Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T07:32:49.506Z Has data issue: false hasContentIssue false

Chapter 17 - Chronic obstructive pulmonary disease and diseases of the airways

Published online by Cambridge University Press:  05 June 2014

Philip Hasleton
Affiliation:
University of Manchester
Douglas B. Flieder
Affiliation:
Fox Chase Cancer Center, Philadelphia
Get access

Summary

Introduction

Airflow obstruction, due to chronic obstructive lung disease, and parenchymal and airways disease due to other etiologies are major causes of morbidity and mortality. They account for a very large percentage of healthcare costs. The airways are in open communication with the direct environment. Anything inhaled will come into direct contact with the airways. Many disorders of large and small airways are therefore associated with inhaled substances, such as cigarette smoke, atmospheric pollution and other exposures related to work or hobbies. Even in airway diseases of unknown etiology, environmental factors affect the histopathology. Disorders of the bronchioles show similar changes to those observed in larger airways, caused by inhalation of cigarette smoke and other noxious materials. In addition small airways can show changes that are more often associated with alveolar disease.

This chapter will discuss diseases originating in the airways or notably affecting airway function. The different components of chronic obstructive pulmonary disease (COPD), namely chronic bronchitis/bronchiolitis and emphysema, will be discussed separately. Pulmonary and systemic diseases that feature airway involvement, such as asthma and connective tissue diseases, are described elsewhere in the textbook (see Chapters 15 and 21).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, PJ, Shapiro, SD, Pauwels, RA.Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003;22:672–88.CrossRefGoogle ScholarPubMed
Calverley, PM, Walker, P.Chronic obstructive pulmonary disease. Lancet 2003;362:1053–61.CrossRefGoogle ScholarPubMed
Thurlbeck, WM, Wright, JL.Thurlbeck's Chronic Airflow Obstruction, 2nd ed. Hamilton BC: Decker, 1999.Google Scholar
Wright, JL, Lawson, LM, Pare, PD, et al. Morphology of peripheral airways in current smokers and ex- smokers. Am Rev Respir Dis 1983;127:474–7.CrossRefGoogle ScholarPubMed
Hogg, JC, Timens, W.The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 2009;4:435–59.CrossRefGoogle ScholarPubMed
Moulton, BC, Barker, AF.Pathogenesis of bronchiectasis. Clin Chest Med 2012;33:211–7.CrossRefGoogle ScholarPubMed
Kobzik, L.The lung. In Cotran, RS, Kumar, V, Collins, T, eds. Robbins Pathologic Basis of Disease, 6th ed. Philadelphia: W.B. Saunders, 1999. pp. 697–774.Google Scholar
Barnes, PJ, Shapiro, SD, Pauwels, RA.Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003;22:672–88.CrossRefGoogle ScholarPubMed
Rabe, KF, Hurd, S, Anzueto, A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2007;176:532–55.CrossRefGoogle ScholarPubMed
Viegi, G, Pistelli, F, Sherrill, DL, et al. Definition, epidemiology and natural history of COPD. Eur Respir J 2007;30:993–1013.CrossRefGoogle ScholarPubMed
Yamasaki, A, Hashimoto, K, Hasegawa, Y, et al. COPD is frequent in conditions of comorbidity in patients treated with various diseases in a university hospital. Int J COPD 2010;5:351–5.CrossRefGoogle Scholar
Lindberg, A, Jonsson, A-C, Ronmark, E, et al. Prevalence of chronic obstructive pulmonary disease according to BTS, ERS, GOLD and ATS criteria in relation to doctor's diagnosis, symptoms, age, gender, and smoking habits. Respiration 2005;72:471–9.CrossRefGoogle ScholarPubMed
Zhong, N, Wang, C, Yao, W, et al. Prevalence of chronic obstructive pulmonary disease in China. Am J Respir Crit Care Med 2007;176:753–60.CrossRefGoogle Scholar
Mannino, DM, Buist, AS, Petty, TL, et al. Lung function and mortality in the United States: data from the First National Health and Nutrition Examination Survey follow up study. Thorax 2003;58:388–93.CrossRefGoogle ScholarPubMed
Garcia Rodriguez, LA, Wallander, MA, Talosa, LB, et al. Chronic obstructive pulmonary disease in UK primary care: incidence and risk factors. COPD 2009;6:369–79.CrossRefGoogle ScholarPubMed
Fuhrman, C, Delmas, MC.Epidemiology of chronic obstructive pulmonary disease in France. Rev Fr Mal Resp 2010;27:160–8.CrossRefGoogle ScholarPubMed
Soriano, JB, Yanez, A, Renom, F, et al. Set-up and pilot of a population cohort for the study of the natural history of COPD and OSA: the PULSAIB study. Prim Care Respir J 2010;19:140–7.CrossRefGoogle Scholar
Hofman, A, Breteler, MMB, van Duijn, CM, et al. The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol 2009;24:553–72.CrossRefGoogle ScholarPubMed
Soriano, JB, Ancochea, J, Miravitlles, M, et al. Recent trends in COPD prevalence in Spain: a repeated cross-sectional survey 1997–2007. Eur Respir J 2010;36:758–65.CrossRefGoogle ScholarPubMed
