Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T07:10:37.018Z Has data issue: false hasContentIssue false

Chapter 24 - Epidemiological and clinical aspects of lung cancer

Published online by Cambridge University Press:  05 June 2014

Philip Hasleton
Affiliation:
University of Manchester
Douglas B. Flieder
Affiliation:
Fox Chase Cancer Center, Philadelphia
Get access

Summary

Introduction

Lung cancer is the leading cause of cancer death in the world; over 1.3 million worldwide deaths were recorded in 2008. These statistics are astounding given the rarity of lung cancer during the first half of the twentieth century, when lung cancer had a lower incidence than liver, prostate, colon, stomach, uterine, breast and even ovarian cancer. Only a sound understanding of the complex epidemiological, etiological, and molecular-pathological aspects of lung carcinoma will enable clinical and scientific progress against this deadly disease, regardless of technological advances. This chapter aims to elucidate the epidemiological, etiological and clinical aspects of lung cancer.

Incidence and mortality

Lung cancer is the most common and deadliest cancer in the world. Estimated numbers of lung cancer cases worldwide increased 51% since 1985. The incidence information is collected routinely by cancer registries and expressed as an absolute number of cases per year or as a rate per 100 000 persons per year. The latter provides an approximation of the average risk of developing a cancer. Excluding non-melanoma skin cancer, approximately 7.5 million people died of cancer worldwide in 2008. Of these deaths 1.37 million were lung cancer deaths (20%). The worldwide incidence of lung carcinoma in 2008 reached 1 608 823 cases, representing 12.7% of newly diagnosed cancer cases.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Parkin, DM, Bray, F, Ferlay, J, Pisani, P.Global cancer statistics, 2002. CA Cancer J Clin 2005;55(2):74–108.CrossRefGoogle ScholarPubMed
.
Globocan 2002 Cancer incidence, mortality and prevalence world wide [database online] accessed December 31 2008. ARC CancerBase No. 5, version 2.0. Lyon: IARC, 2004; 2009.
Lin, HH, Murray, M, Cohen, T, Colijn, C, Ezzati, M.Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. Lancet 2008;372(9648):1473–83.CrossRefGoogle ScholarPubMed
Yang, GH, Zhong, NS.Effect on health from smoking and use of solid fuel in China. Lancet 2008;372(9648):1445–6.CrossRefGoogle Scholar
Chuang, SC, Scelo, G, Tonita, JM, et al. Risk of second primary cancer among patients with head and neck cancers: a pooled analysis of 13 cancer registries. Int J Cancer 2008;123(10):2390–6.CrossRefGoogle ScholarPubMed
.
Jemal, A, Siegel, R, Ward, E, et al. Cancer statistics, 2009. CA Cancer J Clin 2009;59(4):225–49.CrossRefGoogle ScholarPubMed
Bray, F, Weiderpass, E.Lung cancer mortality trends in 36 European countries: secular trends and birth cohort patterns by sex and region 1970–2007. Int J Cancer 2009;126(6):1454–66.Google Scholar
La Vecchia, C, Bosetti, C, Lucchini, F, et al. Cancer mortality in Europe, 2000–2004, and an overview of trends since 1975. Ann Oncol 2010;21:1323–60.CrossRefGoogle ScholarPubMed
Berrino, F, De Angelis, R, Sant, M, et al. Survival for eight major cancers and all cancers combined for European adults diagnosed in 1995–99: results of the EUROCARE-4 study. Lancet Oncol 2007;8(9):773–83.CrossRefGoogle ScholarPubMed
Karim-Kos, HE, de Vries, E, Soerjomataram, I, et al. Recent trends of cancer in Europe: a combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. Eur J Cancer 2008;44(10):1345–89.CrossRefGoogle ScholarPubMed
Freedman, ND, Leitzmann, MF, Hollenbeck, AR, Schatzkin, A, Abnet, CC.Cigarette smoking and subsequent risk of lung cancer in men and women: analysis of a prospective cohort study. Lancet Oncol 2008;9(7):649–56.CrossRefGoogle ScholarPubMed
Thun, MJ, Hannan, LM, Adams-Campbell, LL, et al. Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med 2008;5(9):e185.CrossRefGoogle ScholarPubMed
Bain, C, Feskanich, D, Speizer, FE, et al. Lung cancer rates in men and women with comparable histories of smoking. J Natl Cancer Inst 2004;96(11):826–34.CrossRefGoogle ScholarPubMed
Risch, HA, Howe, GR, Jain, M, et al. Are female smokers at higher risk for lung cancer than male smokers? A case-control analysis by histologic type. Am J Epidemiol 1993;138(5):281–93.CrossRefGoogle ScholarPubMed
Zang, EA, Wynder, EL.Differences in lung cancer risk between men and women: examination of the evidence. J Natl Cancer Inst 1996;88(3–4):183–92.CrossRefGoogle Scholar
Khuder, SA.Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 2001;31(2–3):139–48.CrossRefGoogle ScholarPubMed
Henschke, CI, Yip, R, Miettinen, OS.Women's susceptibility to tobacco carcinogens and survival after diagnosis of lung cancer. JAMA 2006;296(2):180–4.Google ScholarPubMed
Schoenberg, JB, Wilcox, HB, Mason, TJ, Bill, J, Stemhagen, A.Variation in smoking-related lung cancer risk among New Jersey women. Am J Epidemiol 1989;130(4):688–95.CrossRefGoogle ScholarPubMed
Haiman, CA, Stram, DO, Wilkens, LR, et al. Ethnic and racial differences in the smoking-related risk of lung cancer. N Engl J Med 2006;354(4):333–42.CrossRefGoogle ScholarPubMed
Giovino, GA.Epidemiology of tobacco use in the United States. Oncogene 2002;21(48):7326–40.CrossRefGoogle ScholarPubMed
Jemal, A, Siegel, R, Ward, E, et al. Cancer statistics, 2008. CA Cancer J Clin 2008;58(2):71–96.CrossRefGoogle ScholarPubMed
Dutch Central Office for Statistics. 2009. .
Pisani, P, Parkin, DM, Bray, F, Ferlay, J.Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 1999;83(1):18–29.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Tomlinson, R.Smoking death toll shifts to Third World. BMJ 1997;315(7108):565.Google ScholarPubMed
Levi, F, Bosetti, C, Fernandez, E, et al. Trends in lung cancer among young European women: the rising epidemic in France and Spain. Int J Cancer 2007;121(2):462–5.CrossRefGoogle ScholarPubMed
Tan, YK, Wee, TC, Koh, WP, et al. Survival among Chinese women with lung cancer in Singapore: a comparison by stage, histology and smoking status. Lung Cancer 2003;40(3):237–46.CrossRefGoogle ScholarPubMed
Hinds, MW, Stemmermann, GN, Yang, HY, et al. Differences in lung cancer risk from smoking among Japanese, Chinese and Hawaiian women in Hawaii. Int J Cancer 1981;27(3):297–302.CrossRefGoogle ScholarPubMed
Ministry of Health, Labour and Welfare. The Study Circle for Health and Nutrition Information. The National Health and Nutrition Survey in Japan, 2004. Tokyo: Daiichi Shuppan, 2004. p. 2010.Google Scholar
Wakelee, HA, Chang, ET, Gomez, SL, et al. Lung cancer incidence in never smokers. J Clin Oncol 2007;25(5):472–8.CrossRefGoogle ScholarPubMed
Lam, WK, White, NW, Chan-Yeung, MM.Lung cancer epidemiology and risk factors in Asia and Africa. Int J Tuberc Lung Dis 2004;8(9):1045–57.Google ScholarPubMed
Neville, HL, Hogan, AR, Zhuge, Y, et al. Incidence and outcomes of malignant pediatric lung neoplasms. J Surg Res 2009;156(2):224–30.CrossRefGoogle ScholarPubMed
Kurishima, K, Satoh, H, Ishikawa, H, et al. Lung cancer in the octogenarian. Gerontology 2001;47(3):158–60.CrossRefGoogle ScholarPubMed
Kuo, CW, Chen, YM, Chao, JY, Tsai, CM, Perng, RP.Non-small cell lung cancer in very young and very old patients. Chest 2000;117(2):354–7.CrossRefGoogle Scholar
Port, JL, Kent, M, Korst, RJ, et al. Surgical resection for lung cancer in the octogenarian. Chest 2004;126(3):733–8.CrossRefGoogle ScholarPubMed
.
Skarin, AT, Herbst, RS, Leong, TL, Bailey, A, Sugarbaker, D.Lung cancer in patients under age 40. Lung Cancer 2001;32(3):255–64.CrossRefGoogle ScholarPubMed
Whooley, BP, Urschel, JD, Antkowiak, JG, Takita, H.Bronchogenic carcinoma in patients age 30 and younger. Ann Thorac Cardiovasc Surg 2000;6(2):86–8.Google ScholarPubMed
Tian, DL, Liu, HX, Zhang, L, et al. Surgery for young patients with lung cancer. Lung Cancer 2003;42(2):215–20.CrossRefGoogle ScholarPubMed
Subramanian, J, Morgensztern, D, Goodgame, B, et al. Distinctive characteristics of non-small cell lung cancer (NSCLC) in the young: a surveillance, epidemiology, and end results (SEER) analysis. J Thorac Oncol 2010;5(1):23–8.CrossRefGoogle Scholar
Toyoda, Y, Nakayama, T, Ioka, A, Tsukuma, H.Trends in lung cancer incidence by histological type in Osaka, Japan. Jpn J Clin Oncol 2008;38(8):534–9.CrossRefGoogle ScholarPubMed
Kurahashi, N, Inoue, M, Liu, Y, et al. Passive smoking and lung cancer in Japanese non-smoking women: a prospective study. Int J Cancer 2008;122(3):653–7.CrossRefGoogle ScholarPubMed
Mauri, D, Pentheroudakis, G, Bafaloukos, D, et al. Non-small cell lung cancer in the young: a retrospective analysis of diagnosis, management and outcome data. Anticancer Res 2006;26(4B):3175–81.Google Scholar
Sekine, I, Nishiwaki, Y, Yokose, T, et al. Young lung cancer patients in Japan: different characteristics between the sexes. Ann Thorac Surg 1999;67(5):1451–5.CrossRefGoogle ScholarPubMed
Rocha, MP, Fraire, AE, Guntupalli, KK, Greenberg, SD.Lung cancer in the young. Cancer Detect Prev 1994;18(5):349–55.Google Scholar
Epstein, DM, Aronchick, JM.Lung cancer in childhood. Med Pediatr Oncol 1989;17(6):510–3.CrossRefGoogle ScholarPubMed
La Salle, AJ, Andrassy, RJ, Stanford, W.Bronchogenic squamous cell carcinoma in childhood; a case report. J Pediatr Surg 1977;12(4):519–21.CrossRefGoogle ScholarPubMed
Niitu, Y, Kubota, H, Hasegawa, S, Horikawa, M, Komatsu, S.Lung cancer (squamous cell carcinoma) in adolescence. Am J Dis Child 1974;127(1):108–11.Google ScholarPubMed
Fontenelle, LJ.Primary adenocarcinoma of lung in a child: review of the literature. Am Surg 1976;42(4):296–9.Google Scholar
Hartman, GE, Shochat, SJ.Primary pulmonary neoplasms of childhood: a review. Ann Thorac Surg 1983;36(1):108–19.CrossRefGoogle ScholarPubMed
Boffetta, P, Tredaniel, J, Greco, A.Risk of childhood cancer and adult lung cancer after childhood exposure to passive smoke: a meta-analysis. Environ Health Perspect 2000;108(1):73–82.CrossRefGoogle ScholarPubMed
IARC. Tobacco smoking. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Lyon: IARC, 1986.Google Scholar
Hirayama, T.Life-style and cancer: from epidemiological evidence to public behavior change to mortality reduction of target cancers. J Natl Cancer Inst Monogr 1992;12:65–74.Google Scholar
Wynder, EL, Fujita, Y, Harris, RE, Hirayama, T, Hiyama, T.Comparative epidemiology of cancer between the United States and Japan. A second look. Cancer 1991;67(3):746–63.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Wynder, EL, Hirayama, T.Comparative epidemiology of cancers of the United States and Japan. Prev Med 1977;6(4):567–94.CrossRefGoogle ScholarPubMed
Takahashi, I, Matsuzaka, M, Umeda, T, et al. Differences in the influence of tobacco smoking on lung cancer between Japan and the USA: possible explanations for the ‘smoking paradox’ in Japan. Public Health 2008;122(9):891–6.CrossRefGoogle ScholarPubMed
Stellman, SD, Takezaki, T, Wang, L, et al. Smoking and lung cancer risk in American and Japanese men: an international case-control study. Cancer Epidemiol Biomarkers Prev 2001;10(11):1193–9.Google Scholar
Schneiderman, M, Davis, DL, Wagener, DK.Smokers: black and white. Science 1990;249(4966):228–9.CrossRefGoogle ScholarPubMed
Schwartz, AG, Swanson, GM.Lung carcinoma in African Americans and whites. A population-based study in metropolitan Detroit, Michigan. Cancer 1997;79(1):45–52.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Wynder, EL, Hoffmann, D.Smoking and lung cancer: scientific challenges and opportunities. Cancer Res 1994;54(20):5284–95.Google ScholarPubMed
Brawley, OW, Freeman, HP.Race and outcomes: is this the end of the beginning for minority health research?J Natl Cancer Inst 1999;91(22):1908–9.CrossRefGoogle ScholarPubMed
Stellman, SD, Chen, Y, Muscat, JE, et al. Lung cancer risk in white and black Americans. Ann Epidemiol 2003;13(4):294–302.CrossRefGoogle ScholarPubMed
Stellman, SD, Resnicow, K.Tobacco smoking, cancer and social class. IARC Sci Publ 1997;138:229–50.Google Scholar
Muscat, JE, Stellman, SD, Richie, JPJ, Wynder, EL.Lung cancer risk and workplace exposures in black men and women. Environ Res 1998;76(2):78–84.CrossRefGoogle ScholarPubMed
Swanson, GM, Lin, CS, Burns, PB.Diversity in the association between occupation and lung cancer among black and white men. Cancer Epidemiol Biomarkers Prev 1993;2(4):313–20.Google ScholarPubMed
Wu, X, Shi, H, Jiang, H, et al. Associations between cytochrome P4502E1 genotype, mutagen sensitivity, cigarette smoking and susceptibility to lung cancer. Carcinogenesis 1997;18(5):967–73.CrossRefGoogle ScholarPubMed
Ishibe, N, Wiencke, JK, Zuo, ZF, et al. Susceptibility to lung cancer in light smokers associated with CYP1A1 polymorphisms in Mexican- and African-Americans. Cancer Epidemiol Biomarkers Prev 1997;6(12):1075–80.Google ScholarPubMed
London, SJ, Daly, AK, Leathart, JB, et al. Genetic polymorphism of CYP2D6 and lung cancer risk in African-Americans and Caucasians in Los Angeles County. Carcinogenesis 1997;18(6):1203–14.CrossRefGoogle ScholarPubMed
London, SJ, Daly, AK, Cooper, J, et al. Lung cancer risk in relation to the CYP2E1 Rsa I genetic polymorphism among African-Americans and Caucasians in Los Angeles County. Pharmacogenetics 1996;6(2):151–8.CrossRefGoogle ScholarPubMed
London, SJ, Daly, AK, Leathart, JB, Navidi, WC, Idle, JR.Lung cancer risk in relation to the CYP2C9*1/CYP2C9*2 genetic polymorphism among African-Americans and Caucasians in Los Angeles County, California. Pharmacogenetics 1996;6(6):527–33.CrossRefGoogle ScholarPubMed
London, SJ, Daly, AK, Fairbrother, KS, et al. Lung cancer risk in African-Americans in relation to a race-specific CYP1A1 polymorphism. Cancer Res 1995;55(24):6035–7.Google ScholarPubMed
Taioli, E, Ford, J, Trachman, J, Li, Y, Demopoulos, R, Garte, S.Lung cancer risk and CYP1A1 genotype in African Americans. Carcinogenesis 1998;19(5):813–7.CrossRefGoogle ScholarPubMed
Taioli, E, Crofts, F, Trachman, J, et al. A specific African-American CYP1A1 polymorphism is associated with adenocarcinoma of the lung. Cancer Res 1995;55(3):472–3.Google ScholarPubMed
Kelsey, KT, Wiencke, JK, Spitz, MR.A race-specific genetic polymorphism in the CYP1A1 gene is not associated with lung cancer in African Americans. Carcinogenesis 1994;15(6):1121–4.CrossRefGoogle Scholar
Wrensch, MR, Miike, R, Sison, JD, et al. CYP1A1 variants and smoking-related lung cancer in San Francisco Bay area Latinos and African Americans. Int J Cancer 2005;113(1):141–7.CrossRefGoogle Scholar
Derby, KS, Cuthrell, K, Caberto, C, et al. Nicotine metabolism in three ethnic/racial groups with different risks of lung cancer. Cancer Epidemiol Biomarkers Prev 2008;17(12):3526–35.CrossRefGoogle ScholarPubMed
Chang, JS, Wrensch, MR, Hansen, HM, et al. Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer 2008;123(9):2095–104.CrossRefGoogle ScholarPubMed
Tse, LA, Mang, OW-K, Yu, IT-S, et al. Cigarette smoking and changing trends of lung cancer incidence by histological subtype among Chinese male population. Lung Cancer 2009;66(1):22–7.CrossRefGoogle ScholarPubMed
Ringer, G, Smith, JM, Engel, AM, Hendy, MP, Lang, J.Influence of sex on lung cancer histology, stage, and survival in a midwestern United States tumor registry. Clin Lung Cancer 2005;7(3):180–2.CrossRefGoogle Scholar
Devesa, SS, Bray, F, Vizcaino, AP, Parkin, DM.International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int J Cancer 2005;117(2):294–9.CrossRefGoogle ScholarPubMed
Bennett, VA, Davies, EA, Jack, RH, Mak, V, Moller, H.Histological subtype of lung cancer in relation to socio-economic deprivation in South East England. BMC Cancer 2008;8:139.CrossRefGoogle ScholarPubMed
Devesa, SS, Shaw, GL, Blot, WJ.Changing patterns of lung cancer incidence by histological type. Cancer Epidemiol Biomarkers Prev 1991;1(1):29–34.Google ScholarPubMed
Travis, WD, Lubin, J, Ries, L, Devesa, S.United States lung carcinoma incidence trends: declining for most histologic types among males, increasing among females. Cancer 1996;77(12):2464–70.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Janssen-Heijnen, ML, Nab, HW, van Reek, J, et al. Striking changes in smoking behaviour and lung cancer incidence by histological type in south-east Netherlands, 1960–1991. Eur J Cancer 1995;31A(6):949–52.CrossRefGoogle ScholarPubMed
Harkness, EF, Brewster, DH, Kerr, KM, Fergusson, RJ, MacFarlane, GJ.Changing trends in incidence of lung cancer by histologic type in Scotland. Int J Cancer 2002;102(2):179–83.CrossRefGoogle ScholarPubMed
Sobue, T, Ajiki, W, Tsukuma, H, et al. Trends of lung cancer incidence by histologic type: a population-based study in Osaka, Japan. Jpn J Cancer Res 1999;90(1):6–15.CrossRefGoogle ScholarPubMed
Polednak, AP.Lung cancer incidence trends by histologic type in areas of California vs. other areas in the Surveillance, Epidemiology and End Results Program. Cancer Epidemiol 2009;33(5):319–24.CrossRefGoogle ScholarPubMed
Gonlugur, U, Gonlugur, TE, Kaptanoglu, M, Nadir, A, Cinar, Z.The changing epidemiological trends for carcinoma of the lung in Turkey. Saudi Med J 2008;29(5):749–53.Google ScholarPubMed
Levi, F, Franceschi, S, La Vecchia, C, Randimbison, L, Te, VC.Lung carcinoma trends by histologic type in Vaud and Neuchatel, Switzerland, 1974–1994. Cancer 1997;79(5):906–14.3.0.CO;2-9>CrossRefGoogle Scholar
Hatcher, J, Dover, DC.Trends in histopathology of lung cancer in Alberta. Can J Public Health 2003;94(4):292–6.Google ScholarPubMed
Sobue, T, Tsukuma, H, Oshima, A, et al. Lung cancer incidence rates by histologic type in high- and low-risk areas; a population-based study in Osaka, Okinawa, and Saku Nagano, Japan. J Epidemiol 1999;9(3):134–42.CrossRefGoogle Scholar
Wynder, EL, Muscat, JE.The changing epidemiology of smoking and lung cancer histology. Environ Health Perspect 1995;103 Suppl 8:143–8.CrossRefGoogle ScholarPubMed
Singh, N, Aggarwal, A, Gupta, D, Behera, D, Jindal, S.Unchanging clinico-epidemiological profile of lung cancer in North India over three decades. Cancer Epidemiol 2010;34:101–4.CrossRefGoogle ScholarPubMed
Lubin, JH, Blot, WJ.Assessment of lung cancer risk factors by histologic category. J Natl Cancer Inst 1984;73(2):383–9.CrossRefGoogle ScholarPubMed
Jedrychowski, W, Becher, H, Wahrendorf, J, Basa-Cierpialek, Z, Gomola, K.Effect of tobacco smoking on various histological types of lung cancer. J Cancer Res Clin Oncol 1992;118(4):276–82.CrossRefGoogle ScholarPubMed
A Report of the Surgeon General: How Tobacco Smoke Causes Disease. The Biology and Behavioral Basis for Smoking-Attributable Disease. Rockville, MD: US Department of Health and Human Services Public Health Service Office of the Surgeon General, 2010.
Yngveson, A, Williams, C, Hjerpe, A, et al. p53 Mutations in lung cancer associated with residential radon exposure. Cancer Epidemiol Biomarkers Prev 1999;8(5):433–8.Google ScholarPubMed
Jha, P.Avoidable global cancer deaths and total deaths from smoking. Nat Rev Cancer 2009;9(9):655–64.CrossRefGoogle ScholarPubMed
Vineis, P, Alavanja, M, Buffler, P, et al. Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst 2004;96(2):99–106.CrossRefGoogle ScholarPubMed
Doll, R, Peto, R, Boreham, J, Sutherland, I.Mortality in relation to smoking: 50 years' observations on male British doctors. BMJ 2004;328(7455):1519.CrossRefGoogle ScholarPubMed
Cigarette smoking among adults and trends in smoking cessation – United States, 2008. MMWR Morb Mortal Wkly Rep 2009;58(44):1227–32.
