter., 110, 83–93.CrossRefGoogle Scholar
Stein, C. A. and Stein, S. A. (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99, 3081–95.CrossRefGoogle Scholar
Stein, C. A. and Stein, S. A. (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–8.CrossRefGoogle Scholar
Van Schmus, W. R. (1995) Natural radioactivity of the crust and mantle. In Global Earth Physics, A Handbook of Physical Constants, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, pp. 283–91.CrossRef
Herzen, R., Davis, E. E., Fisher, A., Stein, C. A. and Pollack, H. N. (2005) Comments on Earth's heat fluxes. Tectonophysics, doi:10.1016/j.tecto.2005.08.003.Google Scholar
Pollack, H., Hurter, S. and Johnson, J. (1993) Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 31, 267–80.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References and notes
  • Don L. Anderson, California Institute of Technology
  • Book: New Theory of the Earth
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139167291.033
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References and notes
  • Don L. Anderson, California Institute of Technology
  • Book: New Theory of the Earth
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139167291.033
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References and notes
  • Don L. Anderson, California Institute of Technology
  • Book: New Theory of the Earth
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139167291.033
Available formats
×