Vasankari, TM, Impivaara, O, Heliovaara, M, et al. No increase in the prevalence of COPD in two decades. Eur Respir J 2010;36:766–73.CrossRefGoogle ScholarPubMed
Celli, BR.Chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3:58–65.CrossRefGoogle ScholarPubMed
Doescher, MP, Jackson, JE, Jerant, A, et al. Prevalence and trends in smoking: A national rural study. J Rural Health 2006;22:112–8.CrossRefGoogle ScholarPubMed
Sin, DD, Stafinski, T, Ng, YC, et al. The impact of chronic obstructive pulmonary disease on work loss in the United States. Am J Respir Crit Care Med 2002;165:704–7.CrossRefGoogle ScholarPubMed
Croxton, TL, Weinmann, GG, Senior, RM, et al. Future research directions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;165:838–44.CrossRefGoogle ScholarPubMed
Pauwels, RA, Buist, AS, Ma, P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: National Heart, Lung, and Blood Institute and World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD): executive summary. Respir Care 2001;46:798–825.Google ScholarPubMed
Maclay, JD, Rabinovich, RA, MacNee, W.Update in chronic obstructive pulmonary disease 2008. Am J Respir Crit Care Med 2009;179:533–41.CrossRefGoogle ScholarPubMed
Marciniak, SJ, Lomas, DA.What can naturally occurring mutations tell us about the pathogenesis of COPD?Thorax 2009;64:359–64.CrossRefGoogle ScholarPubMed
Smolonska, J, Wijmenga, C, Postma, DS, et al. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years' research. Am J Respir Crit Care Med 2009;180:618–31.CrossRefGoogle ScholarPubMed
Wan, ES, Silverman, EK.Genetics of COPD and emphysema. Chest 2009;136:859–66.CrossRefGoogle ScholarPubMed
Patel, BD, Coxson, HO, Pillai, SG, et al. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;178:500–5.CrossRefGoogle ScholarPubMed
DeMeo, DL, Silverman, EK.Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax 2004;59:259–64.CrossRefGoogle ScholarPubMed
Lomas, DA, Silverman, EK.The genetics of chronic obstructive pulmonary disease. Respir Res 2001;2:20–6.CrossRefGoogle ScholarPubMed
Hersh, CP, DeMeo, DL, Silverman, EK.National Emphysema Treatment Trial state of the art: genetics of emphysema. Proc Am Thorac Soc 2008;5:486–93.CrossRefGoogle ScholarPubMed
Gosman, MM, Boezen, HM, van Diemen, CC, et al. A disintegrin and metalloprotease 33 and chronic obstructive pulmonary disease pathophysiology. Thorax 2007;62:242–7.CrossRefGoogle ScholarPubMed
van Diemen, CC, Postma, DS, Vonk, JM, et al. A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med 2005;172:329–33.CrossRefGoogle ScholarPubMed
van Diemen, CC, Postma, DS, Vonk, JM, et al. Decorin and TGF-beta1 polymorphisms and development of COPD in a general population. Respir Res 2006;7:89CrossRefGoogle Scholar
Cosio, BG, Agusti, A.Update in chronic obstructive pulmonary disease 2009. Am J Respir Crit Care Med 2010;181:655–60.CrossRefGoogle ScholarPubMed
DeMeo, DL, Hersh, CP, Hoffman, EA, et al. Genetic determinants of emphysema distribution in the national emphysema treatment trial. Am J Respir Crit Care Med 2007;176:42–8.CrossRefGoogle ScholarPubMed
Lambrechts, D, Buysschaert, I, Zanen, P, et al. The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am J Respir Crit Care Med 2010;181:486–93.CrossRefGoogle ScholarPubMed
Kim, WJ, Hoffman, E, Reilly, J, et al. Association of COPD candidate genes with computed tomography emphysema and airway phenotypes in severe COPD. Eur Respir J 2011;37:39–43CrossRefGoogle ScholarPubMed
Sadeghnejad, A, Ohar, JA, Zheng, SL, et al. Adam33 polymorphisms are associated with COPD and lung function in long-term tobacco smokers. Respir Res 2009;10:21CrossRefGoogle ScholarPubMed
Wang, X, Li, L, Xiao, J, et al. Association of ADAM33 gene polymorphisms with COPD in a northeastern Chinese population. BMC Med Genet 2009;10:132CrossRefGoogle Scholar
Hunninghake, GM, Cho, MH, Tesfaigzi, Y, et al. MMP12, lung function, and COPD in high-risk populations. N Engl J Med 2009;361:2599–608.CrossRefGoogle ScholarPubMed
Brusselle, GG.Matrix metalloproteinase 12, asthma, and COPD. N Engl J Med 2009;361:2664–5.CrossRefGoogle ScholarPubMed
Weiss, ST.What genes tell us about the pathogenesis of asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010;181:1170–3.CrossRefGoogle ScholarPubMed
Berge, S, Wedzicha, JA.COPD exacerbations: definitions and classifications. Eur Respir J 2003;21S41: 46S–53S.CrossRefGoogle Scholar
Mallia, P, Johnston, SL.Mechanisms and experimental models of chronic obstructive pulmonary disease exacerbations. Proc Am Thorac Soc 2005;2:361–6.CrossRefGoogle ScholarPubMed
Effing, TW, Kerstjens, HAM, Monninkhof, EM, et al. Definitions of exacerbations. Chest 2009;136:918–23.CrossRefGoogle ScholarPubMed
Sapey, E, Stockley, RA.COPD exacerbations 2: Aetiology. Thorax 2006;61:250–8.CrossRefGoogle ScholarPubMed