Hemminki, K, Chen, B.Parental lung cancer as predictor of cancer risks in offspring: clues about multiple routes of harmful influence?Int J Cancer 2006;118(3):744–8.CrossRefGoogle ScholarPubMed
Clegg, LX, Reichman, ME, Miller, BA, et al. Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. Cancer Causes Control 2009;20(4):417–35.CrossRefGoogle ScholarPubMed
Tobacco. In Stewart, BW, Kleihues, P, eds. World Cancer Report. International Agency for Research on Cancer. IARC, 2003. pp. 22–8.Google Scholar
Rustemeier, K, Stabbert, R, Haussmann, HJ, Roemer, E, Carmines, EL.Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol 2002;40(1):93–104.CrossRefGoogle ScholarPubMed
Benowitz, NL, Lessov-Schlaggar, CN, Swan, GE, Jacob, P III.Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 2006;79(5):480–8.CrossRefGoogle ScholarPubMed
Dempsey, D, Tutka, P, Jacob, P III, et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther 2004;76(1):64–72.CrossRefGoogle ScholarPubMed
Stabile, LP, Davis, ALG, Gubish, CT, et al. Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res 2002;62(7):2141–50.Google Scholar
Stabile, LP, Lyker, JS, Gubish, CT, et al. Combined targeting of the estrogen receptor and the epidermal growth factor receptor in non-small cell lung cancer shows enhanced antiproliferative effects. Cancer Res 2005;65(4):1459–70.CrossRefGoogle ScholarPubMed
Hershberger, PA, Stabile, LP, Kanterewicz, B, et al. Estrogen receptor beta (ERbeta) subtype-specific ligands increase transcription, p44/p42 mitogen activated protein kinase (MAPK) activation and growth in human non-small cell lung cancer cells. J Steroid Biochem Mol Biol 2009;116(1–2):102–9.CrossRefGoogle ScholarPubMed
Mollerup, S, Berge, G, Baera, R, et al. Sex differences in risk of lung cancer: Expression of genes in the PAH bioactivation pathway in relation to smoking and bulky DNA adducts. Int J Cancer 2006;119(4):741–4.CrossRefGoogle ScholarPubMed
Ben-Zaken, CS, Pare, PD, Man, SF, Sin, DD.The growing burden of chronic obstructive pulmonary disease and lung cancer in women: examining sex differences in cigarette smoke metabolism. Am J Respir Crit Care Med 2007;176(2):113–20.CrossRefGoogle Scholar
Kure, EH, Ryberg, D, Hewer, A, et al. p53 mutations in lung tumours: relationship to gender and lung DNA adduct levels. Carcinogenesis 1996;17(10):2201–5.CrossRefGoogle ScholarPubMed
Wei, Q, Cheng, L, Amos, CI, et al. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. J Natl Cancer Inst 2000;92(21):1764–72.Google ScholarPubMed
Shriver, SP, Bourdeau, HA, Gubish, CT, et al. Sex-specific expression of gastrin-releasing peptide receptor: relationship to smoking history and risk of lung cancer. J Natl Cancer Inst 2000;92(1):24–33.CrossRefGoogle ScholarPubMed
Denissenko, MF, Pao, A, Tang, M, Pfeifer, GP.Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 1996;274(5286):430–2.CrossRefGoogle ScholarPubMed
Hainaut, P, Pfeifer, GP.Patterns of p53 G – >T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis 2001;22(3):367–74.CrossRefGoogle Scholar
Shimmyo, T, Okada, A, Hashimoto, T, et al. Etiologic value of p53 mutation spectra and differences with histology in lung cancers. Cancer Sci 2008;99(2):287–95.CrossRefGoogle ScholarPubMed
David, SS, O'Shea, VL, Kundu, S.Base-excision repair of oxidative DNA damage. Nature 2007;447(7147):941–50.CrossRefGoogle ScholarPubMed
Sills, RC, Hong, HL, Greenwell, A, et al. Increased frequency of K-ras mutations in lung neoplasms from female B6C3F1 mice exposed to ozone for 24 or 30months. Carcinogenesis 1995;16(7):1623–8.CrossRefGoogle ScholarPubMed
Belinsky, SA, Devereux, TR, Maronpot, RR, Stoner, GD, Anderson, MW.Relationship between the formation of promutagenic adducts and the activation of the K-ras protooncogene in lung tumors from A/J mice treated with nitrosamines. Cancer Res 1989;49(19):5305–11.Google Scholar
You, M, Candrian, U, Maronpot, RR, Stoner, GD, Anderson, MW.Activation of the Ki-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci USA 1989;86(9):3070–4.CrossRefGoogle ScholarPubMed
Krewski, D, Lubin, JH, Zielinski, JM, et al. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology 2005;16(2):137–45.CrossRefGoogle ScholarPubMed
Darby, S, Hill, D, Auvinen, A, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 2005;330(7485):223.CrossRefGoogle ScholarPubMed
Field, RW, Krewski, D, Lubin, JH, et al. An overview of the North American residential radon and lung cancer case-control studies. J Toxicol Environ Health A 2006;69(7):599–631.CrossRefGoogle ScholarPubMed
Plummer, HK, Dhar, M, Schuller, HM.Expression of the alpha7 nicotinic acetylcholine receptor in human lung cells. Respir Res 2005;6:29.CrossRefGoogle ScholarPubMed
Nemery, B, Hoet, PH, Nemmar, A.The Meuse Valley fog of 1930: an air pollution disaster. Lancet 2001;357(9257):704–8.CrossRefGoogle Scholar
Schwartz, J.What are people dying of on high air pollution days?Environ Res 1994;64(1):26–35.CrossRefGoogle Scholar
LOGAN, WP.Mortality in the London fog incident, 1952. Lancet 1953;1(6755):336–8.CrossRefGoogle ScholarPubMed
Churg, A, Brauer, M.Human lung parenchyma retains PM2.5. Am J Respir Crit Care Med 1997;155(6):2109–11.CrossRefGoogle ScholarPubMed
Churg, A, Brauer, M.Ambient atmospheric particles in the airways of human lungs. Ultrastruct Pathol 2000;24(6):353–61.Google ScholarPubMed
Valavanidis, A, Fiotakis, K, Vlachogianni, T.Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2008;26(4):339–62.CrossRefGoogle ScholarPubMed
Gallus, S, Negri, E, Boffetta, P, et al. European studies on long-term exposure to ambient particulate matter and lung cancer. Eur J Cancer Prev 2008;17(3):191–4.CrossRefGoogle ScholarPubMed
Jedrychowski, W, Becher, H, Wahrendorf, J, Basa-Cierpialek, Z.A case-control study of lung cancer with special reference to the effect of air pollution in Poland. J Epidemiol Community Health 1990;44(2):114–20.CrossRefGoogle ScholarPubMed
Pope, CA, Burnett, RT, Thun, MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002;287(9):1132–41.CrossRefGoogle ScholarPubMed
Beelen, R, Hoek, G, van den Brandt, PA, et al. Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiology 2008;19(5):702–10.CrossRefGoogle ScholarPubMed
Garshick, E, Laden, F, Hart, JE, et al. Lung cancer and vehicle exhaust in trucking industry workers. Environ Health Perspect 2008;116(10):1327–32.CrossRefGoogle ScholarPubMed
Pukkala, E, Martinsen, JI, Lynge, E, et al. Occupation and cancer – follow-up of 15 million people in five Nordic countries. Acta Oncol 2009;48(5):646–790.CrossRefGoogle ScholarPubMed
Tse, LA, Yu, IS, Au, JSK, Qiu, H, Wang, XR.Silica dust, diesel exhaust, and painting work are the significant occupational risk factors for lung cancer in nonsmoking Chinese men. Br J Cancer 2011;104(1):208–13.CrossRefGoogle ScholarPubMed
Hoffmann, B, Jockel, KH.Diesel exhaust and coal mine dust: lung cancer risk in occupational settings. Ann N Y Acad Sci 2006;1076:253–65.CrossRefGoogle ScholarPubMed
Courter, LA, Luch, A, Musafia-Jeknic, T, et al. The influence of diesel exhaust on polycyclic aromatic hydrocarbon-induced DNA damage, gene expression, and tumor initiation in Sencar mice in vivo. Cancer Lett 2008;265(1):135–47.CrossRefGoogle ScholarPubMed
Liaw, YP, Ting, TF, Ho, KK, Yang, CF.Cell type specificity of lung cancer associated with air pollution. Sci Total Environ 2008;395(1):23–7.CrossRefGoogle ScholarPubMed
de Vocht, F, Burstyn, I, Ferro, G, et al. Sensitivity of the association between increased lung cancer risk and bitumen fume exposure to the assumptions in the assessment of exposure. Int Arch Occup Environ Health 2009;82:723–33.CrossRefGoogle Scholar
Pintos, J, Parent, ME, Rousseau, MC, Case, BW, Siemiatycki, J.Occupational exposure to asbestos and man-made vitreous fibers, and risk of lung cancer: evidence from two case-control studies in Montreal, Canada. J Occup Environ Med 2008;50(11):1273–81.CrossRefGoogle ScholarPubMed
Stayner, L, Bena, J, Sasco, AJ, et al. Lung cancer risk and workplace exposure to environmental tobacco smoke. Am J Public Health 2007;97(3):545–51.CrossRefGoogle ScholarPubMed
Coggon, D, Pannett, B, Acheson, ED.Use of job-exposure matrix in an occupational analysis of lung and bladder cancers on the basis of death certificates. J Natl Cancer Inst 1984;72(1):61–5.CrossRefGoogle Scholar
Pershagen, G.Lung cancer mortality among men living near an arsenic-emitting smelter. Am J Epidemiol 1985;122(4):684–94.CrossRefGoogle ScholarPubMed
Hazelton, WD, Luebeck, EG, Heidenreich, WF, Moolgavkar, SH.Analysis of a historical cohort of Chinese tin miners with arsenic, radon, cigarette smoke, and pipe smoke exposures using the biologically based two-stage clonal expansion model. Radiat Res 2001;156(1):78–94.CrossRefGoogle ScholarPubMed
Mabuchi, K, Lilienfeld, AM, Snell, LM.Cancer and occupational exposure to arsenic: a study of pesticide workers. Prev Med 1980;9(1):51–77.CrossRefGoogle ScholarPubMed
Navarro, Silvera SA, Rohan, TE.Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 2007;18(1):7–27.Google Scholar
Walvekar, RR, Kane, SV, Nadkarni, MS, Bagwan, IN, Chaukar, DA, D'Cruz, AK.Chronic arsenic poisoning: a global health issue – a report of multiple primary cancers. J Cutan Pathol 2007;34(2):203–6.CrossRefGoogle ScholarPubMed
Marshall, G, Ferreccio, C, Yuan, Y, et al. Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 2007;99(12):920–8.CrossRefGoogle ScholarPubMed
Mostafa, MG, McDonald, JC, Cherry, NM.Lung cancer and exposure to arsenic in rural Bangladesh. Occup Environ Med 2008;65(11):765–8.CrossRefGoogle ScholarPubMed
Han, YY, Weissfeld, JL, Davis, DL, Talbott, EO.Arsenic levels in ground water and cancer incidence in Idaho: an ecologic study. Int Arch Occup Environ Health 2009;82(7):843–9.CrossRefGoogle ScholarPubMed
Smith, AH, Ercumen, A, Yuan, Y, Steinmaus, CM.Increased lung cancer risks are similar whether arsenic is ingested or inhaled. J Expo Sci Environ Epidemiol 2009;19(4):343–8.CrossRefGoogle ScholarPubMed
Chen, CL, Hsu, LI, Chiou, HY, et al. Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan. JAMA 2004;292(24):2984–90.CrossRefGoogle ScholarPubMed
Guo, HR.Arsenic level in drinking water and mortality of lung cancer (Taiwan). Cancer Causes Control 2004;15(2):171–7.CrossRefGoogle Scholar
ATSDR. Toxicologial Profile for Arsenic. Atlanta, GA: Agency for Substances and Disease Registry, 2000.Google Scholar
Chen, C, Chiou, H, Hsu, L, Hsueh, Y, Wu, M, Chen, C.Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res 2009;110:455–62.CrossRefGoogle ScholarPubMed
Su, C, Lu, J, Tsai, K, Lian, I. Reduction in arsenic intake from water has different impacts on lung cancer and bladder cancer in an arseniasis endemic area in Taiwan. Cancer Causes Control 2010 Nov 5.
Guo, HR, Wang, NS, Hu, H, Monson, RR.Cell type specificity of lung cancer associated with arsenic ingestion. Cancer Epidemiol Biomarkers Prev 2004;13(4):638–43.Google ScholarPubMed
Martinez, VD, Buys, TPH, Adonis, M, et al. Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas. Br J Cancer 2010;103(8):1277–83.CrossRefGoogle ScholarPubMed
Bruske-Hohlfeld, I, Rosario, AS, Wolke, G, et al. Lung cancer risk among former uranium miners of the WISMUT Company in Germany. Health Phys 2006;90(3):208–16.CrossRefGoogle ScholarPubMed
Hornung, RW, Meinhardt, TJ.Quantitative risk assessment of lung cancer in U.S. uranium miners. Health Phys 1987;52(4):417–30.CrossRefGoogle ScholarPubMed
Vahakangas, KH, Samet, JM, Metcalf, RA, et al. Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 1992;339(8793):576–80.CrossRefGoogle ScholarPubMed
Whittemore, AS, McMillan, A.Lung cancer mortality among U.S. uranium miners: a reappraisal. J Natl Cancer Inst 1983;71(3):489–99.Google ScholarPubMed
Siemiatycki, J, Richardson, L, Straif, K, et al. Listing occupational carcinogens. Environ Health Perspect 2004;112(15):1447–59.CrossRefGoogle ScholarPubMed
U.S. Department of Health and Human Services. The Report on Carcinogens, 11th edition. Washington DC: Department for Health and Human Services, Public Health Service, National Toxicology Program, 2005.Google Scholar
Pronk, A, Coble, J, Ji, BT, et al. Occupational risk of lung cancer among lifetime non-smoking women in Shanghai, China. Occup Environ Med 2009;66(10):672–8.CrossRefGoogle ScholarPubMed
Ives, JC, Buffler, PA, Greenberg, SD.Environmental associations and histopathologic patterns of carcinoma of the lung: the challenge and dilemma in epidemiologic studies. Am Rev Respir Dis 1983;128(1):195–209.CrossRefGoogle ScholarPubMed
Churg, A.Lung cancer cell type and occupational exposure. In Samet, JM, ed. Epidemiology of Lung Cancer. New York: Marcel Dekker, 1994. pp. 413–36.Google Scholar
Hein, MJ, Stayner, LT, Lehman, E, Dement, JM.Follow-up study of chrysotile textile workers: cohort mortality and exposure-response. Occup Environ Med 2007;64(9):616–25.CrossRefGoogle ScholarPubMed
Sullivan, PA.Vermiculite, respiratory disease, and asbestos exposure in Libby, Montana: update of a cohort mortality study. Environ Health Perspect 2007;115(4):579–85.CrossRefGoogle ScholarPubMed
Everatt, RP, Smolianskiene, G, Tossavainen, A, Cicenas, S, Jankauskas, R.Occupational asbestos exposure among respiratory cancer patients in Lithuania. Am J Ind Med 2007;50(6):455–63.CrossRefGoogle ScholarPubMed
Musk, AW, de Klerk, NH, Reid, A, et al. Mortality of former crocidolite (blue asbestos) miners and millers at Wittenoom. Occup Environ Med 2008;65(8):541–3.CrossRefGoogle ScholarPubMed
Marinaccio, A, Scarselli, A, Binazzi, A, et al. Magnitude of asbestos-related lung cancer mortality in Italy. Br J Cancer 2008;99(1):173–5.CrossRefGoogle ScholarPubMed
Zhong, F, Yano, E, Wang, ZM, Wang, MZ, Lan, YJ.Cancer mortality and asbestosis among workers in an asbestos plant in Chongqing, China. Biomed Environ Sci 2008;21(3):205–11.CrossRefGoogle Scholar
Harding, AH, Darnton, A, Wegerdt, J, McElvenny, D.Mortality among British asbestos workers undergoing regular medical examinations (1971–2005). Occup Environ Med 2009;66(7):487–95.CrossRefGoogle Scholar
Loomis, D, Dement, JM, Wolf, SH, Richardson, DB.Lung cancer mortality and fibre exposures among North Carolina asbestos textile workers. Occup Environ Med 2009;66(8):535–42.CrossRefGoogle ScholarPubMed
Dement, J, Welch, L, Haile, E, Myers, D.Mortality among sheet metal workers participating in a medical screening program. Am J Ind Med 2009;52(8):603–13.CrossRefGoogle Scholar
Dement, JM, Ringen, K, Welch, LS, Bingham, E, Quinn, P.Mortality of older construction and craft workers employed at Department of Energy (DOE) nuclear sites. Am J Ind Med 2009;52(9):671–82.CrossRefGoogle ScholarPubMed
Wilczynska, U, Szymczak, W, Szeszenia-Dabrowska, N.Mortality from malignant neoplasms among workers of an asbestos processing plant in Poland: results of prolonged observation. Int J Occup Med Environ Health 2005;18(4):313–26.Google ScholarPubMed
Mark, EJ, Shin, DH.Asbestos and the histogenesis of lung carcinoma. Semin Diagn Pathol 1992;9(2):110–6.Google ScholarPubMed
Hughes, JM, Weill, H, Hammad, YY.Mortality of workers employed in two asbestos cement manufacturing plants. Br J Ind Med 1987;44(3):161–74.Google ScholarPubMed
Hammond, EC, Selikoff, IJ, Seidman, H.Asbestos exposure, cigarette smoking and death rates. Ann N Y Acad Sci 1979;330:473–90.CrossRefGoogle ScholarPubMed
Bertolotti, M, Ferrante, D, Mirabelli, D, et al. [Mortality in the cohort of the asbestos cement workers in the Eternit plant in Casale Monferrato (Italy)]. Epidemiol Prev 2008;32(4–5):218–28.Google Scholar
Cullen, MR, Barnett, MJ, Balmes, JR, et al. Predictors of lung cancer among asbestos-exposed men in the {beta}-carotene and retinol efficacy trial. Am J Epidemiol 2005;161(3):260–70.CrossRefGoogle ScholarPubMed
Selikoff, IJ, Hammond, EC, Churg, J.Asbestos exposure, smoking, and neoplasia. JAMA 1968;204(2):106–12.CrossRefGoogle ScholarPubMed
Selikoff, IJ, Hammond, EC.Asbestos and smoking. JAMA 1979;242(5):458–9.CrossRefGoogle ScholarPubMed
Selikoff, IJ, Seidman, H, Hammond, EC.Mortality effects of cigarette smoking among amosite asbestos factory workers. J Natl Cancer Inst 1980;65(3):507–13.Google ScholarPubMed
Selikoff, IJ, Churg, J, Hammond, EC.Classics in oncology: asbestos exposure and neoplasia. CA Cancer J Clin 1984;34(1):48–56.CrossRefGoogle ScholarPubMed
McFadden, D, Wright, JL, Wiggs, B, Churg, A.Smoking inhibits asbestos clearance. Am Rev Respir Dis 1986;133(3):372–4.Google ScholarPubMed
McFadden, D, Wright, J, Wiggs, B, Churg, A.Cigarette smoke increases the penetration of asbestos fibers into airway walls. Am J Pathol 1986;123(1):95–9.Google ScholarPubMed
Churg, A, Stevens, B.Enhanced retention of asbestos fibers in the airways of human smokers. Am J Respir Crit Care Med 1995;151(5):1409–13.CrossRefGoogle ScholarPubMed
Boffetta, P.Epidemiology of environmental and occupational cancer. Oncogene 2004;23(38):6392–403.CrossRefGoogle ScholarPubMed
Xu, ZY, Blot, WJ, Xiao, HP, et al. Smoking, air pollution, and the high rates of lung cancer in Shenyang, China. J Natl Cancer Inst 1989;81(23):1800–6.CrossRefGoogle ScholarPubMed
Mzileni, O, Sitas, F, Steyn, K, Carrara, H, Bekker, P.Lung cancer, tobacco, and environmental factors in the African population of the Northern Province, South Africa. Tob Control 1999;8(4):398–401.CrossRefGoogle ScholarPubMed
Luce, D, Bugel, I, Goldberg, P, et al. Environmental exposure to tremolite and respiratory cancer in New Caledonia: a case-control study. Am J Epidemiol 2000;151(3):259–65.CrossRefGoogle ScholarPubMed
Das, M, Muhlenbruch, G, Mahnken, AH, et al. Asbestos Surveillance Program Aachen (ASPA): initial results from baseline screening for lung cancer in asbestos-exposed high-risk individuals using low-dose multidetector-row CT. Eur Radiol 2007;17(5):1193–9.CrossRefGoogle ScholarPubMed
Hasan, FM, Nash, G, Kazemi, H.Asbestos exposure and related neoplasia. The 28 year experience of a major urban hospital. Am J Med 1978;65(4):649–54.CrossRefGoogle ScholarPubMed
