Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T10:54:05.140Z Has data issue: false hasContentIssue false

PART I - INTRODUCTIONS

Published online by Cambridge University Press:  05 June 2012

Douglas Heggie
Affiliation:
University of Edinburgh
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

Newton's equations for the gravitational N-body problem are the starting point for all four chapters in Part I, but each time seen in a different light. To the astrophysicist (Chapter 1) they represent an accurate model for the dynamical aspects of systems of stars, which is the subject known as stellar dynamics. We distinguish this from celestial mechanics, and sketch the distinction between the two main flavours of stellar dynamics. This book is largely devoted to what is often (but maybe misleadingly) called collisional stellar dynamics. This does not refer to actual physical collisions, though these can happen, but to the dominant role of gravitational encounters of pairs of stars. In dense stellar systems their role is a major one. In collisionless stellar dynamics, by contrast, motions are dominated by the average gravitational force exerted by great numbers of stars.

We lay particular emphasis on the stellar systems known as globular star clusters. We survey the gross features of their dynamics, and also the reasons for their importance within the wider field of astrophysics. Though understanding the million-body problem is not among the most urgent problems in astrophysics, through globular clusters it has close connections with several areas which are. Another practical topic we deal with here is that of units, which may be elementary, but is one area where the numbers can easily get out of hand.

Chapter 2 looks at the N-body equations from the point of view of theoretical physicists.

Type
Chapter
Information
The Gravitational Million–Body Problem
A Multidisciplinary Approach to Star Cluster Dynamics
, pp. 1 - 2
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • INTRODUCTIONS
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • INTRODUCTIONS
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • INTRODUCTIONS
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.002
Available formats
×