Celli, BR, Barnes, PJ.Exacerbations of chronic obstructive pulmonary disease. Eur Respir J 2007;29:1224–38.CrossRefGoogle ScholarPubMed
van der Vaart, H, Koeter, GH, Postma, DS, et al. First study of Infliximab treatment in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;172:465–9.CrossRefGoogle ScholarPubMed
Wedzicha, JA.Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2004;17:115–20.CrossRefGoogle Scholar
Hoogendoorn, M, Feenstra, TL, Hoogenveen, RT, et al. Association between lung function and exacerbation frequency in patients with COPD. Int J COPD 2010;5:435–44.CrossRefGoogle ScholarPubMed
Marsh, SE, Travers, J, Weatherall, M, et al. Proportional classifications of COPD phenotypes. Thorax 2008;63:761–7.CrossRefGoogle ScholarPubMed
Dornhorst, AC.Respiratory insufficiency. Lancet 1955;268:1185–7.Google ScholarPubMed
Petty, TL.COPD: clinical phenotypes. Pulm Pharmacol Ther 2002;15:341–51.CrossRefGoogle ScholarPubMed
Johnson, MA, Woodcock, AA, Rehahn, M, et al. Are “pink puffers” more breathless than “blue bloaters”?Br Med J 1983;286:179–82.CrossRefGoogle ScholarPubMed
Wright, JL, Tazelaar, H, Churg, A.Fibrosis with emphysema. Histopathology 2010;58:517–24.CrossRefGoogle ScholarPubMed
Taskar, V, Coultas, D.Exposures and idiopathic lung disease. Semin Respir Crit Care Med 2008;29:670–9.CrossRefGoogle ScholarPubMed
Attili, AK, Kazerooni, EA, Gross, BH, et al. Smoking-related interstitial lung disease: radiologic-clinical-pathologic correlation. Radiographics 2008;28:1383–96.CrossRefGoogle ScholarPubMed
Rabe, KF, Beghe, B, Luppi, F, et al. Update in chronic obstructive pulmonary disease 2006. Am J Respir Crit Care Med 2007;175:1222–32.CrossRefGoogle ScholarPubMed
Fishman, A, Martinez, F, Naunheim, K, et al. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 2003;348:2059–73.Google ScholarPubMed
Verschakelen, JA, De Wever, W.Decreased lung attenuation. In Verschakelen, JA, De Wever, W., eds. Computed Tomography of the Lung. A Pattern Approach. Berlin: Springer, 2009. pp. 47–68.Google Scholar
Newell, JDJr. Quantitative computed tomography of lung parenchyma in chronic obstructive pulmonary disease: an overview. Proc Am Thorac Soc 2008;5:915–8.CrossRefGoogle Scholar
Coxson, HO.Quantitative computed tomography assessment of airway wall dimensions: current status and potential applications for phenotyping chronic obstructive pulmonary disease. Proc Am Thorac Soc 2008;5:940–5.CrossRefGoogle ScholarPubMed
Mair, G, Maclay, J, Miller, JJ, et al. Airway dimensions in COPD: Relationships with clinical variables. Respir Med 2010;104:1683–90.CrossRefGoogle ScholarPubMed
Van der Geld, YM, Van Straaten, JFM, Postma, DS, et al. Role of proteoglycans in development and pathogenesis of emphysema. In Garg, HG, Roughley, PJ, Hales, CA, eds. Proteoglycans in Lung Disease. New York: Marcel Dekker, 2002. pp. 241–67.Google Scholar
Saetta, M, Turato, G, Maestrelli, P, et al. Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163:1304–9.CrossRefGoogle ScholarPubMed
Moreno, RH, Hogg, JC, Pare, PD.Mechanics of airway narrowing. Am Rev Respir Dis 1986;133:1171–80.Google ScholarPubMed
Chung, KF.The role of airway smooth muscle in the pathogenesis of airway wall remodelling in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005;2:347–54.CrossRefGoogle ScholarPubMed
Hogg, JC, McDonough, JE, Gosselink, JV, et al. What drives the peripheral lung-remodelling process in chronic obstructive pulmonary disease? Proc Am Thorac Soc 2009;6:668–72.CrossRefGoogle Scholar
Haraguchi, M, Shimura, S, Shirato, K.Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. Am J Respir Crit Care Med 1999;159:1005–13.CrossRefGoogle ScholarPubMed
Saetta, M, Turato, G, Baraldo, S, et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med 2000;161:1016–21.CrossRefGoogle ScholarPubMed
Wright, JL, Lawson, LM, Pare, PD, et al. Morphology of peripheral airways in current smokers and ex-smokers. Am Rev Respir Dis 1983;127:474–7.CrossRefGoogle ScholarPubMed
Cosio, M, Ghezzo, H, Hogg, JC, et al. The relations between structural changes in small airways and pulmonary- function tests. N Engl J Med 1978;298:1277–81.CrossRefGoogle ScholarPubMed
Cosio, MG, Hale, KA, Niewoehner, DE.Morphologic and morphometric effects of prolonged cigarette smoking on the small airways. Am Rev Respir Dis 1980;122:265–71.Google ScholarPubMed
Bosken, CH, Wiggs, BR, Pare, PD, et al. Small airway dimensions in smokers with obstruction to airflow. Am Rev Respir Dis 1990;142:563–70.CrossRefGoogle ScholarPubMed
Kuwano, K, Bosken, CH, Pare, PD, et al. Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 1993;148:1220–5.CrossRefGoogle ScholarPubMed
Hogg, JC, Chu, F, Utokaparch, S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645–53.CrossRefGoogle ScholarPubMed