Hourihane, DO, McCaughey, WT.Pathological aspects of asbestosis. Postgrad Med J 1966;42(492):613–22.CrossRefGoogle ScholarPubMed
Whitwell, F, Newhouse, ML, Bennett, DR.A study of the histological cell types of lung cancer in workers suffering from asbestosis in the United Kingdom. Br J Ind Med 1974;31(4):298–303.Google ScholarPubMed
Karjalainen, A, Anttila, S, Vanhala, E, Vainio, H.Asbestos exposure and the risk of lung cancer in a general urban population. Scand J Work Environ Health 1994;20(4):243–50.CrossRefGoogle Scholar
Johansson, L, Albin, M, Jakobsson, K, Mikoczy, Z.Histological type of lung carcinoma in asbestos cement workers and matched controls. Br J Ind Med 1992;49(9):626–30.Google ScholarPubMed
Churg, A, Golden, J.Current problems in the pathology of asbestos-related disease. Pathol Annu 1982;17 Pt 2:33–66.Google ScholarPubMed
Craighead, JE, Abraham, JL, Churg, A, et al. The pathology of asbestos-associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema. Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health. Arch Pathol Lab Med 1982;106(11):544–96.Google ScholarPubMed
Van Duuren, BL.Comparison of potency of human carcinogens: vinyl chloride, chloromethylmethyl ether and bis(chloromethyl)ether. Environ Res 1989;49:143–51.CrossRefGoogle ScholarPubMed
Tou, JC, Kallos, GJ.Study of aqueous HCI and formaldehyde mixtures for formation of bis (chloromethyl) ether. Am Ind Hyg Assoc J 1974;35(7):419–22.CrossRefGoogle ScholarPubMed
Laskin, S, Kuschner, M, Drew, RT, Cappiello, VP, Nelson, N.Tumors of the respiratory tract induced by inhalation of bis(chloromethyl)ether. Arch Environ Health 1971;23(2):135–6.CrossRefGoogle ScholarPubMed
Laskin, S, Drew, RT, Capiello, V, Kuschner, M, Nelson, N.Inhalation carcinogenicity of alpha halo ethers. II. Chronic inhalation studies with chloromethyl methyl ether. Arch Environ Health 1975;30(2):70–2.CrossRefGoogle ScholarPubMed
Lemen, RA, Johnson, WM, Wagoner, JK, Archer, VE, Saccomanno, G.Cytologic observations and cancer incidence following exposure to BCME. Ann N Y Acad Sci 1976;271:71–80.CrossRefGoogle ScholarPubMed
Weiss, W, Moser, RL, Auerbach, O.Lung cancer in chloromethyl ether workers. Am Rev Respir Dis 1979;120(5):1031–7.Google ScholarPubMed
DeFonso, LR, Kelton, SCJ.Lung cancer following exposure to chloromethyl methyl ether. An epidemiological study. Arch Environ Health 1976;31(3):125–30.CrossRefGoogle ScholarPubMed
Maher, KV, DeFonso, LR.Respiratory cancer among chloromethyl ether workers. J Natl Cancer Inst 1987;78(5):839–43.Google ScholarPubMed
Albert, RE, Pasternack, BS, Shore, RE, et al. Mortality patterns among workers exposed to chloromethyl ethers – a preliminary report. Environ Health Perspect 1975;11:209–14.Google ScholarPubMed
Weiss, W.The cigarette factor in lung cancer due to chloromethyl ethers. J Occup Med 1980;22(8):527–9.CrossRefGoogle ScholarPubMed
Figueroa, WG, Raszkowski, R, Weiss, W.Lung cancer in chloromethyl methyl ether workers. N Engl J Med 1973;288(21):1096–7.CrossRefGoogle ScholarPubMed
McCallum, RI, Woolley, V, Petrie, A.Lung cancer associated with chloromethyl methyl ether manufacture: an investigation at two factories in the United Kingdom. Br J Ind Med 1983;40(4):384–9.Google ScholarPubMed
Munoz, N, Bosch, FX, de Sanjose, S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003;348(6):518–27.CrossRefGoogle ScholarPubMed
Rose, Ragin CC, Taioli, E.Second primary head and neck tumor risk in patients with cervical cancer – SEER data analysis. Head Neck 2008;30(1):58–66.CrossRefGoogle Scholar
Chaturvedi, AK, Kleinerman, RA, Hildesheim, A, et al. Second cancers after squamous cell carcinoma and adenocarcinoma of the cervix. J Clin Oncol 2009;27(6):967–73.CrossRefGoogle ScholarPubMed
Zannoni, GF, Sioletic, S, Fadda, G, Di Franco, A, Cattani, P.The role of HPV detection and typing in diagnosis of pulmonary metastatic squamous cell carcinoma of the uterine cervix. Histopathology 2008;53(5):604–6.CrossRefGoogle ScholarPubMed
Weichert, W, Schewe, C, Denkert, C, et al. Molecular HPV typing as a diagnostic tool to discriminate primary from metastatic squamous cell carcinoma of the lung. Am J Surg Pathol 2009;33(4):513–20.CrossRefGoogle ScholarPubMed
Will, C, Schewe, C, Schluns, K, Petersen, I.HPV typing and CGH analysis for the differentiation of primary and metastatic squamous cell carcinomas of the aerodigestive tract. Cell Oncol 2006;28(3):97–105.Google ScholarPubMed
Gelinas, JF, Manoukian, J, Cote, A.Lung involvement in juvenile onset recurrent respiratory papillomatosis: a systematic review of the literature. Int J Pediatr Otorhinolaryngol 2008;72(4):433–52.CrossRefGoogle ScholarPubMed
Lele, SM, Pou, AM, Ventura, K, Gatalica, Z, Payne, D.Molecular events in the progression of recurrent respiratory papillomatosis to carcinoma. Arch Pathol Lab Med 2002;126(10):1184–8.Google Scholar
Cook, JR, Hill, DA, Humphrey, PA, Pfeifer, JD, El-Mofty, SK.Squamous cell carcinoma arising in recurrent respiratory papillomatosis with pulmonary involvement: emerging common pattern of clinical features and human papillomavirus serotype association. Mod Pathol 2000;13(8):914–8.CrossRefGoogle ScholarPubMed
Doyle, DJ, Henderson, LA, LeJeune, FEJ, Miller, RH.Changes in human papillomavirus typing of recurrent respiratory papillomatosis progressing to malignant neoplasm. Arch Otolaryngol Head Neck Surg 1994;120(11):1273–6.CrossRefGoogle ScholarPubMed
Gerein, V, Schmandt, S, Babkina, N, Barysik, N, Coerdt, W, Pfister, H.Human papilloma virus (HPV)-associated gynecological alteration in mothers of children with recurrent respiratory papillomatosis during long-term observation. Cancer Detect Prev 2007;31(4):276–81.CrossRefGoogle ScholarPubMed
Giuliani, L, Favalli, C, Syrjanen, K, Ciotti, M.Human papillomavirus infections in lung cancer. Detection of E6 and E7 transcripts and review of the literature. Anticancer Res 2007;27(4C):2697–704.Google ScholarPubMed
Klein, F, Amin, Kotb WFM, Petersen, I.Incidence of human papilloma virus in lung cancer. Lung Cancer 2009;65(1):13–8.CrossRefGoogle ScholarPubMed
Srinivasan, M, Taioli, E, Ragin, CC.Human papillomavirus type 16 and 18 in primary lung cancers – a meta-analysis. Carcinogenesis 2009;30(10):1722–8.CrossRefGoogle ScholarPubMed
Park, MS, Chang, YS, Shin, JH, et al. The prevalence of human papillomavirus infection in Korean non-small cell lung cancer patients. Yonsei Med J 2007;48(1):69–77.CrossRefGoogle ScholarPubMed
Nadji, SA, Mokhtari-Azad, T, Mahmoodi, M, et al. Relationship between lung cancer and human papillomavirus in north of Iran, Mazandaran province. Cancer Lett 2007;248(1):41–6.CrossRefGoogle Scholar
Hiroshima, K, Toyozaki, T, Iyoda, A, et al. Ultrastructural study of intranuclear inclusion bodies of pulmonary adenocarcinoma. Ultrastruct Pathol 1999;23(6):383–9.CrossRefGoogle ScholarPubMed
Da, J, Chen, L, Hu, Y.[Human papillomavirus infection and p53 gene mutation in primary lung cancer]. Zhonghua Zhong Liu Za Zhi 1996;18(1):27–9.Google Scholar
Miyagi, J, Kinjo, T, Tsuhako, K, et al. Extremely high Langerhans cell infiltration contributes to the favourable prognosis of HPV-infected squamous cell carcinoma and adenocarcinoma of the lung. Histopathology 2001;38(4):355–67.CrossRefGoogle ScholarPubMed
Sagawa, M, Saito, Y, Endo, C, et al. [Detection of human papillomavirus type 16, 18 and 33 DNA in stage I (pT1N0M0) squamous cell carcinoma of the lung by polymerase chain reaction]. Kyobu Geka 1995;48(5):360–2.Google Scholar
Li, Q, Hu, K, Pan, X, Cao, Z, Yang, J, Hu, S.Detection of human papillomavirus types 16, 18 DNA related sequences in bronchogenic carcinoma by polymerase chain reaction. Chin Med J (Engl) 1995;108(8):610–4.Google ScholarPubMed
Kinoshita, I, aka-Akita, H, Shindoh, M, et al. Human papillomavirus type 18 DNA and E6-E7 mRNA are detected in squamous cell carcinoma and adenocarcinoma of the lung. Br J Cancer 1995;71(2):344–9.CrossRefGoogle ScholarPubMed
Szabo, I, Sepp, R, Nakamoto, K, et al. Human papillomavirus not found in squamous and large cell lung carcinomas by polymerase chain reaction. Cancer 1994;73(11):2740–4.3.0.CO;2-C>CrossRefGoogle Scholar
Ogura, H, Watanabe, S, Fukushima, K, et al. Human papillomavirus DNA in squamous cell carcinomas of the respiratory and upper digestive tracts. Jpn J Clin Oncol 1993;23(4):221–5.Google ScholarPubMed
Chen, YC, Chen, JH, Richard, K, Chen, PY, Christiani, DC.Lung adenocarcinoma and human papillomavirus infection. Cancer 2004;101(6):1428–36.CrossRefGoogle ScholarPubMed
Fei, Y, Yang, J, Hsieh, WC, et al. Different human papillomavirus 16/18 infection in Chinese non-small cell lung cancer patients living in Wuhan, China. Jpn J Clin Oncol 2006;36(5):274–9.CrossRefGoogle ScholarPubMed
Cheng, YW, Chiou, HL, Sheu, GT, et al. The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer Res 2001;61(7):2799–803.Google ScholarPubMed
Cheng, YW, Wu, MF, Wang, J, et al. Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation. Cancer Res 2007;67(22):10686–10693.CrossRefGoogle ScholarPubMed
Tsuhako, K, Nakazato, I, Hirayasu, T, Sunakawa, H, Iwamasa, T.Human papillomavirus DNA in adenosquamous carcinoma of the lung. J Clin Pathol 1998;51(10):741–9.CrossRefGoogle ScholarPubMed
Jain, N, Singh, V, Hedau, S, et al. Infection of human papillomavirus type 18 and p53 codon 72 polymorphism in lung cancer patients from India. Chest 2005;128(6):3999–4007.CrossRefGoogle ScholarPubMed
Hsu, NY, Cheng, YW, Chan, IP, et al. Association between expression of human papillomavirus 16/18 E6 oncoprotein and survival in patients with stage I non-small cell lung cancer. Oncol Rep 2009;21(1):81–7.Google ScholarPubMed
Lim, WT, Chuah, KL, Leong, SS, Tan, EH, Toh, CK.Assessment of human papillomavirus and Epstein-Barr virus in lung adenocarcinoma. Oncol Rep 2009;21(4):971–5.CrossRefGoogle ScholarPubMed
Shamanin, V, Delius, H, de Villiers, EM.Development of a broad spectrum PCR assay for papillomaviruses and its application in screening lung cancer biopsies. J Gen Virol 1994;75 (Pt 5):1149–56.CrossRefGoogle ScholarPubMed
Thomas, P, De Lamballerie, X, Garbe, L, Douagui, H, Kleisbauer, JP.Detection of human papillomavirus DNA in primary lung carcinoma by nested polymerase chain reaction. Cell Mol Biol (Noisy-le-Grand) 1995;41(8):1093–7.Google ScholarPubMed
Nuorva, K, Soini, Y, Kamel, D, et al. p53 protein accumulation and the presence of human papillomavirus DNA in bronchiolo-alveolar carcinoma correlate with poor prognosis. Int J Cancer 1995;64(6):424–9.CrossRefGoogle ScholarPubMed
Soini, Y, Nuorva, K, Kamel, D, et al. Presence of human papillomavirus DNA and abnormal p53 protein accumulation in lung carcinoma. Thorax 1996;51(9):887–93.CrossRefGoogle ScholarPubMed
Miasko, A, Niklinska, W, Niklinski, J, et al. Detection of human papillomavirus in non-small cell lung carcinoma by polymerase chain reaction. Folia Histochem Cytobiol 2001;39(2):127–8.Google ScholarPubMed
Zafer, E, Ergun, MA, Alver, G, et al. Detection and typing of human papillomavirus in non-small cell lung cancer. Respiration 2004;71(1):88–90.CrossRefGoogle ScholarPubMed
Coissard, CJ, Besson, G, Polette, MC, et al. Prevalence of human papillomaviruses in lung carcinomas: a study of 218 cases. Mod Pathol 2005;18(12):1606–9.CrossRefGoogle ScholarPubMed
Ciotti, M, Giuliani, L, Ambrogi, V, et al. Detection and expression of human papillomavirus oncogenes in non-small cell lung cancer. Oncol Rep 2006;16(1):183–9.Google ScholarPubMed
Gorgoulis, VG, Zacharatos, P, Kotsinas, A, et al. Human papilloma virus (HPV) is possibly involved in laryngeal but not in lung carcinogenesis. Hum Pathol 1999;30(3):274–83.CrossRefGoogle ScholarPubMed
Papadopoulou, K, Labropoulou, V, Davaris, P, Mavromara, P, Tsimara-Papastamatiou, H.Detection of human papillomaviruses in squamous cell carcinomas of the lung. Virchows Arch 1998;433(1):49–54.CrossRefGoogle ScholarPubMed
Bohlmeyer, T, Le, TN, Shroyer, AL, Markham, N, Shroyer, KR.Detection of human papillomavirus in squamous cell carcinomas of the lung by polymerase chain reaction. Am J Respir Cell Mol Biol 1998;18(2):265–9.CrossRefGoogle Scholar
Castillo, A, Aguayo, F, Koriyama, C, et al. Human papillomavirus in lung carcinomas among three Latin American countries. Oncol Rep 2006;15(4):883–8.Google ScholarPubMed
Aguayo, F, Castillo, A, Koriyama, C, et al. Human papillomavirus-16 is integrated in lung carcinomas: a study in Chile. Br J Cancer 2007;97(1):85–91.CrossRefGoogle ScholarPubMed
Clavel, CE, Nawrocki, B, Bosseaux, B, et al. Detection of human papillomavirus DNA in bronchopulmonary carcinomas by hybrid capture II: a study of 185 tumors. Cancer 2000;88(6):1347–52.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Miyagi, J, Tsuhako, K, Kinjo, T, Iwamasa, T, Hirayasu, T.Recent striking changes in histological differentiation and rate of human papillomavirus infection in squamous cell carcinoma of the lung in Okinawa, a subtropical island in southern Japan. J Clin Pathol 2000;53(9):676–84.CrossRefGoogle ScholarPubMed
Hirayasu, T, Iwamasa, T, Kamada, Y, et al. Human papillomavirus DNA in squamous cell carcinoma of the lung. J Clin Pathol 1996;49(10):810–7.CrossRefGoogle ScholarPubMed
Rezazadeh, A, Laber, DA, Ghim, SJ, Jenson, AB, Kloecker, G.The role of human papilloma virus in lung cancer: a review of the evidence. Am J Med Sci 2009;338(1):64–7.CrossRefGoogle Scholar
Yousem, SA, Ohori, NP, Sonmez-Alpan, E.Occurrence of human papillomavirus DNA in primary lung neoplasms. Cancer 1992;69(3):693–7.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Bejui-Thivolet, F, Liagre, N, Chignol, MC, Chardonnet, Y, Patricot, LM.Detection of human papillomavirus DNA in squamous bronchial metaplasia and squamous cell carcinomas of the lung by in situ hybridization using biotinylated probes in paraffin-embedded specimens. Hum Pathol 1990;21(1):111–6.CrossRefGoogle Scholar
Cheng, YW, Lee, H, Shiau, MY, et al. Human papillomavirus type 16/18 up-regulates the expression of interleukin-6 and antiapoptotic Mcl-1 in non-small cell lung cancer. Clin Cancer Res 2008;14(15):4705–12.CrossRefGoogle ScholarPubMed
Kountouri, MP, Mammas, IN, Spandidos, DA.Human papilloma virus (HPV) in lung cancer: unanswered questions. Lung Cancer 2010;67(1):125.CrossRefGoogle ScholarPubMed
Chang, YL, Wu, CT, Shih, JY, Lee, YC.New aspects in clinicopathologic and oncogene studies of 23 pulmonary lymphoepithelioma-like carcinomas. Am J Surg Pathol 2002;26(6):715–23.CrossRefGoogle ScholarPubMed
Chen, FF, Yan, JJ, Lai, WW, Jin, YT, Su, IJ.Epstein-Barr virus-associated nonsmall cell lung carcinoma: undifferentiated “lymphoepithelioma-like” carcinoma as a distinct entity with better prognosis. Cancer 1998;82(12):2334–42.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Butler, AE, Colby, TV, Weiss, L, Lombard, C.Lymphoepithelioma-like carcinoma of the lung. Am J Surg Pathol 1989;13(8):632–9.CrossRefGoogle ScholarPubMed
Gal, AA, Unger, ER, Koss, MN, Yen, TS.Detection of Epstein-Barr virus in lymphoepithelioma-like carcinoma of the lung. Mod Pathol 1991;4(2):264–8.Google ScholarPubMed
Pittaluga, S, Wong, MP, Chung, LP, Loke, SL.Clonal Epstein-Barr virus in lymphoepithelioma-like carcinoma of the lung. Am J Surg Pathol 1993;17(7):678–82.CrossRefGoogle ScholarPubMed
Begin, LR, Eskandari, J, Joncas, J, Panasci, L.Epstein-Barr virus related lymphoepithelioma-like carcinoma of lung. J Surg Oncol 1987;36(4):280–3.CrossRefGoogle ScholarPubMed
Kasai, K, Sato, Y, Kameya, T, et al. Incidence of latent infection of Epstein-Barr virus in lung cancers – an analysis of EBER1 expression in lung cancers by in situ hybridization. J Pathol 1994;174(4):257–65.CrossRefGoogle ScholarPubMed
Chan, JK, Hui, PK, Tsang, WY, et al. Primary lymphoepithelioma-like carcinoma of the lung. A clinicopathologic study of 11 cases. Cancer 1995;76(3):413–22.3.0.CO;2-X>CrossRefGoogle Scholar
Higashiyama, M, Doi, O, Kodama, K, et al. Lymphoepithelioma-like carcinoma of the lung: analysis of two cases for Epstein-Barr virus infection. Hum Pathol 1995;26(11):1278–82.CrossRefGoogle ScholarPubMed
Wong, MP, Chung, LP, Yuen, ST, et al. In situ detection of Epstein-Barr virus in non-small cell lung carcinomas. J Pathol 1995;177(3):233–40.CrossRefGoogle ScholarPubMed
Han, AJ, Xiong, M, Zong, YS.Association of Epstein-Barr virus with lymphoepithelioma-like carcinoma of the lung in southern China. Am J Clin Pathol 2000;114(2):220–6.CrossRefGoogle ScholarPubMed
Kobayashi, M, Ito, M, Sano, K, Honda, T, Nakayama, J.Pulmonary lymphoepithelioma-like carcinoma: predominant infiltration of tumor-associated cytotoxic T lymphocytes might represent the enhanced tumor immunity. Intern Med 2004;43(4):323–6.CrossRefGoogle ScholarPubMed
Wong, MP, Cheung, KN, Yuen, ST, et al. Monocyte chemoattractant protein-1 (MCP-1) expression in primary lymphoepithelioma-like carcinomas (LELCs) of the lung. J Pathol 1998;186(4):372–7.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Anagnostopoulos, I, Hummel, M.Epstein-Barr virus in tumours. Histopathology 1996;29(4):297–315.CrossRefGoogle ScholarPubMed
Brouchet, L, Valmary, S, Dahan, M, et al. Detection of oncogenic virus genomes and gene products in lung carcinoma. Br J Cancer 2005;92(4):743–6.CrossRefGoogle ScholarPubMed
Castro, CY, Ostrowski, ML, Barrios, R, et al. Relationship between Epstein-Barr virus and lymphoepithelioma-like carcinoma of the lung: a clinicopathologic study of 6 cases and review of the literature. Hum Pathol 2001;32(8):863–72.CrossRefGoogle ScholarPubMed
Conway, EJ, Hudnall, SD, Lazarides, A, et al. Absence of evidence for an etiologic role for Epstein-Barr virus in neoplasms of the lung and pleura. Mod Pathol 1996;9(5):491–5.Google ScholarPubMed
Ferrara, G, Nappi, O.Lymphoepithelioma-like carcinoma of the lung. Two cases diagnosed in Caucasian patients. Tumori 1995;81(2):144–7.CrossRefGoogle ScholarPubMed
