Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T00:21:20.272Z Has data issue: false hasContentIssue false

PART VII - PRIMORDIAL BINARIES: N = 4

Published online by Cambridge University Press:  05 June 2012

Douglas Heggie
Affiliation:
University of Edinburgh
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

The following three chapters complicate the million-body problem for astronomically motivated reasons. Chapter 24 explains these by tracing the history of the discovery of binary stars in star clusters, in numbers which imply that they are primordial, i.e. they were born along with the cluster itself. They are associated with several of the remarkable phenomena which help to explain why globular star clusters are so important to astrophysicists, such as the sources of X-rays within them. We contrast their behaviour in star clusters with the much milder behaviour of binaries in less extreme environments.

In systems with many binaries, four-body encounters between two binaries are common. Chapter 25 discusses in detail one of the commoner outcomes: hierarchical triple systems. They are one class of three-body problem where the motion is both non-trivial and amenable to detailed calculation. Since these systems are stable and very long-lived, but may have tiny orbital time scales, such results are important for efficient computer simulation of N-body systems with many primordial binaries.

Chapter 26 discusses the effect of binary–binary encounters on the rest of the system. In important ways they can dominate the effect of the three-body encounters discussed in earlier chapters, though not forever, as binaries are also destroyed in these encounters. The outcomes of the interactions are also more complicated than in three-body encounters, and we show how to classify these.

Type
Chapter
Information
The Gravitational Million–Body Problem
A Multidisciplinary Approach to Star Cluster Dynamics
, pp. 229
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • PRIMORDIAL BINARIES: N = 4
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.031
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • PRIMORDIAL BINARIES: N = 4
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.031
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • PRIMORDIAL BINARIES: N = 4
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.031
Available formats
×