Hale, KA, Ewing, SL, Gosnell, BA, et al. Lung disease in long-term cigarette smokers with and without chronic air-flow obstruction. Am Rev Respir Dis 1984;130:716–21.Google ScholarPubMed
Detsuyaku, T, Fuke, S, Nashuhara, Y, et al. Diverse experssion of antioxidants and inflammatory chemokines in terminal bronchiolar epithelium in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3:471–372.CrossRefGoogle Scholar
Churg, A, Zhou, S, Preobrazhenska, O, et al. Expression of profibrotic mediators in small airways vs parenchyma after cigarette smoke exposure. Am J Respir Cell Mol Biol 2009;40:268–76.CrossRefGoogle Scholar
Sethi, S.Bacterial infection and the pathogenesis of COPD. Chest 2000;117:286S–91S.CrossRefGoogle ScholarPubMed
Shapiro, SD.End-stage chronic obstructive pulmonary disease: the cigarette is burned out but inflammation rages on. Am J Respir Crit Care Med 2001;164:339–40.CrossRefGoogle Scholar
Di Stefano, A, Capelli, A, Lusuardi, M, et al. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 1998;158:1277–85.CrossRefGoogle ScholarPubMed
Senior, RM, Griffin, GL, Mecham, RP.Chemotactic activity of elastin-derived peptides. J Clin Invest 1980;66:859–62.CrossRefGoogle ScholarPubMed
Hunninghake, GW, Davidson, JM, Rennard, S, et al. Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science 1981;212:925–7.CrossRefGoogle ScholarPubMed
Rutgers, SR, Postma, DS, Ten Hacken, NHT, et al. Ongoing airway inflammation in patients with COPD who do not currently smoke. Thorax 2000;55:12–8.CrossRefGoogle Scholar
Willemse, BW, ten Hacken, NH, Rutgers, B, et al. Effect of 1-year smoking cessation on airway inflammation in COPD and asymptomatic smokers. Eur Respir J 2005;26:835–45.CrossRefGoogle ScholarPubMed
Lapperre, TS, Postma, DS, Gosman, MM, et al. Relation between duration of smoking cessation and bronchial inflammation in COPD. Thorax 2006;61:115–21.CrossRefGoogle Scholar
Niewoehner, DE, Rice, DB, Kleinerman, J.Pathologic changes in the peripheral airways of young cigarette smokers. N Engl J Med 1974;291:755–8.CrossRefGoogle ScholarPubMed
Cornwell, WD, Kim, V, Song, C, et al. Pathogenesis of inflammation and repair in advanced COPD. Semin Respir Crit Care Med 2010;31:257–66.CrossRefGoogle ScholarPubMed
Barnes, PJ.Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol 2009;71:451–64.CrossRefGoogle ScholarPubMed
Anderson, GP, Bozinovski, S.Acquired somatic mutations in the molecular pathogenesis of COPD. Trends Pharmacol Sci 2003;24:71–6.CrossRefGoogle ScholarPubMed
Spira, A, Beane, J, Pinto-Plata, V, et al. Gene expression profiling of human lung tissue from smokers with severe emphysema. Am J Respir Cell Mol Biol 2004;31:601–10.CrossRefGoogle ScholarPubMed
De Boer, WI, Sont, JK, van Schadewijk, A, et al. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J Pathol 2000;190:619–26.3.0.CO;2-6>CrossRefGoogle Scholar
Pilette, C, Godding, V, Kiss, R, et al. Reduced epithelial expression of secretory component in small airways correlates with airflow obstruction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163:185–94.CrossRefGoogle ScholarPubMed
Zandvoort, A, Van der Geld, YM, Jonker, MR, et al. High ICAM-1 gene expression in pulmonary fibroblasts of COPD patients: a reflection of an enhanced immunological function. Eur Respir J 2006;28:113–22.CrossRefGoogle ScholarPubMed
Saetta, M, Turato, G, Timens, W, et al. Pathology of chronic obstructive pulmonary disease. Eur Respir Mon 2006;11:159–76.Google Scholar
O'Shaughnessy, TC, Ansari, TW, Barnes, NC, et al. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationships of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med 1997;15:852–7.CrossRefGoogle Scholar
Saetta, M, Di Stefano, A, Turato, G, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;157:822–6.CrossRefGoogle ScholarPubMed
Fabbri, LM, Romagnoli, M, Corbetta, L, et al. Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003;167:418–24.CrossRefGoogle ScholarPubMed
Lams, BE, Sousa, AR, Rees, PJ, et al. Subepithelial immunopathology of the large airways in smokers with and without chronic obstructive pulmonary disease. Eur Respir J 2000;15:512–6.CrossRefGoogle ScholarPubMed
Hogg, JC.Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004;364:709–21.CrossRefGoogle ScholarPubMed
Gosman, MM, Willemse, BW, Jansen, DF, et al. Increased number of B-cells in bronchial biopsies in COPD. Eur Respir J 2006;27:60–4.CrossRefGoogle Scholar
van der Strate, BW, Postma, DS, Brandsma, CA, et al. Cigarette smoke-induced emphysema: a role for the B cell?Am J Respir Crit Care Med 2006;173:751–8.CrossRefGoogle ScholarPubMed
Van Pottelberge, GR, Bracke, KR, Van den Broeck, S, et al. Plasmacytoid dendritic cells in pulmonary lymphoid follicles of patients with COPD. Eur Respir J 2010;36:791CrossRefGoogle ScholarPubMed
Lee, SH, Goswami, S, Grudo, A, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 2007;13:567–9.CrossRefGoogle ScholarPubMed