Minami, Y, Iijima, T, Onizuka, M, Sakakibara, Y, Noguchi, M.Pulmonary adenocarcinoma with massive lymphocyte infiltration: report of three cases. Lung Cancer 2003;42(1):63–8.CrossRefGoogle ScholarPubMed
Wockel, W, Hofler, G, Popper, HH, Morresi, A.Lymphoepithelioma-like carcinoma of the lung. Pathol Res Pract 1995;191(11):1170–4.CrossRefGoogle ScholarPubMed
Yoshino, N, Kubokura, H, Yamauchi, S, et al. Lymphoepithelioma-like carcinoma of the lung: case in which the patient has been followed up for 7 years postoperatively. Jpn J Thorac Cardiovasc Surg 2005;53(12):653–6.CrossRefGoogle ScholarPubMed
Huber, M, Pavlova, B, Muhlberger, H, Hollaus, P, Lintner, F.Detection of the Epstein-Barr virus in primary adenocarcinoma of the lung with Signet-ring cells. Virchows Arch 2002;441(1):25–30.CrossRefGoogle ScholarPubMed
Morbini, P, Riboni, R, Tomaselli, S, Rossi, A, Magrini, U.Eber- and LMP-1-expressing pulmonary lymphoepithelioma-like carcinoma in a Caucasian patient. Hum Pathol 2003;34(6):623–5.CrossRefGoogle Scholar
Guiguet, M, Boue, F, Cadranel, J, et al. Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FHDH-ANRS CO4): a prospective cohort study. Lancet Oncol 2009;10(12):1152–9.CrossRefGoogle ScholarPubMed
Shiels, MS, Cole, SR, Kirk, GD, Poole, C.A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J Acquir Immune Defic Syndr 2009;52(5):611–22.CrossRefGoogle ScholarPubMed
Silverberg, MJ, Chao, C, Leyden, WA, et al. HIV infection and the risk of cancers with and without a known infectious cause. AIDS 2009;23(17):2337–45.CrossRefGoogle ScholarPubMed
Serraino, D, Boschini, A, Carrieri, P, et al. Cancer risk among men with, or at risk of, HIV infection in southern Europe. AIDS 2000;14(5):553–9.CrossRefGoogle ScholarPubMed
Gallagher, B, Wang, Z, Schymura, MJ, Kahn, A, Fordyce, EJ.Cancer incidence in New York State acquired immunodeficiency syndrome patients. Am J Epidemiol 2001;154(6):544–56.CrossRefGoogle ScholarPubMed
Grulich, AE, Wan, X, Law, MG, Coates, M, Kaldor, JM.Risk of cancer in people with AIDS. AIDS 1999;13(7):839–43.CrossRefGoogle ScholarPubMed
Frisch, M, Biggar, RJ, Engels, EA, Goedert, JJ.Association of cancer with AIDS-related immunosuppression in adults. JAMA 2001;285(13):1736–45.CrossRefGoogle ScholarPubMed
Parker, MS, Leveno, DM, Campbell, TJ, Worrell, JA, Carozza, SE.AIDS-related bronchogenic carcinoma: fact or fiction?Chest 1998;113(1):154–61.CrossRefGoogle ScholarPubMed
Herida, M, Mary-Krause, M, Kaphan, R, et al. Incidence of non-AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. J Clin Oncol 2003;21(18):3447–53.CrossRefGoogle Scholar
Phelps, RM, Smith, DK, Heilig, CM, et al. Cancer incidence in women with or at risk for HIV. Int J Cancer 2001;94(5):753–7.CrossRefGoogle ScholarPubMed
Kirk, GD, Merlo, C, O'Driscoll, P, et al. HIV infection is associated with an increased risk for lung cancer, independent of smoking. Clin Infect Dis 2007;45(1):103–10.CrossRefGoogle ScholarPubMed
Bazoes, A, Bower, M, Powles, T.Smoke and mirrors: HIV-related lung cancer. Curr Opin Oncol 2008;20(5):529–33.CrossRefGoogle ScholarPubMed
Powles, T, Nelson, M, Bower, M.HIV-related lung cancer – a growing concern?Int J STD AIDS 2003;14(10):647–51.CrossRefGoogle ScholarPubMed
Long, JL, Engels, EA, Moore, RD, Gebo, KA.Incidence and outcomes of malignancy in the HAART era in an urban cohort of HIV-infected individuals. AIDS 2008;22(4):489–96.CrossRefGoogle Scholar
Patel, P, Hanson, DL, Sullivan, PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med 2008;148(10):728–36.CrossRefGoogle ScholarPubMed
Nutankalva, L, Wutoh, AK, McNeil, J, et al. Malignancies in HIV: pre- and post-highly active antiretroviral therapy. J Natl Med Assoc 2008;100(7):817–20.CrossRefGoogle ScholarPubMed
StatBite: Cancer incidence among HIV-infected individuals in the U.S., 2000–2003. J Natl Cancer Inst 2008;100(17):1199.CrossRef
Louie, JK, Hsu, LC, Osmond, DH, Katz, MH, Schwarcz, SK.Trends in causes of death among persons with acquired immunodeficiency syndrome in the era of highly active antiretroviral therapy, San Francisco, 1994–1998. J Infect Dis 2002;186(7):1023–7.CrossRefGoogle ScholarPubMed
Lewden, C, May, T, Rosenthal, E, et al. Changes in causes of death among adults infected by HIV between 2000 and 2005: The “Mortalite 2000 and 2005” surveys (ANRS EN19 and Mortavic). J Acquir Immune Defic Syndr 2008;48(5):590–8.CrossRefGoogle Scholar
Bonnet, F, Lewden, C, May, T, et al. Malignancy-related causes of death in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. Cancer 2004;101(2):317–24.CrossRefGoogle ScholarPubMed
Bower, M, Powles, T, Nelson, M, et al. HIV-related lung cancer in the era of highly active antiretroviral therapy. AIDS 2003;17(3):371–5.CrossRefGoogle ScholarPubMed
Lavole, A, Chouaid, C, Baudrin, L, et al. Effect of highly active antiretroviral therapy on survival of HIV infected patients with non-small-cell lung cancer. Lung Cancer 2009;65(3):345–50.CrossRefGoogle ScholarPubMed
Pakkala, S, Ramalingam, SS.Lung cancer in HIV-positive patients. J Thorac Oncol 2010;5(11):1864–71.CrossRefGoogle ScholarPubMed
Clifford, GM, Polesel, J, Rickenbach, M, et al. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst 2005;97(6):425–32.CrossRefGoogle ScholarPubMed
Powles, T, Thirwell, C, Newsom-Davis, T, et al. Does HIV adversely influence the outcome in advanced non-small-cell lung cancer in the era of HAART?Br J Cancer 2003;89(3):457–9.CrossRefGoogle ScholarPubMed
Spano, JP, Massiani, MA, Bentata, M, et al. Lung cancer in patients with HIV infection and review of the literature. Med Oncol 2004;21(2):109–15.CrossRefGoogle ScholarPubMed
Wistuba, II, Behrens, C, Gazdar, AF.Pathogenesis of non-AIDS-defining cancers: a review. AIDS Patient Care STDS 1999;13(7):415–26.CrossRefGoogle ScholarPubMed
Wistuba, II, Behrens, C, Milchgrub, S, et al. Comparison of molecular changes in lung cancers in HIV-positive and HIV-indeterminate subjects. JAMA 1998;279(19):1554–9.CrossRefGoogle ScholarPubMed
Agostini, C, Trentin, L, Zambello, R, Semenzato, G.HIV-1 and the lung. Infectivity, pathogenic mechanisms, and cellular immune responses taking place in the lower respiratory tract. Am Rev Respir Dis 1993;147(4):1038–49.CrossRefGoogle ScholarPubMed
Burke, M, Furman, A, Hoffman, M, et al. Lung cancer in patients with HIV infection: is it AIDS-related?HIV Med 2004;5(2):110–4.CrossRefGoogle ScholarPubMed
Cooley, TP.Non-AIDS-defining cancer in HIV-infected people. Hematol Oncol Clin North Am 2003;17(3):889–99.CrossRefGoogle ScholarPubMed
Semenzato, G, de Rossi, A, Agostini, C.Human retroviruses and their aetiological link to pulmonary diseases. Eur Respir J 1993;6(7):925–9.Google ScholarPubMed
Genebes, C, Brouchet, L, Kamar, N, et al. Characteristics of thoracic malignancies that occur after solid-organ transplantation. J Thorac Oncol 2010;5(11):1789–95.CrossRefGoogle ScholarPubMed
Hinds, MW, Cohen, HI, Kolonel, LN.Tuberculosis and lung cancer risk in nonsmoking women. Am Rev Respir Dis 1982;125(6):776–8.Google ScholarPubMed
Liang, HY, Li, XL, Yu, XS, et al. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer 2009;125(12):2936–44.CrossRefGoogle ScholarPubMed
Ko, YC, Lee, CH, Chen, MJ, et al. Risk factors for primary lung cancer among non-smoking women in Taiwan. Int J Epidemiol 1997;26(1):24–31.CrossRefGoogle ScholarPubMed
Zheng, W, Blot, WJ, Liao, ML, et al. Lung cancer and prior tuberculosis infection in Shanghai. Br J Cancer 1987;56(4):501–4.CrossRefGoogle ScholarPubMed
Aoki, K.Excess incidence of lung cancer among pulmonary tuberculosis patients. Jpn J Clin Oncol 1993;23(4):205–20.Google ScholarPubMed
Shiels, MS, Albanes, D, Virtamo, J, Engels, EA.Increased risk of lung cancer in men with tuberculosis in the alpha-tocopherol, beta-carotene cancer prevention study. Cancer Epidemiol Biomarkers Prev 2011;20(4):672–8.CrossRefGoogle ScholarPubMed
Brenner, AV, Wang, Z, Kleinerman, RA, et al. Previous pulmonary diseases and risk of lung cancer in Gansu Province, China. Int J Epidemiol 2001;30(1):118–24.CrossRefGoogle ScholarPubMed
Campbell, AH, Guilfoyle, P.Pulmonary tuberculosis, isoniazid and cancer. Br J Dis Chest 1970;64(3):141–9.CrossRefGoogle ScholarPubMed
Howe, GR, Lindsay, J, Coppock, E, Miller, AB.Isoniazid exposure in relation to cancer incidence and mortality in a cohort of tuberculosis patients. Int J Epidemiol 1979;8(4):305–12.CrossRefGoogle Scholar
Gao, YT, Blot, WJ, Zheng, W, et al. Lung cancer among Chinese women. Int J Cancer 1987;40(5):604–9.CrossRefGoogle ScholarPubMed
Wu, AH, Fontham, ET, Reynolds, P, et al. Previous lung disease and risk of lung cancer among lifetime nonsmoking women in the United States. Am J Epidemiol 1995;141(11):1023–32.CrossRefGoogle ScholarPubMed
Alavanja, MC, Brownson, RC, Boice, JDJ, Hock, E.Preexisting lung disease and lung cancer among nonsmoking women. Am J Epidemiol 1992;136(6):623–32.CrossRefGoogle ScholarPubMed
Ohshima, H, Bartsch, H.Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 1994;305(2):253–64.CrossRefGoogle ScholarPubMed
Littman, AJ, Jackson, LA, Vaughan, TL.Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidemiol Biomarkers Prev 2005;14(4):773–8.CrossRefGoogle ScholarPubMed
Littman, AJ, White, E, Jackson, LA, et al. Chlamydia pneumoniae infection and risk of lung cancer. Cancer Epidemiol Biomarkers Prev 2004;13(10):1624–30.Google ScholarPubMed
Kocazeybek, B.Chronic Chlamydophila pneumoniae infection in lung cancer, a risk factor: a case-control study. J Med Microbiol 2003;52(Pt 8):721–6.CrossRefGoogle ScholarPubMed
Jackson, LA, Wang, SP, Nazar-Stewart, V, Grayston, JT, Vaughan, TL.Association of Chlamydia pneumoniae immunoglobulin A seropositivity and risk of lung cancer. Cancer Epidemiol Biomarkers Prev 2000;9(11):1263–6.Google ScholarPubMed
Koyi, H, Branden, E, Gnarpe, J, Gnarpe, H, Steen, B.An association between chronic infection with Chlamydia pneumoniae and lung cancer. A prospective 2-year study. APMIS 2001;109(9):572–80.CrossRefGoogle ScholarPubMed
Laurila, AL, Anttila, T, Laara, E, et al. Serological evidence of an association between Chlamydia pneumoniae infection and lung cancer. Int J Cancer 1997;74(1):31–4.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Anttila, T, Koskela, P, Leinonen, M, et al. Chlamydia pneumoniae infection and the risk of female early-onset lung cancer. Int J Cancer 2003;107(4):681–2.CrossRefGoogle ScholarPubMed
Koh, WP, Chow, VTK, Phoon, MC, Ramachandran, N, Seow, A.Lack of association between chronic Chlamydophila pneumoniae infection and lung cancer among nonsmoking Chinese women in Singapore. Int J Cancer 2005;114(3):502–4.CrossRefGoogle ScholarPubMed
Huittinen, T, Leinonen, M, Tenkanen, L, et al. Synergistic effect of persistent Chlamydia pneumoniae infection, autoimmunity, and inflammation on coronary risk. Circulation 2003;107(20):2566–70.CrossRefGoogle ScholarPubMed
Wong, Y, Ward, ME.Chlamydia pneumoniae and atherosclerosis. J Clin Pathol 1999;52(5):398–9.CrossRefGoogle ScholarPubMed
Koshiol, J, Rotunno, M, Consonni, D, et al. Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study. PLoS ONE 2009;4(10):e7380.CrossRefGoogle Scholar
Purdue, MP, Gold, L, Jarvholm, B, et al. Impaired lung function and lung cancer incidence in a cohort of Swedish construction workers. Thorax 2007;62(1):51–6.CrossRefGoogle Scholar
Ramanakumar, AV, Parent, ME, Menzies, D, Siemiatycki, J.Risk of lung cancer following nonmalignant respiratory conditions: evidence from two case-control studies in Montreal, Canada. Lung Cancer 2006;53(1):5–12.CrossRefGoogle ScholarPubMed
Cohen, BH.Chronic obstructive pulmonary disease: a challenge in genetic epidemiology. Am J Epidemiol 1980;112(2):274–88.CrossRefGoogle ScholarPubMed
Liu, BQ, Peto, R, Chen, ZM, et al. Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths. BMJ 1998;317(7170):1411–22.CrossRefGoogle ScholarPubMed
Samet, JM, Humble, CG, Pathak, DR.Personal and family history of respiratory disease and lung cancer risk. Am Rev Respir Dis 1986;134(3):466–70.Google ScholarPubMed
Schabath, MB, Delclos, GL, Martynowicz, MM, et al. Opposing effects of emphysema, hay fever, and select genetic variants on lung cancer risk. Am J Epidemiol 2005;161(5):412–22.CrossRefGoogle ScholarPubMed
Shen, XB, Wang, GX, Huang, YZ, Xiang, LS, Wang, XH.Analysis and estimates of attributable risk factors for lung cancer in Nanjing, China. Lung Cancer 1996;14 Suppl 1:S107–12.CrossRefGoogle Scholar
Skillrud, DM, Offord, KP, Miller, RD.Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med 1986;105(4):503–7.CrossRefGoogle ScholarPubMed
Tockman, MS, Anthonisen, NR, Wright, EC, Donithan, MG.Airways obstruction and the risk for lung cancer. Ann Intern Med 1987;106(4):512–8.CrossRefGoogle ScholarPubMed
Wu-Williams, AH, Dai, XD, Blot, W, et al. Lung cancer among women in north-east China. Br J Cancer 1990;62(6):982–7.CrossRefGoogle ScholarPubMed
Lange, P, Nyboe, J, Appleyard, M, Jensen, G, Schnohr, P.Ventilatory function and chronic mucus hypersecretion as predictors of death from lung cancer. Am Rev Respir Dis 1990;141(3):613–7.CrossRefGoogle ScholarPubMed
Kuller, LH, Ockene, J, Meilahn, E, Svendsen, KH.Relation of forced expiratory volume in one second (FEV1) to lung cancer mortality in the Multiple Risk Factor Intervention Trial (MRFIT). Am J Epidemiol 1990;132(2):265–74.CrossRefGoogle Scholar
Schwartz, AG, Cote, ML, Wenzlaff, AS, et al. Chronic obstructive lung diseases and risk of non-small cell lung cancer in women. J Thorac Oncol 2009;4(3):291–9.CrossRefGoogle ScholarPubMed
Loganathan, RS, Stover, DE, Shi, W, Venkatraman, E.Prevalence of COPD in women compared to men around the time of diagnosis of primary lung cancer. Chest 2006;129(5):1305–12.CrossRefGoogle ScholarPubMed
Dean, G.Lung cancer and bronchitis in Northern Ireland, 1960–2. Br Med J 1966;1(5502):1506–14.CrossRefGoogle ScholarPubMed
Littman, AJ, Thornquist, MD, White, E, Jackson, LA, Goodman, GE, Vaughan, TL.Prior lung disease and risk of lung cancer in a large prospective study. Cancer Causes Control 2004;15(8):819–27.CrossRefGoogle Scholar
Moghaddam, SJ, Li, H, Cho, SN, et al. Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model. Am J Respir Cell Mol Biol 2009;40(4):443–53.CrossRefGoogle Scholar
Moghaddam, SJ, Barta, P, Mirabolfathinejad, SG, et al. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis 2009;30(11):1949–56.CrossRefGoogle ScholarPubMed
Pillai, SG, Ge, D, Zhu, G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 2009;5(3):e1000421.CrossRefGoogle ScholarPubMed
Wilk, JB, Chen, TH, Gottlieb, DJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 2009;5(3):e1000429.CrossRefGoogle ScholarPubMed
Watkins, DN, Berman, DM, Burkholder, SG, et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003;422(6929):313–7.CrossRefGoogle ScholarPubMed
Pepicelli, CV, Lewis, PM, McMahon, AP.Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 1998;8(19):1083–6.CrossRefGoogle ScholarPubMed
Yang, P, Sun, Z, Krowka, MJ, et al. Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Arch Intern Med 2008;168(10):1097–103.CrossRefGoogle ScholarPubMed
Brown, DW, Young, KE, Anda, RF, Felitti, VJ, Giles, WH.Re: asthma and the risk of lung cancer. findings from the Adverse Childhood Experiences (ACE). Cancer Causes Control 2006;17(3):349–50.CrossRefGoogle Scholar
Ji, J, Shu, X, Li, X, Sundquist, K, Sundquist, J, Hemminki, K.Cancer risk in hospitalised asthma patients. Br J Cancer 2009;100(5):829–33.CrossRefGoogle ScholarPubMed
Turner, MC, Chen, Y, Krewski, D, Ghadirian, P.An overview of the association between allergy and cancer. Int J Cancer 2006;118(12):3124–32.CrossRefGoogle ScholarPubMed
Santillan, AA, Camargo, CAJ, Colditz, GA.A meta-analysis of asthma and risk of lung cancer (United States). Cancer Causes Control 2003;14(4):327–34.CrossRefGoogle Scholar
Liang, H, Guan, P, Yin, Z, Li, X, He, Q, Zhou, B.Risk of lung cancer following nonmalignant respiratory conditions among nonsmoking women living in Shenyang, Northeast China. J Womens Health (Larchmt) 2009;18(12):1989–95.CrossRefGoogle ScholarPubMed
Koh, WP, Yuan, JM, Wang, R, et al. Chronic rhinosinusitis and risk of lung cancer in the Singapore Chinese Health Study. Int J Cancer 2008;123(6):1398–402.CrossRefGoogle ScholarPubMed
Le Jeune, I, Gribbin, J, West, J, et al. The incidence of cancer in patients with idiopathic pulmonary fibrosis and sarcoidosis in the UK. Respir Med 2007;101(12):2534–40.CrossRefGoogle ScholarPubMed
Ozawa, Y, Suda, T, Naito, T, et al. Cumulative incidence of and predictive factors for lung cancer in IPF. Respirology 2009;14(5):723–8.CrossRefGoogle ScholarPubMed
Nagai, A, Chiyotani, A, Nakadate, T, Konno, K.Lung cancer in patients with idiopathic pulmonary fibrosis. Tohoku J Exp Med 1992;167(3):231–7.CrossRefGoogle ScholarPubMed
Samet, JM.Does idiopathic pulmonary fibrosis increase lung cancer risk?Am J Respir Crit Care Med 2000;161(1):1–2.Google ScholarPubMed
Harris, JM, Cullinan, P, McDonald, JC.Does cryptogenic fibrosing alveolitis carry an increased risk of death from lung cancer?J Epidemiol Community Health 1998;52(9):602–3.CrossRefGoogle ScholarPubMed
Wells, C, Mannino, DM.Pulmonary fibrosis and lung cancer in the United States: analysis of the multiple cause of death mortality data, 1979 through 1991. South Med J 1996;89(5):505–10.CrossRefGoogle ScholarPubMed
Kawasaki, H, Nagai, K, Yokose, T, et al. Clinicopathological characteristics of surgically resected lung cancer associated with idiopathic pulmonary fibrosis. J Surg Oncol 2001;76(1):53–7.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Aubry, MC, Myers, JL, Douglas, WW, et al. Primary pulmonary carcinoma in patients with idiopathic pulmonary fibrosis. Mayo Clin Proc 2002;77(8):763–70.CrossRefGoogle ScholarPubMed
Hubbard, R, Venn, A, Lewis, S, Britton, J.Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. Am J Respir Crit Care Med 2000;161(1):5–8.CrossRefGoogle ScholarPubMed
