Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T07:41:17.608Z Has data issue: false hasContentIssue false

PART IV - MICROPHYSICS: N = 2

Published online by Cambridge University Press:  05 June 2012

Douglas Heggie
Affiliation:
University of Edinburgh
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

The following three chapters are devoted to two-body interactions in the context of the million-body problem. Chapter 13 shows that these cause neighbouring orbits to diverge with an approximately exponential time dependence. Beginning with the three-body problem, we go on to investigate the N-dependence of the e-folding time scale for the divergence. Were late the phenomenon to the exponential divergence of geodesics in an alternative formulation of the problem.

Chapter 14 is quintessential collisional stellar dynamics. Here we consider the cumulative effect of many two-body encounters on the motion of a single star: the theory of two-body relaxation. We develop a number of standard formulae for the first and second moments of the cumulative change in its velocity. The first moment corresponds to the phenomenon of dynamical friction. We then go on to incorporate this theory into an evolution equation (the Fokker–Planck equation) for the distribution function. We approximate this equation in a form appropriate to the situation in stellar dynamics, when the time scale of relaxation is much longer than that of orbital motions. This also incorporates the evolution which may result from slow changes in the potential.

Chapter 15 takes a close look at the two-body problem itself. We show, in particular, that the two-body collision singularity is a removable singularity. This introduces a number of topics which might seem surprising in the context of the million-body problem: the Lenz vector, quaternions, the Hopf map, the simple harmonic oscillator, and even a transformation into four dimensions.

Type
Chapter
Information
The Gravitational Million–Body Problem
A Multidisciplinary Approach to Star Cluster Dynamics
, pp. 119
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • MICROPHYSICS: N = 2
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • MICROPHYSICS: N = 2
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • MICROPHYSICS: N = 2
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.017
Available formats
×