Feghali-Bostwick, CA, Gadgil, AS, Otterbein, LE, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:156–63.CrossRefGoogle ScholarPubMed
Stefanska, AM, Walsh, PT.Chronic obstructive pulmonary disease: evidence for an autoimmune component. Cell Mol Immunol 2009;6:81–6.CrossRefGoogle ScholarPubMed
Saetta, M, Turato, G, Facchini, FM, et al. Inflammatory cells in the bronchial glands of smokers with chronic bronchitis. Am J Respir Crit Care Med 1997;156:1633–9.CrossRefGoogle ScholarPubMed
Zhu, J, Qiu, YS, Majumdar, S, et al. Exacerbations of bronchitis: bronchial eosinophilia and gene expression for interleukin-4, interleukin-5, and eosinophil chemoattractants. Am J Respir Crit Care Med 2001;164:109–16.CrossRefGoogle ScholarPubMed
Saetta, M, Di Stefano, A, Maestrelli, P, et al. Airway eosinophilia in chronic bronchitis during exacerbations. Am J Respir Crit Care Med 1994;150:1646–52.CrossRefGoogle ScholarPubMed
Qiu, Y, Zhu, J, Bandi, V, et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003;168:968–75.CrossRefGoogle ScholarPubMed
Saha, S, Brightling, CE.Eosinophilic airway inflammation in COPD. Int J Chron Obstruct Pulmon Dis 2006;1:39–47.Google Scholar
Mannino, DM, Braman, S.The epidemiology and economics of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2007;4:502–6.CrossRefGoogle ScholarPubMed
Mannino, DM, Watt, G, Hole, D, et al. The natural history of chronic obstructive pulmonary disease. Eur Respir J 2006;27:627–43.CrossRefGoogle ScholarPubMed
Traver, GA, Cline, MG, Burrows, B.Predictors of mortality in chronic obstructive pulmonary disease. Am Rev Respir Dis 1979;119:895–902.Google ScholarPubMed
Yamaguti, WP, Paulin, E, Salge, JM, et al. Diaphragmatic dysfunction and mortality in patients with COPD. Journal Brasileiro de Pneumologia 2009;35:1174–81.CrossRefGoogle ScholarPubMed
Vestbo, J, Prescott, E, Almadal, T, et al. Body mass, fat-free body mass, and prognosis in patinets with chronic obstructive pulmonary disease from a random population sample. Am J Respir Crit Care Med 2006;173:79–83.Google Scholar
Kohansal, R, Martinez-Camblor, P, Agusti, A, et al. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am J Respir Crit Care Med 2009;180:3–10.CrossRefGoogle ScholarPubMed
Sin, DD, Man, SFP.Biomarkers in COPD: are we there yet?Chest 2008;133:1296–8.CrossRefGoogle ScholarPubMed
Anzueta, A.Clinical course of chronic obstructive pulmonary disease: review of therapeutic interventions. Am J Med 2006;119:S46–S53CrossRefGoogle Scholar
Tashkin, DP, Murray, RP.Smoking cessation in chronic obstructive pulmonary disease. Respir Med 2009;103:963–74.CrossRefGoogle ScholarPubMed
Kohansal, R, Martinez-Camblor, P, Agusti, A, et al. The natural history of chronic airflow obstruction revisited. Am J Respir Crit Care Med 2009;180:3–10.CrossRefGoogle ScholarPubMed
Nici, L, Donner, C, Wouters, E, et al. American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am J Respir Crit Care Med 2006;173:1390–413.CrossRefGoogle ScholarPubMed
Niimi, A, Chung, KF.Airway inflammation and remodeling changes in patients with chronic cough: do they tell us about the cause of the cough?Pulm Pharmacol Ther 2004;17:441–6.CrossRefGoogle Scholar
Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. American Thoracic Society. Am J Respir Crit Care Med 1995;152:S77–121.Google Scholar
Siafakas, NM, Vermeire, P, Pride, NB, et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). The European Respiratory Society Task Force. Eur Respir J 1995;8:1398–420.CrossRefGoogle ScholarPubMed
Guerra, S, Sherrill, DL, Venker, C, et al. Chronic bronchitis before age 50 years predicts incident airflow limitation and mortality risk. Thorax 2009;64:894–900.CrossRefGoogle ScholarPubMed
Ball, P.Epidemioloogy and treatment of chronic bronchitis and its exacerbations. Chest 1995;108:43S–52S.CrossRefGoogle ScholarPubMed
Edward, W, Pearce, N, Douwes, J.Chronic bronchitis, COPD, and lung function in farmers: the role of biological agents. Chest 2009;136:716–25.CrossRefGoogle Scholar
Lam, HT, Ronmark, E, Van Tuonck, N, et al. Increase in asthma and a high prevalence of bronchitis: results from a population study among adults in urban and rural Vietnam. Respir Med 2010;105:177–85.CrossRefGoogle Scholar
Kim, N, Leeper, KV.Epidemiology of chronic bronchitis and acute infective exacerbations of chronic bronchitis. Sem Resp Crit Care Med 2000;21:73–8.CrossRefGoogle ScholarPubMed
Voynow, JA, Rubin, BK.Mucins, mucus, and sputum. Chest 2009;135:505–12.CrossRefGoogle ScholarPubMed
Evans, CM, Koo, JS.Airway mucus: the good, the bad, the sticky. Pharmacol Therapeut 2008;121:332–48.CrossRefGoogle ScholarPubMed
Rovina, N, Dima, E, Gerassimou, C, et al. Interleukin-18 in induced sputum: association with lung function in chronic obstructive pulmonary disease. Respir Med 2009;103:1056–62.CrossRefGoogle ScholarPubMed