Matsushita, H, Tanaka, S, Saiki, Y, et al. Lung cancer associated with usual interstitial pneumonia. Pathol Int 1995;45(12):925–32.CrossRefGoogle ScholarPubMed
Turner-Warwick, M, Lebowitz, M, Burrows, B, Johnson, A.Cryptogenic fibrosing alveolitis and lung cancer. Thorax 1980;35(7):496–9.CrossRefGoogle ScholarPubMed
Stack, BH, Choo-Kang, YF, Heard, BE.The prognosis of cryptogenic fibrosing alveolitis. Thorax 1972;27(5):535–42.CrossRefGoogle ScholarPubMed
Daniels, CE, Jett, JR.Does interstitial lung disease predispose to lung cancer?Curr Opin Pulm Med 2005;11(5):431–7.CrossRefGoogle ScholarPubMed
Park, J, Kim, DS, Shim, TS, et al. Lung cancer in patients with idiopathic pulmonary fibrosis. Eur Respir J 2001;17(6):1216–9.CrossRefGoogle ScholarPubMed
Kawasaki, H, Ogura, T, Yokose, T, et al. p53 gene alteration in atypical epithelial lesions and carcinoma in patients with idiopathic pulmonary fibrosis. Hum Pathol 2001;32(10):1043–9.CrossRefGoogle ScholarPubMed
Kawai, T, Yakumaru, K, Suzuki, M, Kageyama, K.Diffuse interstitial pulmonary fibrosis and lung cancer. Acta Pathol Jpn 1987;37(1):11–19.Google ScholarPubMed
Kitamura, H, Ichinose, S, Hosoya, T, et al. Inhalation of inorganic particles as a risk factor for idiopathic pulmonary fibrosis – elemental microanalysis of pulmonary lymph nodes obtained at autopsy cases. Pathol Res Pract 2007;203(8):575–85.CrossRefGoogle ScholarPubMed
Terasaki, Y, Akuta, T, Terasaki, M, et al. Guanine nitration in idiopathic pulmonary fibrosis and its implication for carcinogenesis. Am J Respir Crit Care Med 2006;174(6):665–73.CrossRefGoogle ScholarPubMed
Kuwano, K, Kunitake, R, Kawasaki, M, et al. P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1996;154(2 Pt 1):477–83.CrossRefGoogle ScholarPubMed
Hayakawa, H, Shirai, M, Uchiyama, H, et al. Lack of evidence for a role of Epstein-Barr virus in the increase of lung cancer in idiopathic pulmonary fibrosis. Respir Med 2003;97(3):281–4.CrossRefGoogle ScholarPubMed
Hironaka, M, Fukayama, M.Pulmonary fibrosis and lung carcinoma: a comparative study of metaplastic epithelia in honeycombed areas of usual interstitial pneumonia with or without lung carcinoma. Pathol Int 1999;49(12):1060–6.CrossRefGoogle ScholarPubMed
Qunn, L, Takemura, T, Ikushima, S, et al. Hyperplastic epithelial foci in honeycomb lesions in idiopathic pulmonary fibrosis. Virchows Arch 2002;441(3):271–8.CrossRefGoogle ScholarPubMed
Hojo, S, Fujita, J, Yamadori, I, et al. Overexpression of p53 protein in interstitial lung diseases. Respir Med 1998;92(2):184–90.CrossRefGoogle ScholarPubMed
Murata, K, Ota, S, Niki, T, et al. p63 – Key molecule in the early phase of epithelial abnormality in idiopathic pulmonary fibrosis. Exp Mol Pathol 2007;83(3):367–76.CrossRefGoogle ScholarPubMed
Uematsu, K, Yoshimura, A, Gemma, A, et al. Aberrations in the fragile histidine triad (FHIT) gene in idiopathic pulmonary fibrosis. Cancer Res 2001;61(23):8527–33.Google ScholarPubMed
Takahashi, T, Munakata, M, Ohtsuka, Y, et al. Expression and alteration of ras and p53 proteins in patients with lung carcinoma accompanied by idiopathic pulmonary fibrosis. Cancer 2002;95(3):624–33.CrossRefGoogle ScholarPubMed
Wang, Y, Kuan, PJ, Xing, C, et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet 2009;84(1):52–9.CrossRefGoogle ScholarPubMed
Hill, CL, Nguyen, AM, Roder, D, Roberts-Thomson, P.Risk of cancer in patients with scleroderma: a population based cohort study. Ann Rheum Dis 2003;62(8):728–31.CrossRefGoogle ScholarPubMed
Rosenthal, AK, McLaughlin, JK, Gridley, G, Nyren, O.Incidence of cancer among patients with systemic sclerosis. Cancer 1995;76(5):910–4.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Roumm, AD, Medsger, TAJ.Cancer and systemic sclerosis. An epidemiologic study. Arthritis Rheum 1985;28(12):1336–40.CrossRefGoogle ScholarPubMed
Peters-Golden, M, Wise, RA, Hochberg, M, Stevens, MB, Wigley, FM.Incidence of lung cancer in systemic sclerosis. J Rheumatol 1985;12(6):1136–9.Google ScholarPubMed
Hill, CL, Zhang, Y, Sigurgeirsson, B, et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. Lancet 2001;357(9250):96–100.CrossRefGoogle ScholarPubMed
Chow, WH, Gridley, G, Mellemkjaer, L, et al. Cancer risk following polymyositis and dermatomyositis: a nationwide cohort study in Denmark. Cancer Causes Control 1995;6(1):9–13.CrossRefGoogle ScholarPubMed
Sigurgeirsson, B, Lindelof, B, Edhag, O, Allander, E.Risk of cancer in patients with dermatomyositis or polymyositis. A population-based study. N Engl J Med 1992;326(6):363–7.CrossRefGoogle ScholarPubMed
Neuhouser, ML, Patterson, RE, Thornquist, MD, et al. Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the beta-carotene and retinol efficacy trial (CARET). Cancer Epidemiol Biomarkers Prev 2003;12(4):350–8.Google Scholar
Skuladottir, H, Tjoenneland, A, Overvad, K, Stripp, C, Olsen, JH.Does high intake of fruit and vegetables improve lung cancer survival?Lung Cancer 2006;51(3):267–73.CrossRefGoogle ScholarPubMed
Wright, ME, Mayne, ST, Swanson, CA, Sinha, R, Alavanja, MCR.Dietary carotenoids, vegetables, and lung cancer risk in women: the Missouri women's health study (United States). Cancer Causes Control 2003;14(1):85–96.CrossRefGoogle Scholar
Holick, CN, Michaud, DS, Stolzenberg-Solomon, R, et al. Dietary carotenoids, serum beta-carotene, and retinol and risk of lung cancer in the alpha-tocopherol, beta-carotene cohort study. Am J Epidemiol 2002;156(6):536–47.CrossRefGoogle ScholarPubMed
Buchner, FL, Bueno-de-Mesquita, HB, Linseisen, J, et al. Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 2010;21(3):357–71.CrossRefGoogle Scholar
Smith-Warner, SA, Spiegelman, D, Yaun, SS, et al. Fruits, vegetables and lung cancer: a pooled analysis of cohort studies. Int J Cancer 2003;107(6):1001–11.CrossRefGoogle ScholarPubMed
Mannisto, S, Smith-Warner, SA, Spiegelman, D, et al. Dietary carotenoids and risk of lung cancer in a pooled analysis of seven cohort studies. Cancer Epidemiol Biomarkers Prev 2004;13(1):40–8.CrossRefGoogle Scholar
Miller, AB, Altenburg, HP, Bueno-de-Mesquita, B, et al. Fruits and vegetables and lung cancer: findings from the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 2004;108(2):269–76.CrossRefGoogle ScholarPubMed
Feskanich, D, Ziegler, RG, Michaud, DS, et al. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J Natl Cancer Inst 2000;92(22):1812–23.CrossRefGoogle ScholarPubMed
Thornton, A, Lee, P, Fry, J.Differences between smokers, ex-smokers, passive smokers and non-smokers. J Clin Epidemiol 1994;47(10):1143–62.CrossRefGoogle ScholarPubMed
Subar, AF, Harlan, LC, Mattson, ME.Food and nutrient intake differences between smokers and non-smokers in the US. Am J Public Health 1990;80(11):1323–9.CrossRefGoogle ScholarPubMed
Biesalski, HK, Bueno, de Mesquita B, Chesson, A, et al. European Consensus Statement on Lung Cancer: risk factors and prevention. Lung Cancer Panel. CA Cancer J Clin 1998;48(3):167–76.CrossRefGoogle ScholarPubMed
Gorlova, OY, Amos, C, Henschke, C, et al. Genetic susceptibility for lung cancer: interactions with gender and smoking history and impact on early detection policies. Hum Hered 2003;56(1–3):139–45.CrossRefGoogle ScholarPubMed
Mahabir, S, Wei, Q, Barrera, SL, et al. Dietary magnesium and DNA repair capacity as risk factors for lung cancer. Carcinogenesis 2008;29(5):949–56.CrossRefGoogle ScholarPubMed
Mahabir, S, Forman, MR, Barerra, SL, et al. Joint effects of dietary trace metals and DNA repair capacity in lung cancer risk. Cancer Epidemiol Biomarkers Prev 2007;16(12):2756–62.CrossRefGoogle ScholarPubMed
Mahabir, S, Spitz, MR, Barrera, SL, et al. Dietary zinc, copper and selenium, and risk of lung cancer. Int J Cancer 2007;120(5):1108–15.CrossRefGoogle ScholarPubMed
Shen, H, Wei, Q, Pillow, PC, et al. Dietary folate intake and lung cancer risk in former smokers: a case-control analysis. Cancer Epidemiol Biomarkers Prev 2003;12(10):980–6.Google ScholarPubMed
Lam, TK, Cross, AJ, Consonni, D, et al. Intakes of red meat, processed meat, and meat mutagens increase lung cancer risk. Cancer Res 2009;69(3):932–9.CrossRefGoogle ScholarPubMed
Tasevska, N, Sinha, R, Kipnis, V, et al. A prospective study of meat, cooking methods, meat mutagens, heme iron, and lung cancer risks. Am J Clin Nutr 2009;89(6):1884–94.CrossRefGoogle ScholarPubMed
Lampe, JW, Chen, C, Li, S, et al. Modulation of human glutathione S-transferases by botanically defined vegetable diets. Cancer Epidemiol Biomarkers Prev 2000;9(8):787–93.Google ScholarPubMed
Zhang, Y, Talalay, P, Cho, CG, Posner, GH.A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 1992;89(6):2399–403.CrossRefGoogle Scholar
Shapiro, TA, Fahey, JW, Wade, KL, Stephenson, KK, Talalay, P.Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 2001;10(5):501–8.Google ScholarPubMed
Wang, LI, Giovannucci, EL, Hunter, D, et al. Dietary intake of Cruciferous vegetables, glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 2004;15(10):977–85.CrossRefGoogle Scholar
London, SJ, Yuan, JM, Chung, FL, et al. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet 2000;356(9231):724–9.CrossRefGoogle ScholarPubMed
Spitz, MR, Duphorne, CM, Detry, MA, et al. Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol Biomarkers Prev 2000;9(10):1017–20.Google ScholarPubMed
Zhao, B, Seow, A, Lee, EJ, et al. Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidemiol Biomarkers Prev 2001;10(10):1063–7.Google ScholarPubMed
Carpenter, CL, Yu, MC, London, SJ.Dietary isothiocyanates, glutathione S-transferase M1 (GSTM1), and lung cancer risk in African Americans and Caucasians from Los Angeles County, California. Nutr Cancer 2009;61(4):492–9.CrossRefGoogle Scholar
Lam, TK, Gallicchio, L, Lindsley, K, et al. Cruciferous vegetable consumption and lung cancer risk: a systematic review. Cancer Epidemiol Biomarkers Prev 2009;18(1):184–95.CrossRefGoogle ScholarPubMed
Freudenheim, JL, Ram, M, Nie, J, et al. Lung cancer in humans is not associated with lifetime total alcohol consumption or with genetic variation in alcohol dehydrogenase 3 (ADH3). J Nutr 2003;133(11):3619–24.CrossRefGoogle Scholar
Woodson, K, Albanes, D, Tangrea, JA, Rautalahti, M, Virtamo, J, Taylor, PR.Association between alcohol and lung cancer in the alpha-tocopherol, beta-carotene cancer prevention study in Finland. Cancer Causes Control 1999;10(3):219–26.CrossRefGoogle ScholarPubMed
Kamholz, SL.Wine, spirits and the lung: good, bad or indifferent?Trans Am Clin Climatol Assoc 2006;117:129–45.Google ScholarPubMed
Ruano-Ravina, A, Figueiras, A, Barros-Dios, JM.Type of wine and risk of lung cancer: a case-control study in Spain. Thorax 2004;59(11):981–5.CrossRefGoogle ScholarPubMed
De Stefani, E, Correa, P, Deneo-Pellegrini, H, et al. Alcohol intake and risk of adenocarcinoma of the lung. A case-control study in Uruguay. Lung Cancer 2002;38(1):9–14.CrossRefGoogle Scholar
Carpenter, CL, Morgenstern, H, London, SJ.Alcoholic beverage consumption and lung cancer risk among residents of Los Angeles County. J Nutr 1998;128(4):694–700.CrossRefGoogle ScholarPubMed
Prescott, E, Gronbaek, M, Becker, U, Sorensen, TI.Alcohol intake and the risk of lung cancer: influence of type of alcoholic beverage. Am J Epidemiol 1999;149(5):463–70.CrossRefGoogle ScholarPubMed
Chao, C, Slezak, JM, Caan, BJ, Quinn, VP.Alcoholic beverage intake and risk of lung cancer: the California Men's Health Study. Cancer Epidemiol Biomarkers Prev 2008;17(10):2692–9.CrossRefGoogle ScholarPubMed
Chao, C.Associations between beer, wine, and liquor consumption and lung cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2007;16(11):2436–47.CrossRefGoogle ScholarPubMed
Athar, M, Back, JH, Tang, X, et al. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 2007;224(3):274–83.CrossRefGoogle ScholarPubMed
Bavaresco, L.Role of viticultural factors on stilbene concentrations of grapes and wine. Drugs Exp Clin Res 2003;29(5–6):181–7.Google ScholarPubMed
Mollerup, S, Ovrebo, S, Haugen, A.Lung carcinogenesis: resveratrol modulates the expression of genes involved in the metabolism of PAH in human bronchial epithelial cells. Int J Cancer 2001;92(1):18–25.3.0.CO;2-E>CrossRefGoogle Scholar
Berge, G, Ovrebo, S, Botnen, IV, et al. Resveratrol inhibits benzo[a]pyrene-DNA adduct formation in human bronchial epithelial cells. Br J Cancer 2004;91(2):333–8.CrossRefGoogle ScholarPubMed
Hansen, T, Seidel, A, Borlak, J.The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells. Toxicol Appl Pharmacol 2007;221(2):222–34.CrossRefGoogle ScholarPubMed
Tsuji, PA, Walle, T.Inhibition of benzo[a]pyrene-activating enzymes and DNA binding in human bronchial epithelial BEAS-2B cells by methoxylated flavonoids. Carcinogenesis 2006;27(8):1579–85.CrossRefGoogle ScholarPubMed
Leung, HY, Yung, LH, Shi, G, Lu, AL, Leung, LK.The red wine polyphenol resveratrol reduces polycyclic aromatic hydrocarbon-induced DNA damage in MCF-10A cells. Br J Nutr 2009;102(10):1462–8.CrossRefGoogle ScholarPubMed
Whyte, L, Huang, YY, Torres, K, Mehta, RG.Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res 2007;67(24):12007–12017.CrossRefGoogle ScholarPubMed
Kim, YA, Lee, WH, Choi, TH, et al. Involvement of p21WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int J Oncol 2003;23(4):1143–9.Google ScholarPubMed
Zhao, W, Bao, P, Qi, H, You, H.Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPC-A-1/CDDP cells. Oncol Rep 2010;23(1):279–86.Google ScholarPubMed
Hu, Y, Rahlfs, S, Mersch-Sundermann, V, Becker, K.Resveratrol modulates mRNA transcripts of genes related to redox metabolism and cell proliferation in non-small-cell lung carcinoma cells. Biol Chem 2007;388(2):207–19.CrossRefGoogle ScholarPubMed
Lee, EJ, Min, HY, Joo, Park H, et al. G2/M cell cycle arrest and induction of apoptosis by a stilbenoid, 3,4,5-trimethoxy-4′-bromo-cis-stilbene, in human lung cancer cells. Life Sci 2004;75(23):2829–39.CrossRefGoogle ScholarPubMed
Yang, YT, Weng, CJ, Ho, CT, Yen, GC.Resveratrol analog-3,5,4′-trimethoxy-trans-stilbene inhibits invasion of human lung adenocarcinoma cells by suppressing the MAPK pathway and decreasing matrix metalloproteinase-2 expression. Mol Nutr Food Res 2009;53(3):407–16.CrossRefGoogle ScholarPubMed
Asensi, M, Medina, I, Ortega, A, et al. Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic Biol Med 2002;33(3):387–98.CrossRefGoogle ScholarPubMed
Ohshiro, K, Rayala, SK, Kondo, S, et al. Identifying the estrogen receptor coactivator PELP1 in autophagosomes. Cancer Res 2007;67(17):8164–71.CrossRefGoogle ScholarPubMed
Di Stefano, A, Caramori, G, Oates, T, et al. Increased expression of nuclear factor-kappaB in bronchial biopsies from smokers and patients with COPD. Eur Respir J 2002;20(3):556–63.CrossRefGoogle ScholarPubMed
Moghaddam, SJ, Clement, CG, De la Garza, MM, et al. Haemophilus influenzae lysate induces aspects of the chronic obstructive pulmonary disease phenotype. Am J Respir Cell Mol Biol 2008;38(6):629–38.CrossRefGoogle ScholarPubMed
Karin, M, Cao, Y, Greten, FR, Li, ZW.NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2(4):301–10.CrossRefGoogle ScholarPubMed
Luo, JL, Maeda, S, Hsu, LC, Yagita, H, Karin, M.Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 2004;6(3):297–305.CrossRefGoogle ScholarPubMed
Greten, FR, Eckmann, L, Greten, TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004;118(3):285–96.CrossRefGoogle Scholar
Pikarsky, E, Porat, RM, Stein, I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004;431(7007):461–6.CrossRefGoogle ScholarPubMed
Broide, DH, Lawrence, T, Doherty, T, et al. Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium. Proc Natl Acad Sci USA 2005;102(49):17723–8.CrossRefGoogle ScholarPubMed
Inayama, M, Nishioka, Y, Azuma, M, et al. A novel IkappaB kinase-beta inhibitor ameliorates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 2006;173(9):1016–22.CrossRefGoogle ScholarPubMed
Newton, R, Holden, NS, Catley, MC, et al. Repression of inflammatory gene expression in human pulmonary epithelial cells by small-molecule IkappaB kinase inhibitors. J Pharmacol Exp Ther 2007;321(2):734–42.CrossRefGoogle ScholarPubMed
Stathopoulos, GT, Sherrill, TP, Cheng, DS, et al. Epithelial NF-kappaB activation promotes urethane-induced lung carcinogenesis. Proc Natl Acad Sci USA 2007;104(47):18514–19.CrossRefGoogle ScholarPubMed
Bjelke, E.Dietary vitamin A and human lung cancer. Int J Cancer 1975;15(4):561–5.CrossRefGoogle ScholarPubMed
Sporn, MB, Dunlop, NM, Newton, DL, Smith, JM.Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 1976;35(6):1332–8.Google Scholar
Blumberg, J, Block, G.The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study in Finland. Nutr Rev 1994;52(7):242–5.CrossRefGoogle ScholarPubMed
Gray, J, Mao, JT, Szabo, E, et al. Lung cancer chemoprevention: ACCP evidence-based clinical practice guidelines (2nd Edition). Chest 2007;132(3 Suppl):56S–68S.CrossRefGoogle Scholar
Hennekens, CH, Buring, JE, Manson, JE, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 1996;334(18):1145–9.CrossRefGoogle ScholarPubMed
Lee, IM, Cook, NR, Manson, JE, Buring, JE, Hennekens, CH.Beta-carotene supplementation and incidence of cancer and cardiovascular disease: the Women's Health Study. J Natl Cancer Inst 1999;91(24):2102–6.CrossRefGoogle ScholarPubMed
The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med 1994;330(15):1029–35.Google Scholar
Omenn, GS, Goodman, GE, Thornquist, MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 1996;334(18):1150–5.CrossRefGoogle ScholarPubMed
Omenn, GS, Goodman, GE, Thornquist, MD, et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst 1996;88(21):1550–9.CrossRefGoogle ScholarPubMed
Tanvetyanon, T, Bepler, G.Beta-carotene in multivitamins and the possible risk of lung cancer among smokers versus former smokers: a meta-analysis and evaluation of national brands. Cancer 2008;113(1):150–7.CrossRefGoogle ScholarPubMed
