Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T11:52:50.581Z Has data issue: false hasContentIssue false

20 - Mathematical Three-Body Scattering

Published online by Cambridge University Press:  05 June 2012

Douglas Heggie
Affiliation:
University of Edinburgh
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

While the last chapter roughed out a picture of what happens in an interaction between a binary star and a third body, there are three very different ways in which the picture can be sharpened. One is to develop approximate analytical results on the outcome of an encounter, and that is successful in various limiting cases, e.g. very distant encounters, very hard binaries, and so on. This is the approach of Chapter 21. To cover the middle ground between these extremes, there is no substitute for computational studies (Chapter 22). In the present chapter, however, we push the analytical methods in the opposite direction, and examine minute corners of parameter space which may be of no conceivable value in applications. The merit of this approach is that rigorous statements become possible, at least in expert hands, and the resulting ideas help to develop our intuition of what can happen in more realistic situations. Our approach is quite informal, and places emphasis on the ideas behind the proofs, without any technical details.

Fractals and chaos

We first turn to resonances, those long-lived but temporarily bound triple systems that often arise in scattering events. Our first aim here is to discuss one situation which makes it particularly clear why the outcome of a resonance depends sensitively on the initial data. We can then argue, at least physically, that the system forgets details of the initial conditions of its formation, and that the breakup is determined (in a statistical sense) only by the quantities which are preserved in the evolution, i.e. energy and angular momentum.

Type
Chapter
Information
The Gravitational Million–Body Problem
A Multidisciplinary Approach to Star Cluster Dynamics
, pp. 189 - 198
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×