Rose, MC, Nickola, TJ, Voynow, JA.Airway mucus obstruction: mucin glycoproteins, MUC gene regulation and goblet cell hyperplasia. Am J Respir Cell Mol Biol 2001;25:533–7.CrossRefGoogle ScholarPubMed
Rose, MC, Voynow, JA.Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 2006;86:245–78.CrossRefGoogle ScholarPubMed
Chorley, BN, Crews, AL, Li, Y, et al. Differential MUC2 and MUC5AC secretion by stimulated guinea pig tracheal epithelial cells in vivo. Respir Res 2006;7:35–48.CrossRefGoogle Scholar
Jeffery, PK.Comparison of the structural and inflammatory features of COPD and asthma. Giles F. Filley Lecture. Chest 2000;117:251S–60S.CrossRefGoogle Scholar
Jeffery, PK.Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 2001;164:S28–S38.CrossRefGoogle ScholarPubMed
Jeffery, PK.Chronic obstructive pulmonary disease and cigarette smoke-induced epithelial damage. Eur Respir Rev 1992;2:136–43.Google Scholar
Saetta, M, Finkelstein, R, Cosio, MG.Morphological and cellular basis for airflow limitation in smokers. Eur Respir J 1994;7:1505–15.CrossRefGoogle ScholarPubMed
Jeffery, PK.Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2004;1:176–83.CrossRefGoogle ScholarPubMed
Liesker, JJ, Ten Hacken, NH, Zeinstra-Smith, M, et al. Reticular basement membrane in asthma and COPD: similar thickness, yet different composition. Int J Chron Obstruct Pulmon Dis 2009;4:127–35.Google ScholarPubMed
Hale, FC, Olsen, CR, Mickey, MR.The measurement of bronchial wall components. Am Rev Respir Dis 1968;98:978–87.Google Scholar
Dunnill, MS, Massarella, GR, Anderson, JA.A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 1969;24:176–9.CrossRefGoogle ScholarPubMed
Takizawa, T, Thurlbeck, WM.A comparative study of four methods of assessing the morphologic changes in chronic bronchitis. Am Rev Respir Dis 1971;103:774–83.Google ScholarPubMed
Reid, LM.Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax 1960;15:132–41.CrossRefGoogle ScholarPubMed
Thurlbeck, WM, Angus, GE.A distribution curve for chronic bronchitis. Thorax 1964;19:436–42.CrossRefGoogle ScholarPubMed
Lamb, D.Pathology. In Calverley, P, Pride, N, eds. Chronic Obstructive Pulmonary Disease. London: Chapman & Hall, 1995. pp. 9–34.CrossRefGoogle Scholar
Leopold, JG, Gough, J.The centrilobular form of hypertrophic emphysema and its relation to chronic bronchitis. Thorax 1957;12:219–35.CrossRefGoogle ScholarPubMed
Perry, KMA, King, DS.Bronchiectasis: a study of prognosis based on a follow-up of 400 cases. Am Rev Tuberc 1940;41:531–48.Google Scholar
Katzenstein, AL, Mukhopadhyay, S, Zanardi, C, et al. Clinically occult interstitial fibrosis in smokers: classification and significance of a surprisingly common finding in lobectomy specimens. Hum Pathol 2010;41:316–25.CrossRefGoogle ScholarPubMed
Saetta, M, Kim, WD, Izquierdo, JL, et al. Extent of centrilobular and panacinar emphysema in smokers' lungs: pathological and mechanical implications. Eur Respir J 1994;7:664–71.CrossRefGoogle ScholarPubMed
Cardoso, W, Sekhon, H, Hyde, DM, et al. Collagen and elastin in human pulmonary emphysema. Am Rev Respir Dis 1993;147:975–81.CrossRefGoogle ScholarPubMed
Lang, MR, Fiaux, GW, Gillooly, M, et al. Collagen content of alveolar wall tissue in emphysematous and non-emphysematous lungs. Thorax 1994;49:319–26.CrossRefGoogle ScholarPubMed
Heppleston, AG, Leopold, JG.Chronic pulmonary emphysema. Anatomy and pathogenesis. Am J Med 1961;31:279–91.CrossRefGoogle ScholarPubMed
Thurlbeck, WM.The incidence of pulmonary emphysema with observations on the relative incidence and spatial distribution of various types of emphysema. Am Rev Respir Dis 1963;87:206–15.Google ScholarPubMed
Heard, BH.A pathological study of the lungs with chronic bronchitis. Thorax 1958;13:136–40.CrossRefGoogle ScholarPubMed
Dunnill, MS.Quantitative methods in the study of pulmonary pathology. Thorax 1962;17:320–845.CrossRefGoogle Scholar
Weibel, ER, Vidone, RA.Fixation of the lung by formalin steam in a controlled state of air inflation. Am Rev Respir Dis 1961;84:856–61.Google Scholar
Ryder, RC, Thurlbeck, WM, Gough, J.A study of interobserver variation in the assessment of the amount of pulmonary emphysema in papermounted whole lung sections. Am Rev Respir Dis 1969;99:354–64.Google Scholar
Thurlbeck, WM, Dunnill, MS, Hartung, W, et al. A comparison of three methods of measuring emphysema. Hum Pathol 1970;1:215–26.CrossRefGoogle ScholarPubMed
Nagai, A, Yamawaki, I, Thurlbeck, WM, et al. Assessment of lung parenchymal destruction by using routine histologic tissue sections. Am Rev Respir Dis 1989;139:313–9.CrossRefGoogle ScholarPubMed
Hsia, CCW, Hyde, DM, Ochs, M, et al. An official research policy statement of the American Thoracic Society/European Respiratory Society: Standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 2010;181:394–418.CrossRefGoogle ScholarPubMed