Touvier, M, Kesse, E, Clavel-Chapelon, F, Boutron-Ruault, MC.Dual association of beta-carotene with risk of tobacco-related cancers in a cohort of French women. J Natl Cancer Inst 2005;97(18):1338–44.CrossRefGoogle Scholar
Albanes, D, Heinonen, OP, Taylor, PR, et al. Alpha-Tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base-line characteristics and study compliance. J Natl Cancer Inst 1996;88(21):1560–70.CrossRefGoogle ScholarPubMed
Caraballoso, M, Sacristan, M, Serra, C, Bonfill, X.Drugs for preventing lung cancer in healthy people. Cochrane Database Syst Rev 2003;(2):CD002141.CrossRefGoogle ScholarPubMed
Epplein, M, Franke, AA, Cooney, RV, et al. Association of plasma micronutrient levels and urinary isoprostane with risk of lung cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2009;18(7):1962–70.CrossRefGoogle ScholarPubMed
Satia, JA, Littman, A, Slatore, CG, Galanko, JA, White, E.Long-term use of beta-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: results from the VITamins And Lifestyle (VITAL) study. Am J Epidemiol 2009;169(7):815–28.CrossRefGoogle ScholarPubMed
Svennevig, K.Re: “Long-term use of beta-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: results from the VITamins and Lifestyle (VITAL) Study”. Am J Epidemiol 2009;170(3):401–2.CrossRefGoogle Scholar
Roswall, N, Olsen, A, Christensen, J, et al. Source-specific effects of micronutrients in lung cancer prevention. Lung Cancer 2010;67:275–81.CrossRefGoogle ScholarPubMed
Spencer, JPE, Abd, El Mohsen MM, Minihane, AM, Mathers, JC.Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 2008;99(1):12–22.CrossRefGoogle ScholarPubMed
Spencer, JPE, Vauzour, D, Rendeiro, C.Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys 2009;492(1–2):1–9.CrossRefGoogle ScholarPubMed
Goldbohm, RA, Hertog, MG, Brants, HA, et al. Consumption of black tea and cancer risk: a prospective cohort study. J Natl Cancer Inst 1996;88(2):93–100.CrossRefGoogle ScholarPubMed
Hirvonen, T, Virtamo, J, Korhonen, P, Albanes, D, Pietinen, P.Flavonol and flavone intake and the risk of cancer in male smokers (Finland). Cancer Causes Control 2001;12(9):789–96.CrossRefGoogle Scholar
Knekt, P, Kumpulainen, J, Jarvinen, R, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 2002;76(3):560–8.CrossRefGoogle ScholarPubMed
Tang, NP, Zhou, B, Wang, B, Yu, RB, Ma, J.Flavonoids intake and risk of lung cancer: a meta-analysis. Jpn J Clin Oncol 2009;39(6):352–9.CrossRefGoogle ScholarPubMed
Mursu, J, Nurmi, T, Tuomainen, TP, et al. Intake of flavonoids and risk of cancer in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Int J Cancer 2008;123(3):660–3.CrossRefGoogle ScholarPubMed
Wright, ME, Mayne, ST, Stolzenberg-Solomon, RZ, et al. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am J Epidemiol 2004;160(1):68–76.CrossRefGoogle Scholar
Cutler, GJ, Nettleton, JA, Ross, JA, et al. Dietary flavonoid intake and risk of cancer in postmenopausal women: the Iowa Women's Health Study. Int J Cancer 2008;123(3):664–71.CrossRefGoogle ScholarPubMed
Gerhauser, C.Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med 2008;74(13):1608–24.CrossRefGoogle ScholarPubMed
Shi, D, Jiang, BH.Antioxidant properties of apple juice and its protection against Cr(VI)-induced cellular injury. J Environ Pathol Toxicol Oncol 2002;21(3):233–42.CrossRefGoogle ScholarPubMed
Khanduja, KL, Gandhi, RK, Pathania, V, Syal, N.Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice. Food Chem Toxicol 1999;37(4):313–8.CrossRefGoogle ScholarPubMed
Lee, KW, Kang, NJ, Heo, YS, et al. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res 2008;68(3):946–55.CrossRefGoogle Scholar
Murakami, A, Ashida, H, Terao, J.Multitargeted cancer prevention by quercetin. Cancer Lett 2008;269(2):315–25.CrossRefGoogle ScholarPubMed
Lee, KW, Lee, SJ, Kang, NJ, Lee, CY, Lee, HJ.Effects of phenolics in Empire apples on hydrogen peroxide-induced inhibition of gap-junctional intercellular communication. Biofactors 2004;21(1–4):361–5.CrossRefGoogle ScholarPubMed
Lee, DE, Shin, BJ, Hur, HJ, et al. Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication. Br J Nutr 2010;104(2):164–70.CrossRefGoogle ScholarPubMed
Puppala, D, Gairola, CG, Swanson, HI.Identification of kaempferol as an inhibitor of cigarette smoke-induced activation of the aryl hydrocarbon receptor and cell transformation. Carcinogenesis 2007;28(3):639–47.CrossRefGoogle ScholarPubMed
Kabat, GC, Miller, AB, Jain, M, Rohan, TE.Dietary intake of selected B vitamins in relation to risk of major cancers in women. Br J Cancer 2008;99(5):816–21.CrossRefGoogle ScholarPubMed
Akhtar, S, Meeran, SM, Katiyar, N, Katiyar, SK.Grape seed proanthocyanidins inhibit the growth of human non-small cell lung cancer xenografts by targeting insulin-like growth factor binding protein-3, tumor cell proliferation, and angiogenic factors. Clin Cancer Res 2009;15(3):821–31.CrossRefGoogle ScholarPubMed
Gaziano, JM, Glynn, RJ, Christen, WG, et al. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial. JAMA 2009;301(1):52–62.CrossRefGoogle Scholar
Alkhenizan, A, Hafez, K.The role of vitamin E in the prevention of cancer: a meta-analysis of randomized controlled trials. Ann Saudi Med 2007;27(6):409–14.CrossRefGoogle ScholarPubMed
Cho, E, Hunter, DJ, Spiegelman, D, et al. Intakes of vitamins A, C and E and folate and multivitamins and lung cancer: a pooled analysis of 8 prospective studies. Int J Cancer 2006;118(4):970–8.CrossRefGoogle Scholar
Lee, IM, Cook, NR, Gaziano, JM, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA 2005;294(1):56–65.CrossRefGoogle ScholarPubMed
Slatore, CG, Littman, AJ, Au, DH, Satia, JA, White, E.Long-term use of supplemental multivitamins, vitamin C, vitamin E, and folate does not reduce the risk of lung cancer. Am J Respir Crit Care Med 2008;177(5):524–30.CrossRefGoogle Scholar
Mooney, LA, Madsen, AM, Tang, D, et al. Antioxidant vitamin supplementation reduces benzo(a)pyrene-DNA adducts and potential cancer risk in female smokers. Cancer Epidemiol Biomarkers Prev 2005;14(1):237–42.Google ScholarPubMed
Kilkkinen, A, Knekt, P, Heliovaara, M, et al. Vitamin D status and the risk of lung cancer: a cohort study in Finland. Cancer Epidemiol Biomarkers Prev 2008;17(11):3274–8.CrossRefGoogle ScholarPubMed
Roomi, MW, Roomi, NW, Kalinovsky, T, Rath, M, Niedzwiecki, A.Chemopreventive effect of a novel nutrient mixture on lung tumorigenesis induced by urethane in male A/J mice. Tumori 2009;95(4):508–13.CrossRefGoogle ScholarPubMed
Magee, PJ, Rowland, IR.Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr 2004;91(4):513–31.CrossRefGoogle ScholarPubMed
Hollman, PCH, Milder, IEJ, Arts, ICW, et al. Phytoestrogens and risk of lung cancer. JAMA 2006;295(7):755–6.Google ScholarPubMed
Dacey, LJ, Johnstone, DW.Reducing the risk of lung cancer. JAMA 2005;294(12):1550–1.CrossRefGoogle ScholarPubMed
Schabath, MB, Hernandez, LM, Wu, X, Pillow, PC, Spitz, MR.Dietary phytoestrogens and lung cancer risk. JAMA 2005;294(12):1493–504.CrossRefGoogle ScholarPubMed
Mendilaharsu, M, De Stefani, E, Deneo-Pellegrini, H, Carzoglio, J, Ronco, A.Phytosterols and risk of lung cancer: a case-control study in Uruguay. Lung Cancer 1998;21(1):37–45.CrossRefGoogle ScholarPubMed
Koizumi, A, Tsukada, M, Hirano, S, et al. Energy restriction that inhibits cellular proliferation by torpor can decrease susceptibility to spontaneous and asbestos-induced lung tumors in A/J mice. Lab Invest 1993;68(6):728–39.Google ScholarPubMed
Pashko, LL, Schwartz, AG.Inhibition of 7,12-dimethylbenz[a]anthracene-induced lung tumorigenesis in A/J mice by food restriction is reversed by adrenalectomy. Carcinogenesis 1996;17(2):209–12.CrossRefGoogle Scholar
Kalaany, NY, Sabatini, DM.Tumours with PI3K activation are resistant to dietary restriction. Nature 2009;458(7239):725–31.CrossRefGoogle ScholarPubMed
Pan, SY, DesMeules, M.Energy intake, physical activity, energy balance, and cancer: epidemiologic evidence. Methods Mol Biol 2009;472:191–215.CrossRefGoogle ScholarPubMed
Smith-Warner, SA, Ritz, J, Hunter, DJ, et al. Dietary fat and risk of lung cancer in a pooled analysis of prospective studies. Cancer Epidemiol Biomarkers Prev 2002;11(10 Pt 1):987–92.Google Scholar
Alfano, CM, Klesges, RC, Murray, DM, et al. Physical activity in relation to all-site and lung cancer incidence and mortality in current and former smokers. Cancer Epidemiol Biomarkers Prev 2004;13(12):2233–41.Google ScholarPubMed
Kamangar, F, Qiao, YL, Yu, B, et al. Lung cancer chemoprevention: a randomized, double-blind trial in Linxian, China. Cancer Epidemiol Biomarkers Prev 2006;15(8):1562–4.CrossRefGoogle ScholarPubMed
Peto, R, Darby, S, Deo, H, et al. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ 2000;321(7257):323–9.CrossRefGoogle ScholarPubMed
Mattson, ME, Pollack, ES, Cullen, JW.What are the odds that smoking will kill you?Am J Public Health 1987;77(4):425–31.CrossRefGoogle ScholarPubMed
Matakidou, A, Eisen, T, Houlston, RS.Systematic review of the relationship between family history and lung cancer risk. Br J Cancer 2005;93(7):825–33.CrossRefGoogle ScholarPubMed
Li, X, Hemminki, K.Familial multiple primary lung cancers: a population-based analysis from Sweden. Lung Cancer 2005;47(3):301–7.CrossRefGoogle ScholarPubMed
Jin, YT, Xu, YC, Yang, RD, et al. Familial aggregation of lung cancer in a high incidence area in China. Br J Cancer 2005;92(7):1321–5.CrossRefGoogle Scholar
Jonsson, S, Thorsteinsdottir, U, Gudbjartsson, DF, et al. Familial risk of lung carcinoma in the Icelandic population. JAMA 2004;292(24):2977–83.CrossRefGoogle ScholarPubMed
Nitadori, J, Inoue, M, Iwasaki, M, et al. Association between lung cancer incidence and family history of lung cancer: data from a large-scale population-based cohort study, the JPHC study. Chest 2006;130(4):968–75.CrossRefGoogle ScholarPubMed
Amundadottir, LT, Thorvaldsson, S, Gudbjartsson, DF, et al. Cancer as a complex phenotype: pattern of cancer distribution within and beyond the nuclear family. PLoS Med 2004;1(3):e65.CrossRefGoogle ScholarPubMed
Li, X, Hemminki, K.Inherited predisposition to early onset lung cancer according to histological type. Int J Cancer 2004;112(3):451–7.CrossRefGoogle ScholarPubMed
Wang, Y, Broderick, P, Webb, E, et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 2008 Nov 2.
Foulkes, WD.Inherited susceptibility to common cancers. N Engl J Med 2008;359(20):2143–53.CrossRefGoogle ScholarPubMed
Hwang, SJ, Cheng, LS, Lozano, G, et al. Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Hum Genet 2003;113(3):238–43.Google ScholarPubMed
Sanders, BM, Jay, M, Draper, GJ, Roberts, EM.Non-ocular cancer in relatives of retinoblastoma patients. Br J Cancer 1989;60(3):358–65.CrossRefGoogle ScholarPubMed
Fletcher, O, Easton, D, Anderson, K, et al. Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst 2004;96(5):357–63.CrossRefGoogle ScholarPubMed
Takemiya, M, Shiraishi, S, Teramoto, T, Miki, Y.Bloom's syndrome with porokeratosis of Mibelli and multiple cancers of the skin, lung and colon. Clin Genet 1987;31(1):35–44.CrossRefGoogle ScholarPubMed
Yamanaka, A, Hirai, T, Ohtake, Y, Kitagawa, M.Lung cancer associated with Werner's syndrome: a case report and review of the literature. Jpn J Clin Oncol 1997;27(6):415–8.CrossRefGoogle ScholarPubMed
Thüsen, JH von der, Wetering, Mvd, Westerman, A, Heideman, DAM, Thunnissen, FB.Bronchoalveolar adenocarcinomas and pulmonary Langerhans cell histiocytosis in a patient with MUTYH-associated polyposis. J Clin Oncol 2011;29:e188–90.CrossRefGoogle Scholar
McKay, JD, Hashibe, M, Hung, RJ, et al. Sequence variants of NAT1 and NAT2 and other xenometabolic genes and risk of lung and aerodigestive tract cancers in Central Europe. Cancer Epidemiol Biomarkers Prev 2008;17(1):141–7.CrossRefGoogle ScholarPubMed
Hung, RJ, Hall, J, Brennan, P, Boffetta, P.Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 2005;162(10):925–42.CrossRefGoogle ScholarPubMed
Matakidou, A, Eisen, T, Fleischmann, C, Bridle, H, Houlston, RS.Evaluation of xeroderma pigmentosum XPA, XPC, XPD, XPF, XPB, XPG and DDB2 genes in familial early-onset lung cancer predisposition. Int J Cancer 2006;119(4):964–7.CrossRefGoogle ScholarPubMed
Swift, M, Chase, C.Cancer in families with xeroderma pigmentosum. J Natl Cancer Inst 1979;62(6):1415–21.Google ScholarPubMed
Crosbie, PA, McGown, G, Thorncroft, MR, et al. Association between lung cancer risk and single nucleotide polymorphisms in the first intron and codon 178 of the DNA repair gene, O6-alkylguanine-DNA alkyltransferase. Int J Cancer 2008;122(4):791–5.CrossRefGoogle ScholarPubMed
Wang, W, Spitz, MR, Yang, H, et al. Genetic variants in cell cycle control pathway confer susceptibility to lung cancer. Clin Cancer Res 2007;13(19):5974–81.CrossRefGoogle ScholarPubMed
Engels, EA, Wu, X, Gu, J, et al. Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Res 2007;67(13):6520–7.CrossRefGoogle ScholarPubMed
Rudd, MF, Webb, EL, Matakidou, A, et al. Variants in the GH-IGF axis confer susceptibility to lung cancer. Genome Res 2006;16(6):693–701.CrossRefGoogle ScholarPubMed
McColgan, P, Sharma, P.Polymorphisms of matrix metalloproteinases 1, 2, 3 and 9 and susceptibility to lung, breast and colorectal cancer in over 30,000 subjects. Int J Cancer 2009;125(6):1473–8.CrossRefGoogle ScholarPubMed
Hung, RJ, Hashibe, M, McKay, J, et al. Folate-related genes and the risk of tobacco-related cancers in Central Europe. Carcinogenesis 2007;28(6):1334–40.CrossRefGoogle ScholarPubMed
Hosgood, HD, Berndt, SI, Lan, Q.GST genotypes and lung cancer susceptibility in Asian populations with indoor air pollution exposures: a meta-analysis. Mutat Res 2007;636(1–3):134–43.CrossRefGoogle ScholarPubMed
Vineis, P, Anttila, S, Benhamou, S, et al. Evidence of gene gene interactions in lung carcinogenesis in a large pooled analysis. Carcinogenesis 2007;28(9):1902–5.CrossRefGoogle Scholar
Eisen, T, Matakidou, A, Houlston, R.Identification of low penetrance alleles for lung cancer: the GEnetic Lung CAncer Predisposition Study (GELCAPS). BMC Cancer 2008;8:244.CrossRefGoogle Scholar
Easton, DF, Eeles, RA.Genome-wide association studies in cancer. Hum Mol Genet 2008;17(R2):R109-R115.CrossRefGoogle Scholar
McKay, JD, Hung, RJ, Gaborieau, V, et al. Lung cancer susceptibility locus at 5p15.33. Nat Genet 2008;40(12):1404–6.CrossRefGoogle ScholarPubMed
Hung, RJ, McKay, JD, Gaborieau, V, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008;452(7187):633–7.CrossRefGoogle ScholarPubMed
Liu, P, Vikis, HG, Wang, D, et al. Familial aggregation of common sequence variants on 15q24–25.1 in lung cancer. J Natl Cancer Inst 2008;100(18):1326–30.CrossRefGoogle ScholarPubMed
Amos, CI, Wu, X, Broderick, P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008;40(5):616–22.CrossRefGoogle ScholarPubMed
Broderick, P, Wang, Y, Vijayakrishnan, J, et al. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res 2009;69(16):6633–41.CrossRefGoogle ScholarPubMed
Kang, JU, Koo, SH, Kwon, KC, Park, JW, Kim, JM.Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet Cytogenet 2008;182(1):1–11.CrossRefGoogle ScholarPubMed
Zienolddiny, S, Skaug, V, Landvik, NE, et al. The TERT-CLPTM1L lung cancer susceptibility variant associates with higher DNA adduct formation in the lung. Carcinogenesis 2009;30(8):1368–71.CrossRefGoogle ScholarPubMed
Landi, MT, Chatterjee, N, Yu, K, et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet 2009;85:679–91.CrossRefGoogle ScholarPubMed
Rafnar, T, Sulem, P, Stacey, SN, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 2009;41(2):221–7.CrossRefGoogle ScholarPubMed
Sasaki, T, Gan, EC, Wakeham, A, Kornbluth, S, Mak, TW, Okada, H.HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Genes Dev 2007;21(7):848–61.CrossRefGoogle ScholarPubMed
Xu, XS, Narayanan, L, Dunklee, B, Liskay, RM, Glazer, PM.Hypermutability to ionizing radiation in mismatch repair-deficient, Pms2 knockout mice. Cancer Res 2001;61(9):3775–80.Google ScholarPubMed
Hirose, T, Kondo, K, Takahashi, Y, et al. Frequent microsatellite instability in lung cancer from chromate-exposed workers. Mol Carcinog 2002;33(3):172–80.CrossRefGoogle ScholarPubMed
Spitz, MR, Amos, CI, Dong, Q, Lin, J, Wu, X.The CHRNA5-A3 region on chromosome 15q24–25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 2008;100(21):1552–6.CrossRefGoogle ScholarPubMed
Liu, Y, Liu, P, Wen, W, et al. Haplotype and cell proliferation analyses of candidate lung cancer susceptibility genes on chromosome 15q24–25.1. Cancer Res 2009;69(19):7844–50.CrossRefGoogle ScholarPubMed
Weiss, RB, Baker, TB, Cannon, DS, et al. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 2008;4(7):e1000125.CrossRefGoogle ScholarPubMed
Thunnissen, FB.Acetylcholine receptor pathway and lung cancer. J Thorac Oncol 2009;4(8):943–6.CrossRefGoogle ScholarPubMed
Lips, EH, Gaborieau, V, McKay, JD, et al. Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. Int J Epidemiol 2010;39:563–77.CrossRefGoogle ScholarPubMed
Thorgeirsson, TE, Geller, F, Sulem, P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008;452(7187):638–42.CrossRefGoogle ScholarPubMed
Shiraishi, K, Kohno, T, Kunitoh, H, et al. Contribution of nicotine acetylcholine receptor polymorphisms to lung cancer risk in a smoking-independent manner in the Japanese. Carcinogenesis 2009;30(1):65–70.CrossRefGoogle Scholar
Wu, C, Hu, Z, Yu, D, et al. Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res 2009;69(12):5065–72.CrossRefGoogle ScholarPubMed
Le Marchand, L, Derby, KS, Murphy, SE, et al. Smokers with the CHRNA lung cancer-associated variants are exposed to higher levels of nicotine equivalents and a carcinogenic tobacco-specific nitrosamine. Cancer Res 2008;68(22):9137–40.CrossRefGoogle Scholar
Bailey-Wilson, JE, Amos, CI, Pinney, SM, et al. A major lung cancer susceptibility locus maps to chromosome 6q23–25. Am J Hum Genet 2004;75(3):460–74.CrossRefGoogle Scholar