Saetta, M, Shiner, RJ, Angus, GE, et al. Destructive index: a measurement of lung parenchymal destruction in smokers. Am Rev Respir Dis 1985;131:764–9.Google ScholarPubMed
Coxson, HO, Rogers, RM, Whittall, KP, et al. A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 1999;159:851–6.CrossRefGoogle ScholarPubMed
Lamers, RJ, Thelissen, GR, Kessels, AG, et al. Chronic obstructive pulmonary disease: evaluation with spirometrically controlled CT lung densitometry. Rad 1994;193:109–13.Google ScholarPubMed
Laurell, CB, Eriksson, S.The electrophoretic α1-globulin pattern of serum in a1- antitrypsin deficiency. Scand J Clin Lab Invest 1963;15:132–40.CrossRefGoogle Scholar
Luisetti, M, Seersholm, N.α1-Antitrypsin deficiency 1: epidemiology of α1-antitrypsin deficiency. Thorax 2010;59:164–9.CrossRefGoogle Scholar
de Serres, FJ, Blanco, I, Fernandez-Bustillo, E.Ethnic differences in alpha-1 antitrypsin deficiency in the United States of America. Ther Adv Respir Dis 2010;4:63–71.CrossRefGoogle ScholarPubMed
Fregonese, L, Stolk, J.Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphonet J Rare Dis 2008;3:16–25.CrossRefGoogle ScholarPubMed
Silverman, EK, Sandhaus, RA.Alpha1-antitrypsin deficiency. N Engl J Med 2009;360:2749–57.CrossRefGoogle ScholarPubMed
Ranes, J, Stoller, JK.A review of alpha-1-antitrypsin deficiency. Semin Respir Crit Care Med 2005;26:154–66.CrossRefGoogle ScholarPubMed
Needham, M, Stockley, RA. α1-antitrypsin deficiency 3: Clinical manifestations and natural history. Thorax 2004;59:441–5.CrossRefGoogle ScholarPubMed
DeMeo, DL, Silverman, EK.α1-antitrypsin deficiency 2: genetic aspects of α1-antitrypsin deficiency: phenotypes and genetic modifers of emphysema risk. Thorax 2004;59:259–64.CrossRefGoogle Scholar
Barnes, PJ.Chronic obstructive pulmonary disease. N Engl J Med 2000;343:269–80.CrossRefGoogle ScholarPubMed
Rahman, I, van Schadewijk, AA, Crowther, AJ, et al. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166:490–5.CrossRefGoogle ScholarPubMed
MacNee, W.Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005;2:258–66.CrossRefGoogle ScholarPubMed
Shapiro, SD.Evolving concepts in the pathogenesis of chronic obstructive pulmonary disease. Clin Chest Med 2002;21:621–632.CrossRefGoogle Scholar
Retamales, I, Elliott, WM, Meshi, B, et al. Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am Rev Respir Dis 2001;164:469–73.CrossRefGoogle ScholarPubMed
Churg, A, Cosio, M, Wright, JL.Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol 2008;294:L612–L631Google ScholarPubMed
Wright, JL, Cosio, M, Churg, A.Animal models of chronic obstructive pulmonary disease. Am J Physiol 2008;295:L1–L5Google ScholarPubMed
Zheng, T, Zhu, Z, Wang, Z, et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 2000;106:1081–93.CrossRefGoogle ScholarPubMed
Wang, Z, Zheng, T, Zhu, Z, et al. Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 2000;192:1587–600.CrossRefGoogle ScholarPubMed
Barnes, PJ.Unexpected failure of anti-tumor necrosis factor therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:866–7.CrossRefGoogle ScholarPubMed
Voelkel, NF, Vandivier, RW, Tuder, RM.Vascular endothelial growth factor in the lung. Am J Physiol 2006;290:L209–L221Google ScholarPubMed
Tuder, RM, Petrache, I, Elias, JA, et al. Apoptosis and emphysema: the missing link. Am J Respir Cell Mol Biol 2003;28:551–4.CrossRefGoogle ScholarPubMed
Tuder, RM, McGrath, S., Neptune, E.The pathobiological mechanisms of emphysema models: what do they have in common?Pulm Pharmacol Ther 2003;16:67–78.CrossRefGoogle ScholarPubMed
Golpon, HA, Fadok, VA, Taraceviene-Stewart, L, et al. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 2004;18:1716–28.CrossRefGoogle ScholarPubMed
Bratton, DL, Henson, PM.Autoimmunity and apoptosis: refusing to go quietly. Nature Med 2005;11:26–7.CrossRefGoogle ScholarPubMed
Kasahara, Y, Tuder, RM, Taraseviciene-Stewart, L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000;106:1311–9.CrossRefGoogle ScholarPubMed
Taraseviciene-Stewart, L, Scerbavicius, R, Choe, K-H, et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med 2005;171:734–42.CrossRefGoogle ScholarPubMed
Marwick, JA, Stevenson, CS, Giddings, J, et al. Cigarette smoke disrupts the VEGF165 – VEGFR2 receptor signaling complex in rat lungs and patients with COPD: morphological impact of VEGFR2 inhibition. Am J Physiol 2006;290:L897–L908Google Scholar
Kuo, W-H, Chen, J-H, Lin, H-H, et al. Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke ivolves p38/JNK MAPK pathway. Chem Biol Interact 2005;155:31–42.CrossRefGoogle Scholar
Aoshiba, K, Koinuma, M, Yokohori, N, et al. Immunohistochemical evaluation of oxidative stress in murine lungs after cigarette smoke exposure. Inhal Toxicol 2003;15:1029–38.CrossRefGoogle ScholarPubMed
Petrache, I, Fijalkowska, I, Zhen, L, et al. A novel antiapoptotic role for α-1antritrpsin in the prevention of pulmonary emphysema. Am J Respir Crit Care Med 2010;173:1222–8.CrossRefGoogle Scholar