Cesari, R, Martin, ES, Calin, GA, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA 2003;100(10):5956–61.CrossRefGoogle ScholarPubMed
Zeller, C, Hinzmann, B, Seitz, S, et al. SASH1: a candidate tumor suppressor gene on chromosome 6q24.3 is downregulated in breast cancer. Oncogene 2003;22(19):2972–83.CrossRefGoogle ScholarPubMed
Utada, Y, Haga, S, Kajiwara, T, et al. Mapping of target regions of allelic loss in primary breast cancers to 1-cM intervals on genomic contigs at 6q21 and 6q25.3. Jpn J Cancer Res 2000;91(3):293–300.CrossRefGoogle ScholarPubMed
Noviello, C, Courjal, F, Theillet, C.Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: possibly four regions of deletion. Clin Cancer Res 1996;2(9):1601–6.Google Scholar
Hansen, LL, Jensen, LL, Dimitrakakis, C, et al. Allelic imbalance in selected chromosomal regions in ovarian cancer. Cancer Genet Cytogenet 2002;139(1):1–8.CrossRefGoogle ScholarPubMed
Jensen, RH, Tiirikainen, M, You, L, et al. Genomic alterations in human mesothelioma including high resolution mapping of common regions of DNA loss in chromosome arm 6q. Anticancer Res 2003;23(3B):2281–9.Google ScholarPubMed
Barghorn, A, Speel, EJ, Farspour, B, et al. Putative tumor suppressor loci at 6q22 and 6q23-q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors. Am J Pathol 2001;158(6):1903–11.CrossRefGoogle ScholarPubMed
Abe, T, Makino, N, Furukawa, T, et al. Identification of three commonly deleted regions on chromosome arm 6q in human pancreatic cancer. Genes Chromosomes Cancer 1999;25(1):60–4.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Tong, BC, Dhir, K, Ha, PK, et al. Use of single nucleotide polymorphism arrays to identify a novel region of loss on chromosome 6q in squamous cell carcinomas of the oral cavity. Head Neck 2004;26(4):345–52.CrossRefGoogle ScholarPubMed
Millikin, D, Meese, E, Vogelstein, B, Witkowski, C, Trent, J.Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res 1991;51(20):5449–53.Google Scholar
Re, D, Starostik, P, Massoudi, N, et al. Allelic losses on chromosome 6q25 in Hodgkin and Reed Sternberg cells. Cancer Res 2003;63(10):2606–9.Google ScholarPubMed
You, M, Wang, D, Liu, P, et al. Fine mapping of chromosome 6q23–25 region in familial lung cancer families reveals RGS17 as a likely candidate gene. Clin Cancer Res 2009;15(8):2666–74.CrossRefGoogle ScholarPubMed
Ware, JH.The limitations of risk factors as prognostic tools. N Engl J Med 2006;355(25):2615–7.CrossRefGoogle ScholarPubMed
Auerbach, O, Gere, JB, Forman, JB, et al. Changes in the bronchial epithelium in relation to smoking and cancer of the lung. CA Cancer J Clin 1958;8(2):53–6.CrossRefGoogle ScholarPubMed
van der Drift, MA, Prinsen, CF, Hol, BE, et al. Can free DNA be detected in sputum of lung cancer patients?Lung Cancer 2008;61(3):385–90.CrossRefGoogle ScholarPubMed
Melamed, MR, Flehinger, BJ, Zaman, MB, et al. Screening for early lung cancer. Results of the Memorial Sloan-Kettering study in New York. Chest 1984;86(1):44–53.CrossRefGoogle ScholarPubMed
Fontana, RS, Sanderson, DR, Taylor, WF, et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Mayo Clinic study. Am Rev Respir Dis 1984;130(4):561–5.Google ScholarPubMed
Marcus, PM, Prorok, PC.Reanalysis of the Mayo Lung Project data: the impact of confounding and effect modification. J Med Screen 1999;6(1):47–9.CrossRefGoogle ScholarPubMed
Marcus, PM, Bergstralh, EJ, Fagerstrom, RM, et al. Lung cancer mortality in the Mayo Lung Project: impact of extended follow-up. J Natl Cancer Inst 2000;92(16):1308–16.CrossRefGoogle ScholarPubMed
Kubik, AK, Parkin, DM, Zatloukal, P.Czech Study on Lung Cancer Screening: post-trial follow-up of lung cancer deaths up to year 15 since enrollment. Cancer 2000;89(11 Suppl):2363–8.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Kubik, A, Polak, J.Lung cancer detection. Results of a randomized prospective study in Czechoslovakia. Cancer 1986;57(12):2427–37.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Kubik, A, Haerting, J.Survival and mortality in a randomized study of lung cancer detection. Neoplasma 1990;37(4):467–75.Google Scholar
Flehinger, BJ, Kimmel, M, Melamed, MR.Natural history of adenocarcinoma-large cell carcinoma of the lung: conclusions from screening programs in New York and Baltimore. J Natl Cancer Inst 1988;80(5):337–44.CrossRefGoogle ScholarPubMed
Frost, JK, Ball, WCJ, Levin, ML, et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am Rev Respir Dis 1984;130(4):549–54.Google Scholar
Aberle, DR, Adams, AM, Berg, CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365(5):395–409.Google ScholarPubMed
van Klaveren, RJ, Oudkerk, M, Prokop, M, et al. Management of lung nodules detected by volume CT scanning. N Engl J Med 2009;361(23):2221–9.CrossRefGoogle ScholarPubMed
Pedersen, JH, Ashraf, H, Dirksen, A, et al. The Danish randomized lung cancer CT screening trial – overall design and results of the prevalence round. J Thorac Oncol 2009;4(5):608–14.CrossRefGoogle ScholarPubMed
Infante, M, Cavuto, S, Lutman, FR, et al. A randomized study of lung cancer screening with spiral computed tomography: three-year results from the DANTE trial. Am J Respir Crit Care Med 2009;180(5):445–53.CrossRefGoogle ScholarPubMed
Lopes, PA, Picozzi, G, Mascalchi, M, et al. Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT. Lung Cancer 2009;64(1):34–40.CrossRefGoogle Scholar
Henschke, CI.Early lung cancer action project: overall design and findings from baseline screening. Cancer 2000;89(11 Suppl):2474–82.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Gohagan, J, Marcus, P, Fagerstrom, R, et al. Baseline findings of a randomized feasibility trial of lung cancer screening with spiral CT scan vs chest radiograph: the Lung Screening Study of the National Cancer Institute. Chest 2004;126(1):114–21.CrossRefGoogle ScholarPubMed
Infante, M, Cavuto, S, Lutman, FR, et al. A randomized study of lung cancer screening with spiral computed tomography: three-year results from the DANTE trial. Am J Respir Crit Care Med 2009;180(5):445–53.CrossRefGoogle ScholarPubMed
Bach, PB, Jett, JR, Pastorino, U, et al. Computed tomography screening and lung cancer outcomes. JAMA 2007;297(9):953–61.CrossRefGoogle ScholarPubMed
Detterbeck, FC, Gibson, CJ.Turning gray: the natural history of lung cancer over time. J Thorac Oncol 2008;3(7):781–92.CrossRefGoogle ScholarPubMed
Sone, S, Nakayama, T, Honda, T, et al. Long-term follow-up study of a population-based 1996–1998 mass screening programme for lung cancer using mobile low-dose spiral computed tomography. Lung Cancer 2007;58(3):329–41.CrossRefGoogle ScholarPubMed
Hasegawa, M, Sone, S, Takashima, S, et al. Growth rate of small lung cancers detected on mass CT screening. Br J Radiol 2000;73(876):1252–9.CrossRefGoogle ScholarPubMed
Lindell, RM, Hartman, TE, Swensen, SJ, et al. Five-year lung cancer screening experience: CT appearance, growth rate, location, and histologic features of 61 lung cancers. Radiology 2007;242(2):555–62.CrossRefGoogle ScholarPubMed
Yoo, H, Nam, BH, Yang, HS, et al. Growth rates of metastatic brain tumors in nonsmall cell lung cancer. Cancer 2008;113(5):1043–7.CrossRefGoogle ScholarPubMed
Rousseau, MC, Straif, K, Siemiatycki, J.IARC carcinogen update. Environ Health Perspect 2005;113(9):A580-A581.CrossRefGoogle ScholarPubMed
Vineis, P, Veglia, F, Benhamou, S, et al. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls. Int J Cancer 2003;104(5):650–7.CrossRefGoogle ScholarPubMed
Taioli, E, Gaspari, L, Benhamou, S, et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years. Int J Epidemiol 2003;32(1):60–3.CrossRefGoogle ScholarPubMed
Le Marchand, L, Guo, C, Benhamou, S, et al. Pooled analysis of the CYP1A1 exon 7 polymorphism and lung cancer (United States). Cancer Causes Control 2003;14(4):339–46.CrossRefGoogle Scholar
Hung, RJ, Boffetta, P, Brockmoller, J, et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis 2003;24(5):875–82.CrossRefGoogle ScholarPubMed
Shi, X, Zhou, S, Wang, Z, Zhou, Z, Wang, Z.CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer 2008;59(2):155–63.CrossRefGoogle ScholarPubMed
Raimondi, S, Paracchini, V, Autrup, H, et al. Meta- and pooled analysis of GSTT1 and lung cancer: a HuGE-GSEC review. Am J Epidemiol 2006;164(11):1027–42.CrossRefGoogle ScholarPubMed
Cote, ML, Chen, W, Smith, DW, et al. Meta- and pooled analysis of GSTP1 polymorphism and lung cancer: a HuGE-GSEC review. Am J Epidemiol 2009;169(7):802–14.CrossRefGoogle ScholarPubMed
Houlston, RS.Glutathione S-transferase M1 status and lung cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 1999;8(8):675–82.Google ScholarPubMed
Benhamou, S, Lee, WJ, Alexandrie, AK, et al. Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk. Carcinogenesis 2002;23(8):1343–50.CrossRefGoogle ScholarPubMed
Ye, Z, Song, H, Higgins, JP, Pharoah, P, Danesh, J.Five glutathione s-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. PLoS Med 2006;3(4):e91.CrossRefGoogle ScholarPubMed
Carlsten, C, Sagoo, GS, Frodsham, AJ, Burke, W, Higgins, JP.Glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol 2008;167(7):759–74.CrossRefGoogle ScholarPubMed
Feyler, A, Voho, A, Bouchardy, C, et al. Point: myeloperoxidase -463G – > a polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev 2002;11(12):1550–4.Google ScholarPubMed
Kiyohara, C, Yoshimasu, K, Takayama, K, Nakanishi, Y.NQO1, MPO, and the risk of lung cancer: a HuGE review. Genet Med 2005;7(7):463–78.CrossRefGoogle ScholarPubMed
Lee, WJ, Brennan, P, Boffetta, P, et al. Microsomal epoxide hydrolase polymorphisms and lung cancer risk: a quantitative review. Biomarkers 2002;7(3):230–41.CrossRefGoogle ScholarPubMed
Kiyohara, C, Yoshimasu, K, Takayama, K, Nakanishi, Y.EPHX1 polymorphisms and the risk of lung cancer: a HuGE review. Epidemiology 2006;17(1):89–99.CrossRefGoogle ScholarPubMed
Borlak, J, Reamon-Buettner, SM.N-acetyltransferase 2 (NAT2) gene polymorphisms in colon and lung cancer patients. BMC Med Genet 2006;7:58.CrossRefGoogle ScholarPubMed
Mao, R, Fan, Y, Jin, Y, Bai, J, Fu, S.Methylenetetrahydrofolate reductase gene polymorphisms and lung cancer: a meta-analysis. J Hum Genet 2008;53(4):340–8.CrossRefGoogle ScholarPubMed
Boccia, S, Boffetta, P, Brennan, P, et al. Meta-analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and risk of head and neck and lung cancer. Cancer Lett 2009;273(1):55–61.CrossRefGoogle ScholarPubMed
Yan, L, Zhang, D, Chen, C, et al. TP53 Arg72Pro polymorphism and lung cancer risk: A meta-analysis. Int J Cancer 2009;125:2903–11.CrossRefGoogle ScholarPubMed
Matakidou, A, Eisen, T, Houlston, RS.TP53 polymorphisms and lung cancer risk: a systematic review and meta-analysis. Mutagenesis 2003;18(4):377–85.CrossRefGoogle ScholarPubMed
Li, Y, Qiu, LX, Shen, XK, et al. A meta-analysis of TP53 codon 72 polymorphism and lung cancer risk: evidence from 15,857 subjects. Lung Cancer 2009;66(1):15–21.CrossRefGoogle ScholarPubMed
Hung, RJ, Christiani, DC, Risch, A, et al. International Lung Cancer Consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev 2008;17(11):3081–9.CrossRefGoogle ScholarPubMed
Weston, A, Godbold, JH.Polymorphisms of H-ras-1 and p53 in breast cancer and lung cancer: a meta-analysis. Environ Health Perspect 1997;105 Suppl 4:919–26.CrossRefGoogle ScholarPubMed
Kiyohara, C, Yoshimasu, K.Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci 2007;4(2):59–71.CrossRefGoogle ScholarPubMed
Li, Y, Gu, S, Wu, Q, et al. No association of ERCC1 C8092A and T19007C polymorphisms to cancer risk: a meta-analysis. Eur J Hum Genet 2007;15(9):967–73.CrossRefGoogle ScholarPubMed
Manuguerra, M, Saletta, F, Karagas, MR, et al. XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review. Am J Epidemiol 2006;164(4):297–302.CrossRefGoogle ScholarPubMed
Hu, Z, Wei, Q, Wang, X, Shen, H.DNA repair gene XPD polymorphism and lung cancer risk: a meta-analysis. Lung Cancer 2004;46(1):1–10.CrossRefGoogle ScholarPubMed
Wang, Y, Yang, H, Li, H, et al. Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Lett 2009;285:134–40.CrossRefGoogle ScholarPubMed
Zheng, H, Wang, Z, Shi, X, Wang, Z.XRCC1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer 2009;65(3):268–73.CrossRefGoogle ScholarPubMed
Kiyohara, C, Takayama, K, Nakanishi, Y.Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer 2006;54(3):267–83.CrossRefGoogle ScholarPubMed
Li, H, Hao, X, Zhang, W, Wei, Q, Chen, K.The hOGG1 Ser326Cys polymorphism and lung cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2008;17(7):1739–45.CrossRefGoogle ScholarPubMed
Bai, J, Dai, J, Yu, H, Shen, H, Chen, F.Cigarette smoking, MDM2 SNP309, gene-environment interactions, and lung cancer risk: a meta-analysis. J Toxicol Environ Health A 2009;72(11):677–82.CrossRefGoogle ScholarPubMed
Gui, XH, Qiu, LX, Zhang, HF, et al. MDM2 309 T/G polymorphism is associated with lung cancer risk among Asians. Eur J Cancer 2009;45(11):2023–6.CrossRefGoogle ScholarPubMed
Qiu, L, Wang, Z, Shi, X, Wang, Z.Associations between XPC polymorphisms and risk of cancers: A meta-analysis. Eur J Cancer 2008;44(15):2241–53.CrossRefGoogle ScholarPubMed
Francisco, G, Menezes, PR, Eluf-Neto, J, Chammas, R.XPC polymorphisms play a role in tissue-specific carcinogenesis: a meta-analysis. Eur J Hum Genet 2008;16(6):724–34.CrossRefGoogle ScholarPubMed
Schwartz, AG, Prysak, GM, Bock, CH, Cote, ML.The molecular epidemiology of lung cancer. Carcinogenesis 2007;28(3):507–18.CrossRefGoogle ScholarPubMed
Sone, S, Takashima, S, Li, F, et al. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 1998;351(9111):1242–5.CrossRefGoogle ScholarPubMed
Swensen, SJ, Jett, JR, Hartman, TE, et al. Lung cancer screening with CT: Mayo Clinic experience. Radiology 2003;226(3):756–61.CrossRefGoogle ScholarPubMed
Swensen, SJ, Jett, JR, Hartman, TE, et al. CT screening for lung cancer: five-year prospective experience. Radiology 2005;235(1):259–65.CrossRefGoogle ScholarPubMed
Sobue, T, Moriyama, N, Kaneko, M, et al. Screening for lung cancer with low-dose helical computed tomography: anti-lung cancer association project. J Clin Oncol 2002;20(4):911–20.CrossRefGoogle ScholarPubMed
Tiitola, M, Kivisaari, L, Huuskonen, MS, et al. Computed tomography screening for lung cancer in asbestos-exposed workers. Lung Cancer 2002;35(1):17–22.CrossRefGoogle ScholarPubMed
Nawa, T, Nakagawa, T, Kusano, S, et al. Lung cancer screening using low-dose spiral CT: results of baseline and 1-year follow-up studies. Chest 2002;122(1):15–20.CrossRefGoogle ScholarPubMed
Diederich, S, Thomas, M, Semik, M, et al. Screening for early lung cancer with low-dose spiral computed tomography: results of annual follow-up examinations in asymptomatic smokers. Eur Radiol 2004;14(4):691–702.Google ScholarPubMed
Diederich, S, Wormanns, D, Semik, M, et al. Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology 2002;222(3):773–81.CrossRefGoogle ScholarPubMed
MacRedmond, R, McVey, G, Lee, M, et al. Screening for lung cancer using low dose CT scanning: results of 2 year follow up. Thorax 2006;61(1):54–6.CrossRefGoogle ScholarPubMed
MacRedmond, R, Logan, PM, Lee, M, et al. Screening for lung cancer using low dose CT scanning. Thorax 2004;59(3):237–41.CrossRefGoogle ScholarPubMed
Chong, WC, Tham, KY, Goh, HK, Seow, E.Presentation of severe acute respiratory syndrome (SARS) patients in a screening centre. Singapore Med J 2005;46(4):161–4.Google Scholar
Henschke, CI, Yankelevitz, DF, Libby, DM, et al. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med 2006;355(17):1763–71.Google Scholar
Henschke, CI.Clarifying enrollment procedures in the trial of CT screening for lung cancer. N Engl J Med 2008;359(8):871–3.CrossRefGoogle ScholarPubMed
van Iersel, CA, de Koning, HJ, Draisma, G, et al. Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON). Int J Cancer 2007;120(4):868–74.CrossRefGoogle Scholar
Picozzi, G, Paci, E, Lopez, PA, et al. Screening of lung cancer with low dose spiral CT: results of a three year pilot study and design of the randomised controlled trial “Italung-CT”. Radiol Med 2005;109(1–2):17–26.Google ScholarPubMed
Infante, M, Lutman, FR, Cavuto, S, et al. Lung cancer screening with spiral CT: baseline results of the randomized DANTE trial. Lung Cancer 2008;59(3):355–63.CrossRefGoogle ScholarPubMed
Becker, NDS, Kauczor, HU.LUSI: the German component of the European trial on the efficacy of multislice-CT for the early detection of lung cancer. Onkologie 2008;31:320.Google Scholar
Blanchon, T, Brechot, JM, Grenier, PA, et al. Baseline results of the Depiscan study: a French randomized pilot trial of lung cancer screening comparing low dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer 2007;58(1):50–8.CrossRefGoogle Scholar
Takashima, S, Sone, S, Li, F, et al. Indeterminate solitary pulmonary nodules revealed at population-based CT screening of the lung: using first follow-up diagnostic CT to differentiate benign and malignant lesions. AJR Am J Roentgenol 2003;180(5):1255–63.CrossRefGoogle ScholarPubMed
Aoki, T, Nakata, H, Watanabe, H, et al. Evolution of peripheral lung adenocarcinomas: CT findings correlated with histology and tumor doubling time. AJR Am J Roentgenol 2000;174(3):763–8.CrossRefGoogle ScholarPubMed
Kakinuma, R, Ohmatsu, H, Kaneko, M, et al. Progression of focal pure ground-glass opacity detected by low-dose helical computed tomography screening for lung cancer. J Comput Assist Tomogr 2004;28(1):17–23.CrossRefGoogle ScholarPubMed
Chute, CG, Greenberg, ER, Baron, J, et al. Presenting conditions of 1539 population-based lung cancer patients by cell type and stage in New Hampshire and Vermont. Cancer 1985;56:2107–11.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Patel, AM, Peters, SG.Clinical manifestations of lung cancer. Mayo Clin Proc 1993;68:273–7.CrossRefGoogle ScholarPubMed
SEER Stage Distribution by Sex, Lung and Bronchus Cancer, All Ages, SEER 9 Registries for 1975–79, 1985–89, 1995–2001. April 2005. (Accessed January 20, 2006, at .)
Tammemagi, CM, Neslund-Dudas, C, Simoff, M, Kvale, P.Lung carcinoma symptoms – an independent predictor of survival and an important mediator of African-American disparity in survival. Cancer 2004;101:1655–63.CrossRefGoogle ScholarPubMed
Beckles, MA, Spiro, SG, Colice, GL, Rudd, RM.Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes. Chest 2003;123:97S–104S.CrossRefGoogle ScholarPubMed
Piehler, JM, Pairolero, PC, Gracey, DR, Bernatz, PE.Unexplained diaphragmatic paralysis: a harbinger of malignant disease?J Thorac Cardiovasc Surg 1982;84:861–4.Google ScholarPubMed
Decker, DA, Dines, DE, Payne, WS, Bernatz, PE, Pairolero, PC.The significance of a cytologically negative pleural effusion in bronchogenic carcinoma. Chest 1978;74:640–2.CrossRefGoogle ScholarPubMed
Sallach, SM, Sallach, JA, Vasquez, E, Schultz, L, Kvale, P.Volume of pleural fluid required for diagnosis of pleural malignancy. Chest 2002;122:1913–7.CrossRefGoogle ScholarPubMed
Wilson, LD, Detterbeck, FC, Yahalom, J.Clinical practice. Superior vena cava syndrome with malignant causes. N Engl J Med 2007;356:1862–9.CrossRefGoogle ScholarPubMed
Kraus, DH, Ali, MK, Ginsberg, RJ, et al. Vocal cord medialization for unilateral paralysis associated with intrathoracic malignancies. J Thorac Cardiovasc Surg 1996;111:334–9; discussion 339–41.CrossRefGoogle ScholarPubMed
Pretreatment evaluation of non-small-cell lung cancer. The American Thoracic Society and The European Respiratory Society. Am J Respir Crit Care Med 1997;156:320–32.Google Scholar
Stenbygaard, LE, Sorensen, JB, Larsen, H, Dombernowsky, P.Metastatic pattern in non-resectable non-small cell lung cancer. Acta Oncol 1999;38:993–8.Google ScholarPubMed
Auerbach, O, Garfinkel, L, Parks, VR.Histologic type of lung cancer in relation to smoking habits, year of diagnosis and sites of metastases. Chest 1975;67:382–7.CrossRefGoogle ScholarPubMed
Line, DH, Deeley, TJ.The necropsy findings in carcinoma of the bronchus. Br J Dis Chest 1971;65:238–42.CrossRefGoogle ScholarPubMed
Merchut, MP.Brain metastases from undiagnosed systemic neoplasms. Arch Intern Med 1989;149:1076–80.CrossRefGoogle ScholarPubMed
Barnholtz-Sloan, JS, Sloan, AE, Davis, FG, et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 2004;22:2865–72.CrossRefGoogle ScholarPubMed
Schouten, LJ, Rutten, J, Huveneers, HA, Twijnstra, A.Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 2002;94:2698–705.CrossRefGoogle Scholar
Carbone, PP, Frost, JK, Feinstein, AR, Higgins, GA, Selawry, OS.Lung cancer: perspectives and prospects. Ann Intern Med 1970;73:1003–24.CrossRefGoogle Scholar
Norton, JA, Peacock, JL, Morrison, SD.Cancer cachexia. Crit Rev Oncol Hematol 1987;7:289–327.CrossRefGoogle ScholarPubMed
Bennani-Baiti, N, Davis, MP.Cytokines and cancer anorexia cachexia syndrome. Am J Hosp Palliat Care 2008;25:407–11.CrossRefGoogle ScholarPubMed
Heber, D, Tchekmedyian, NS.Pathophysiology of cancer: hormonal and metabolic abnormalities. Oncology 1992;49 Suppl 2:28–31.CrossRefGoogle ScholarPubMed
Nelson, KA, Walsh, D, Sheehan, FA.The cancer anorexia-cachexia syndrome. J Clin Oncol 1994;12:213–25.CrossRefGoogle ScholarPubMed
Beutler, B, Cerami, A.Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 1986;320:584–8.CrossRefGoogle ScholarPubMed
Dinarello, CA.Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 1984;311:1413–8.Google ScholarPubMed
Gershenwald, JE, Fong, YM, Fahey, TJ 3rd, et al. Interleukin 1 receptor blockade attenuates the host inflammatory response. Proc Natl Acad Sci USA 1990;87:4966–70.CrossRefGoogle ScholarPubMed
Moldawer, LL, Georgieff, M, Lundholm, K.Interleukin 1, tumour necrosis factor-alpha (cachectin) and the pathogenesis of cancer cachexia. Clin Physiol 1987;7:263–74.CrossRefGoogle ScholarPubMed
Tracey, KJ, Wei, H, Manogue, KR, et al. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med 1988;167:1211–27.CrossRefGoogle Scholar
Yoneda, T, Alsina, MA, Chavez, JB, et al. Evidence that tumor necrosis factor plays a pathogenetic role in the paraneoplastic syndromes of cachexia, hypercalcemia, and leukocytosis in a human tumor in nude mice. J Clin Invest 1991;87:977–85.CrossRefGoogle Scholar
Yoneda, T, Aufdemorte, TB, Nishimura, R, et al. Occurrence of hypercalcemia and leukocytosis with cachexia in a human squamous cell carcinoma of the maxilla in athymic nude mice: a novel experimental model of three concomitant paraneoplastic syndromes. J Clin Oncol 1991;9:468–77.CrossRefGoogle Scholar
Gomm, SA, Thatcher, N, Barber, PV, Cumming, WJ.A clinicopathological study of the paraneoplastic neuromuscular syndromes associated with lung cancer. Q J Med 1990;75:577–95.Google ScholarPubMed
Monsieur, I, Meysman, M, Noppen, M, et al. Non-small-cell lung cancer with multiple paraneoplastic syndromes. Eur Respir J 1995;8:1231–4.CrossRefGoogle ScholarPubMed
Johnson, BE, Chute, JP, Rushin, J, et al. A prospective study of patients with lung cancer and hyponatremia of malignancy. Am J Respir Crit Care Med 1997;156:1669–78.CrossRefGoogle Scholar
Yalow, RS, Eastridge, CE, Higgins, G Jr, Wolf, J.Plasma and tumor ACTH in carcinoma of the lung. Cancer 1979;44:1789–92.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Patel, AM, Davila, DG, Peters, SG.Paraneoplastic syndromes associated with lung cancer. Mayo Clin Proc 1993;68:278–87.CrossRefGoogle ScholarPubMed
Hansen, M, Bork, E.Peptide hormones in patients with lung cancer. Recent Results Cancer Res 1985;99:180–6.CrossRefGoogle ScholarPubMed
Hastings, RH, Montgrain, PR, Quintana, R, et al. Cell cycle actions of parathyroid hormone-related protein in non-small cell lung carcinoma. Am J Physiol Lung Cell Mol Physiol 2009;297:L578–85.CrossRefGoogle ScholarPubMed
Chute, JP, Taylor, E, Williams, J, et al. A metabolic study of patients with lung cancer and hyponatremia of malignancy. Clin Cancer Res 2006;12:888–96.CrossRefGoogle Scholar
Ellison, DH, Berl, T.Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med 2007;356:2064–72.CrossRefGoogle ScholarPubMed
Mazzone, PJ, Arroliga, AC.Endocrine paraneoplastic syndromes in lung cancer. Curr Opin Pulm Med 2003;9:313–20.CrossRefGoogle ScholarPubMed
List, AF, Hainsworth, JD, Davis, BW, et al. The syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in small-cell lung cancer. J Clin Oncol 1986;4:1191–8.CrossRefGoogle Scholar
Hammond, IW, Ferguson, JA, Kwong, K, Muniz, E, Delisle, F.Hyponatremia and syndrome of inappropriate anti-diuretic hormone reported with the use of Vincristine: an over-representation of Asians?Pharmacoepidemiol Drug Saf 2002;11:229–34.CrossRefGoogle ScholarPubMed
Miller, M, Hecker, MS, Friedlander, DA, Carter, JM.Apparent idiopathic hyponatremia in an ambulatory geriatric population. J Am Geriatr Soc 1996;44:404–8.CrossRefGoogle Scholar
Mendelsohn, G, Baylin, SB.Ectopic hormone production – biological and clinical implications. Prog Clin Biol Res 1984;142:291–316.Google ScholarPubMed
Terzolo, M, Reimondo, G, Ali, A, et al. Ectopic ACTH syndrome: molecular bases and clinical heterogeneity. Ann Oncol 2001;12 Suppl 2:S83–7.CrossRefGoogle ScholarPubMed
Boscaro, M, Arnaldi, G.Approach to the patient with possible Cushing's syndrome. J Clin Endocrinol Metab 2009;94:3121–31.CrossRefGoogle ScholarPubMed
Izumi, M, Takayama, K, Yabuuchi, H, Abe, K, Nakanishi, Y.Incidence of hypertrophic pulmonary osteoarthropathy associated with primary lung cancer. Respirology 2010;15:809–12.CrossRefGoogle ScholarPubMed
Green, KB, Silverstein, RL.Hypercoagulability in cancer. Hematol Oncol Clin North Am 1996;10:499–530.CrossRefGoogle Scholar
Sridhar, KS, Lobo, CF, Altman, RD.Digital clubbing and lung cancer. Chest 1998;114:1535–7.CrossRefGoogle ScholarPubMed
Myers, KA, Farquhar, DR.The rational clinical examination. Does this patient have clubbing?JAMA 2001;286:341–7.CrossRefGoogle ScholarPubMed
Pallares-Sanmartin, A, Leiro-Fernandez, V, Cebreiro, TL, Botana-Rial, M, Fernandez-Villar, A.Validity and reliability of the Schamroth sign for the diagnosis of clubbing. JAMA 2010;304:159–61.Google Scholar
Marino, WD, Harigopalan, JA, Bangar, M.A 49-year-old smoker with a lung mass and diffuse bone pain. Chest 2011;139:460–3.CrossRefGoogle ScholarPubMed
Dickinson, CJ, Martin, JF.Megakaryocytes and platelet clumps as the cause of finger clubbing. Lancet 1987;2:1434–5.CrossRefGoogle ScholarPubMed
Albrecht, S, Keller, A.Postchemotherapeutic reversibility of hypertrophic osteoarthropathy in a patient with bronchogenic adenocarcinoma. Clin Nucl Med 2003;28:463–6.CrossRefGoogle Scholar
Hayashi, M, Sekikawa, A, Saijo, A, et al. Successful treatment of hypertrophic osteoarthropathy by gefitinib in a case with lung adenocarcinoma. Anticancer Res 2005;25:2435–8.Google Scholar
Elrington, GM, Murray, NM, Spiro, SG, Newsom-Davis, J.Neurological paraneoplastic syndromes in patients with small cell lung cancer. A prospective survey of 150 patients. J Neurol Neurosurg Psychiatry 1991;54:764–7.CrossRefGoogle ScholarPubMed
Honnorat, J, Antoine, JC.Paraneoplastic neurological syndromes. Orphanet J Rare Dis 2007;2:22.CrossRefGoogle ScholarPubMed
Didelot, A, Honnorat, J.Update on paraneoplastic neurological syndromes. Curr Opin Oncol 2009;21:566–72.CrossRefGoogle ScholarPubMed
Honnorat, J.Onconeural antibodies are essential to diagnose paraneoplastic neurological syndromes. Acta Neurol Scand Suppl 2006;183:64–8.CrossRefGoogle ScholarPubMed
Darnell, RB, Posner, JB.Paraneoplastic syndromes involving the nervous system. N Engl J Med 2003;349:1543–54.CrossRefGoogle Scholar
Gultekin, SH, Rosenfeld, MR, Voltz, R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 2000;123 (Pt 7):1481–94.CrossRefGoogle ScholarPubMed
Maddison, P, Lang, B.Paraneoplastic neurological autoimmunity and survival in small-cell lung cancer. J Neuroimmunol 2008; 201–202:159–62.CrossRefGoogle ScholarPubMed
Monstad, SE, Drivsholm, L, Storstein, A, et al. Hu and voltage-gated calcium channel (VGCC) antibodies related to the prognosis of small-cell lung cancer. J Clin Oncol 2004;22:795–800.CrossRefGoogle Scholar
Richardson, GE, Johnson, BE.Paraneoplastic syndromes in lung cancer. Curr Opin Oncol 1992;4:323–33.CrossRefGoogle ScholarPubMed
Anderson, NE, Rosenblum, MK, Graus, F, Wiley, RG, Posner, JB.Autoantibodies in paraneoplastic syndromes associated with small-cell lung cancer. Neurology 1988;38:1391–8.CrossRefGoogle ScholarPubMed
Grunwald, GB, Klein, R, Simmonds, MA, Kornguth, SE.Autoimmune basis for visual paraneoplastic syndrome in patients with small-cell lung carcinoma. Lancet 1985;1:658–61.CrossRefGoogle ScholarPubMed
Kornguth, SE, Klein, R, Appen, R, Choate, J.Occurrence of anti-retinal ganglion cell antibodies in patients with small cell carcinoma of the lung. Cancer 1982;50:1289–93.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Jacobson, DM, Thirkill, CE, Tipping, SJ.A clinical triad to diagnose paraneoplastic retinopathy. Ann Neurol 1990;28:162–7.CrossRefGoogle ScholarPubMed
Payne, M, Bradbury, P, Lang, B, et al. Prospective study into the incidence of Lambert Eaton myasthenic syndrome in small cell lung cancer. J Thorac Oncol 2010;5:34–8.CrossRefGoogle ScholarPubMed
Cheran, SK, Herndon, JE 2nd, Patz, EF Jr.Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 2004;44:317–25.CrossRefGoogle ScholarPubMed
Gavrilovic, IT, Posner, JB.Brain metastases: epidemiology and pathophysiology. J Neurooncol 2005;75:5–14.CrossRefGoogle ScholarPubMed
Oliver, TW Jr, Bernardino, ME, Miller, JI, et al. Isolated adrenal masses in nonsmall-cell bronchogenic carcinoma. Radiology 1984;153:217–8.CrossRefGoogle ScholarPubMed
Lorusso, L, Hart, IK, Ferrari, D, et al. Autonomic paraneoplastic neurological syndromes. Autoimmun Rev 2007;6:162–8.CrossRefGoogle ScholarPubMed
De Giorgio, R, Sarnelli, G, Corinaldesi, R, Stanghellini, V.Advances in our understanding of the pathology of chronic intestinal pseudo-obstruction. Gut 2004;53:1549–52.CrossRefGoogle ScholarPubMed
van Meerbeeck, JP, Fennell, DA, De Ruysscher, DK.Small-cell lung cancer. Lancet 2011;378:1741–55.CrossRefGoogle ScholarPubMed
Cohen, PR.Hypertrophic pulmonary osteoarthropathy and tripe palms in a man with squamous cell carcinoma of the larynx and lung. Report of a case and review of cutaneous paraneoplastic syndromes associated with laryngeal and lung malignancies. Am J Clin Oncol 1993;16:268–76.CrossRefGoogle Scholar
Stavrianeas, NG, Katoulis, AC, Neofotistou, O, Stratigeas, NP, Neamonitos, C.Tripe palms preceding squamous cell carcinoma of the lung by 11 months. Dermatology 1999;198:173–4.CrossRefGoogle Scholar
Thiers, BH, Sahn, RE, Callen, JP.Cutaneous manifestations of internal malignancy. CA Cancer J Clin 2009;59:73–98.CrossRefGoogle ScholarPubMed
Fujita, J, Tokuda, M, Bandoh, S, et al. Primary lung cancer associated with polymyositis/dermatomyositis, with a review of the literature. Rheumatol Int 2001;20:81–4.CrossRefGoogle ScholarPubMed
Wakata, N, Kurihara, T, Saito, E, Kinoshita, M.Polymyositis and dermatomyositis associated with malignancy: a 30-year retrospective study. Int J Dermatol 2002;41:729–34.CrossRefGoogle ScholarPubMed
Sparsa, A, Liozon, E, Herrmann, F, et al. Routine vs extensive malignancy search for adult dermatomyositis and polymyositis: a study of 40 patients. Arch Dermatol 2002;138:885–90.CrossRefGoogle ScholarPubMed
Andras, C, Ponyi, A, Constantin, T, et al. Dermatomyositis and polymyositis associated with malignancy: a 21-year retrospective study. J Rheumatol 2008;35:438–44.Google ScholarPubMed
Kissel, JT, Halterman, RK, Rammohan, KW, Mendell, JR.The relationship of complement-mediated microvasculopathy to the histologic features and clinical duration of disease in dermatomyositis. Arch Neurol 1991;48:26–30.CrossRefGoogle ScholarPubMed
Ascensao, JL, Oken, MM, Ewing, SL, Goldberg, RJ, Kaplan, ME.Leukocytosis and large cell lung cancer. A frequent association. Cancer 1987;60:903–5.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Gastl, G, Plante, M, Finstad, CL, et al. High IL-6 levels in ascitic fluid correlate with reactive thrombocytosis in patients with epithelial ovarian cancer. Br J Haematol 1993;83:433–41.CrossRefGoogle ScholarPubMed
Estrov, Z, Talpaz, M, Mavligit, G, et al. Elevated plasma thrombopoietic activity in patients with metastatic cancer-related thrombocytosis. Am J Med 1995;98:551–8.CrossRefGoogle ScholarPubMed
Monreal, M, Prandoni, P.Venous thromboembolism as first manifestation of cancer. Semin Thromb Hemost 1999;25:131–6.CrossRefGoogle Scholar
Henschke, CI, Yankelevitz, DF, Libby, DM, et al. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med 2006;355:1763–71.Google Scholar
van Klaveren, RJ, Oudkerk, M, Prokop, M, et al. Management of lung nodules detected by volume CT scanning. N Engl J Med 2009;361:2221–9.CrossRefGoogle ScholarPubMed
Travis, WD, Brambilla, E, Noguchi, M, et al. International association for the study of lung cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6:244–85.CrossRefGoogle Scholar
Kent, MS, Korn, P, Port, JL, et al. Cost effectiveness of chest computed tomography after lung cancer resection: a decision analysis model. Ann Thorac Surg 2005;80:1215–22; discussion 22–3.CrossRefGoogle ScholarPubMed
Rice, D, Kim, HW, Sabichi, A, et al. The risk of second primary tumors after resection of stage I nonsmall cell lung cancer. Ann Thorac Surg 2003;76:1001–7; discussion 7–8.CrossRefGoogle ScholarPubMed
Pairolero, PC, Williams, DE, Bergstralh, EJ, et al. Postsurgical stage I bronchogenic carcinoma: morbid implications of recurrent disease. Ann Thorac Surg 1984;38:331–8.CrossRefGoogle Scholar
Deschamps, C, Pairolero, PC, Trastek, VF, Payne, WS.Multiple primary lung cancers. Results of surgical treatment. J Thorac Cardiovasc Surg 1990;99:769–77; discussion 77–8.Google ScholarPubMed
Martini, N, Bains, MS, Burt, ME, et al. Incidence of local recurrence and second primary tumors in resected stage I lung cancer. J Thorac Cardiovasc Surg 1995;109:120–9.CrossRefGoogle ScholarPubMed
Thomas, PA Jr, Rubinstein, L.Malignant disease appearing late after operation for T1 N0 non-small-cell lung cancer. The Lung Cancer Study Group. J Thorac Cardiovasc Surg 1993;106:1053–8.Google ScholarPubMed
Pozo-Rodriguez, F, Martin, de Nicolas JL, Sanchez-Nistal, MA, et al. Accuracy of helical computed tomography and [18F] fluorodeoxyglucose positron emission tomography for identifying lymph node mediastinal metastases in potentially resectable non-small-cell lung cancer. J Clin Oncol 2005;23:8348–56.CrossRefGoogle Scholar
Reed, CE, Harpole, DH, Posther, KE, et al. Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J Thorac Cardiovasc Surg 2003;126:1943–51.CrossRefGoogle ScholarPubMed
Maziak, DE, Darling, GE, Inculet, RI, et al. Positron emission tomography in staging early lung cancer: a randomized trial. Ann Intern Med 2009;151:221–8, W-48.CrossRefGoogle ScholarPubMed
Keidar, Z, Haim, N, Guralnik, L, et al. PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med 2004;45:1640–6.Google ScholarPubMed
Ohno, Y, Koyama, H, Nogami, M, et al. Whole-body MR imaging vs. FDG-PET: comparison of accuracy of M-stage diagnosis for lung cancer patients. J Magn Reson Imaging 2007;26:498–509.CrossRefGoogle ScholarPubMed
Schreiber, G, McCrory, DC.Performance characteristics of different modalities for diagnosis of suspected lung cancer: summary of published evidence. Chest 2003;123:115S–28S.CrossRefGoogle ScholarPubMed
Rivera, MP, Detterbeck, F, Mehta, AC.Diagnosis of lung cancer: the guidelines. Chest 2003;123:129S–36S.CrossRefGoogle Scholar
Hermens, FH, Van Engelenburg, TC, Visser, FJ, et al. Diagnostic yield of transbronchial histology needle aspiration in patients with mediastinal lymph node enlargement. Respiration 2003;70:631–5.CrossRefGoogle ScholarPubMed
Yung, RC.Tissue diagnosis of suspected lung cancer: selecting between bronchoscopy, transthoracic needle aspiration, and resectional biopsy. Respir Care Clin N Am 2003;9:51–76.CrossRefGoogle ScholarPubMed
Yasufuku, K, Chiyo, M, Koh, E, et al. Endobronchial ultrasound guided transbronchial needle aspiration for staging of lung cancer. Lung Cancer 2005;50(3):347–54.CrossRefGoogle ScholarPubMed
Detterbeck, FC, DeCamp, MM Jr, Kohman, LJ, Silvestri, GA.Lung cancer. Invasive staging: the guidelines. Chest 2003;123:167S–75S.CrossRefGoogle Scholar
Ouellette, DR.The safety of bronchoscopy in a pulmonary fellowship program. Chest 2006;130:1185–90.CrossRefGoogle Scholar
Hwangbo, B, Kim, SK, Lee, HS, et al. Application of endobronchial ultrasound-guided transbronchial needle aspiration following integrated PET/CT in mediastinal staging of potentially operable non-small cell lung cancer. Chest 2009;135:1280–7.CrossRefGoogle ScholarPubMed
Wallace, MB, Pascual, JM, Raimondo, M, et al. Minimally invasive endoscopic staging of suspected lung cancer. JAMA 2008;299:540–6.CrossRefGoogle ScholarPubMed
Thiberville, L, Salaun, M, Lachkar, S, et al. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur Respir J 2009;33:974–85.CrossRefGoogle ScholarPubMed
Lam, S, Kennedy, T, Unger, M, et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest 1998;113:696–702.CrossRefGoogle ScholarPubMed
Edell, E, Lam, S, Pass, H, et al. Detection and localization of intraepithelial neoplasia and invasive carcinoma using fluorescence-reflectance bronchoscopy: an international, multicenter clinical trial. J Thorac Oncol 2009;4:49–54.CrossRefGoogle ScholarPubMed
Hirsch, FR, Prindiville, SA, Miller, YE, et al. Fluorescence versus white-light bronchoscopy for detection of preneoplastic lesions: a randomized study. J Natl Cancer Inst 2001;93:1385–91.CrossRefGoogle ScholarPubMed
Lee, P, van den Berg, RM, Lam, S, et al. Color fluorescence ratio for detection of bronchial dysplasia and carcinoma in situ. Clin Cancer Res 2009;15:4700–5.CrossRefGoogle ScholarPubMed
Detterbeck, F, Puchalski, J, Rubinowitz, A, Cheng, D.Classification of the thoroughness of mediastinal staging of lung cancer. Chest 2010;137:436–42.CrossRefGoogle ScholarPubMed
de Cabanyes Candela, S, Detterbeck, FC.A systematic review of restaging after induction therapy for stage IIIa lung cancer: prediction of pathologic stage. J Thorac Oncol 2010;5:389–98.CrossRefGoogle ScholarPubMed
Maskell, NA, Gleeson, FV, Davies, RJ.Standard pleural biopsy versus CT-guided cutting-needle biopsy for diagnosis of malignant disease in pleural effusions: a randomised controlled trial. Lancet 2003;361:1326–30.CrossRefGoogle ScholarPubMed
Nance, KV, Shermer, RW, Askin, FB.Diagnostic efficacy of pleural biopsy as compared with that of pleural fluid examination. Mod Pathol 1991;4:320–4.Google ScholarPubMed
Ong, KC, Indumathi, V, Poh, WT, Ong, YY.The diagnostic yield of pleural fluid cytology in malignant pleural effusions. Singapore Med J 2000;41:19–23.Google ScholarPubMed
Prakash, UB, Reiman, HM.Comparison of needle biopsy with cytologic analysis for the evaluation of pleural effusion: analysis of 414 cases. Mayo Clin Proc 1985;60:158–64.CrossRefGoogle ScholarPubMed
Delgado, PI, Jorda, M, Ganjei-Azar, P.Small cell carcinoma versus other lung malignancies: diagnosis by fine-needle aspiration cytology. Cancer 2000;90:279–85.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Jones, AM, Hanson, IM, Armstrong, GR, O'Driscoll, BR.Value and accuracy of cytology in addition to histology in the diagnosis of lung cancer at flexible bronchoscopy. Respir Med 2001;95:374–8.CrossRefGoogle Scholar
Marchevsky, AM, Changsri, C, Gupta, I, et al. Frozen section diagnoses of small pulmonary nodules: accuracy and clinical implications. Ann Thorac Surg 2004;78:1755–9.CrossRefGoogle ScholarPubMed
Novis, DA, Zarbo, RJ.Interinstitutional comparison of frozen section turnaround time. A College of American Pathologists Q-Probes study of 32868 frozen sections in 700 hospitals. Arch Pathol Lab Med 1997;121:559–67.Google ScholarPubMed
Gephardt, GN, Zarbo, RJ.Interinstitutional comparison of frozen section consultations. A college of American Pathologists Q-Probes study of 90,538 cases in 461 institutions. Arch Pathol Lab Med 1996;120:804–9.Google ScholarPubMed
Gupta, R, Dastane, A, McKenna, RJ Jr, Marchevsky, AM.What can we learn from the errors in the frozen section diagnosis of pulmonary carcinoid tumors? An evidence-based approach. Hum Pathol 2009;40:1–9.CrossRefGoogle ScholarPubMed
Soga, J, Yakuwa, Y.Bronchopulmonary carcinoids: An analysis of 1,875 reported cases with special reference to a comparison between typical carcinoids and atypical varieties. Ann Thorac Cardiovasc Surg 1999;5:211–9.Google ScholarPubMed
Suda, T, Mizoguchi, Y, Hasegawa, S, Negi, K, Hattori, Y.Frozen-section diagnosis of small adenocarcinoma of the lung for intentional limited surgery. Surg Today 2006;36:676–9.CrossRefGoogle ScholarPubMed
Goldstraw, P.Lung. In Edge, S, Byrd, D, Compton, C, eds. AJCC Cancer Staging Manual, 7th ed. New York: Springer-Verlag, 2010. pp. 252–70.Google Scholar
Goldstraw, P, Crowley, J, Chansky, K, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol 2007;2:706–14.CrossRefGoogle ScholarPubMed
Kato, Y, Ferguson, TB, Bennett, DE, Burford, TH.Oat cell carcinoma of the lung. A review of 138 cases. Cancer 1969;23:517–24.3.0.CO;2-L>CrossRefGoogle Scholar
Nicholson, SA, Beasley, MB, Brambilla, E, et al. Small cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens. Am J Surg Pathol 2002;26:1184–97.CrossRefGoogle ScholarPubMed
Lally, BE, Urbanic, JJ, Blackstock, AW, Miller, AA, Perry, MC.Small cell lung cancer: have we made any progress over the last 25 years?The Oncologist 2007;12:1096–104.CrossRefGoogle ScholarPubMed
Turrisi, AT 3rd, Kim, K, Blum, R, et al. Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 1999;340:265–71.CrossRefGoogle ScholarPubMed
Sundstrom, S, Bremnes, RM, Kaasa, S, Aasebo, U, Aamdal, S.Second-line chemotherapy in recurrent small cell lung cancer. Results from a crossover schedule after primary treatment with cisplatin and etoposide (EP-regimen) or cyclophosphamide, epirubicin, and vincristin (CEV-regimen). Lung Cancer 2005;48:251–61.Google Scholar
Colby, TV, Koss, MN, Travis, WD.Carcinoma of the lung: clinical and radiographic aspects, spread, staging, management, and prognosis. In Colby, TV, Koss, MN, Travis, WD, eds. Tumors of the Lower Respiratory Tract, 3rd ed. Washington DC: Armed Forces Institute of Pathoogy, 1995. pp. 107–34.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×