Yokohori, N, Aoshiba, K, Nagai, A.Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 2004;125:626–32.CrossRefGoogle ScholarPubMed
Imai, K, Mercer, BA, Schulman, LL, et al. Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 2005;25:250–8.CrossRefGoogle ScholarPubMed
Calabrese, F, Giacometti, C, Beghe, B, et al. Marked alveolar apoptosis/proliferation imbalance in end-stage emphysema. Respir Res 2005;6:14–26.CrossRefGoogle ScholarPubMed
Lee, S-D, Lee, D-S, Chun, Y-G, et al. Cigarette smoke extract induces endothelin-1 via protein kinase C in pulmonary artery endothelial cells. Am J Physiol 2001;281:L403–L411Google ScholarPubMed
Postma, DS, Timens, W.Remodeling in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3:434–9.CrossRefGoogle ScholarPubMed
Timens, W, Coers, W, Van Straaten, JFM, et al. Extracellular matrix and inflammation: a role for fibroblast-mediated tissue repair in the pathogenesis of emphysema?Eur Respir Rev 1997;7:119–23.Google Scholar
Gauldie, J, Sime, PJ, Tremblay, GM, et al. Tissue remodelling and fibroblast heterogeneity in asthma and other chronic airways inflammatory diseases. In Schleimer, RP, Busse, WW, O'Byrne, P, eds. Inhaled Glucocorticoids in Asthma: Mechanisms and Clinical Actions. New York: Marcel Dekker, 1997. pp. 151–66.Google Scholar
van Straaten, JF, Coers, W, Noordhoek, JA, et al. Proteoglycan changes in the extracellular matrix of lung tissue from patients with pulmonary emphysema. Mod Pathol 1999;12:697–705.Google ScholarPubMed
Zandvoort, A, Postma, DS, Jonker, MR, et al. Altered expression of the Smad signalling pathway: implications for COPD pathogenesis. Eur Respir J 2006;28:533–41.CrossRefGoogle ScholarPubMed
De Boer, WI, van Schadewijk, A, Sont, JK, et al. Transforming growth factor beta1 and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;158:1951–7.CrossRefGoogle ScholarPubMed
Camoretti-Mercado, B, Solway, J.Transforming growth factor-beta1 and disorders of the lung. Cell Biochem Biophys 2005;43:131–48.CrossRefGoogle ScholarPubMed
Zandvoort, A, Postma, DS, Jonker, MR, et al. Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD. Respir Res 2008;9:83.CrossRefGoogle Scholar
Springer, J, Scholz, FR, Peiser, C, et al. SMAD-signalling in chronic obstructive pulmonary disease: transcriptional down-regulation of inhibitory SMAD 6 and 7 by cigarette smoke. Biol Chem 2004;385:649–53.CrossRefGoogle Scholar
Black, PN, Ching, PS, Beaumont, B, et al. Changes in elastic fibres in the small airways and alveoli in COPD. Eur Respir J 2008;31:998–1004.CrossRefGoogle Scholar
Koenders, MM, Wismans, RG, Starcher, B, et al. Fibrillin-1 staining anomalies are associated with increased staining for TGF-beta and elastic fibre degradation; new clues to the pathogenesis of emphysema. J Pathol 2009;218:446–57.CrossRefGoogle ScholarPubMed
Grumelli, S, Corry, DB, Song, L-Z, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Medicine 2004;1:75–83.CrossRefGoogle ScholarPubMed
Cosio, M, Autoimmunity, G, T-cells and STAT-4 in the pathogenesis of chronic obstructive pulmonary disease. Eur Respir J 2004;24:3–5.CrossRefGoogle ScholarPubMed
Agusti, A, MacNee, W, Donaldson, K, et al. Hypothesis: does COPD have an autoimmune component?Thorax 2003;58:832–4.CrossRefGoogle ScholarPubMed
Nunez, B, Sauleda, J, Anto, JM, et al. Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011;183:1025–31.CrossRefGoogle ScholarPubMed
Barnes, PJ, Cosio, MG.Characterization of T lymphocytes in chronic obstructive pulmonary disease. PLoS Medicine 2004;1:25–7.CrossRefGoogle ScholarPubMed
Finkelstein, R, Fraser, RS, Ghezzo, H, et al. Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med 1995;152:1666–72.CrossRefGoogle ScholarPubMed
Majo, J, Ghezzo, H, Cosio, MG.Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 2001;17:946–53.CrossRefGoogle ScholarPubMed
Saetta, M, Baraldo, S, Corbino, L, et al. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999;160:711–7.CrossRefGoogle ScholarPubMed
Cosio, MG, Majo, J, Cosio, MG.Inflammation of the airways and lung parenchyma in COPD: role of T cells. Chest 2002;121:160S–5S.CrossRefGoogle ScholarPubMed
Sullivan, AK, Simonian, PL, Falta, MT, et al. Oligoclonal CD4+ T cells in the lungs of patients with severe emphysema. Am J Respir Crit Care Med 2005;172:590–6.CrossRefGoogle ScholarPubMed
Fadok, VA, Bratton, DL, Henson, PM.Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest 2001;108:957–62.CrossRefGoogle ScholarPubMed
Elwing, J, Panos, RJ.Pulmonary hypertension associated with COPD. Int J COPD 2008;3:55–70.Google ScholarPubMed
Naeije, R, Barbera, JA.Pulmonary hypertension associated with COPD. Crit Care 2001;5:286–9.CrossRefGoogle ScholarPubMed
Hida, W, Tun, Y, Kikuchi, Y, et al. Pulmonary hypertension in patients with chronic obstructive pulmonary disease: recent advances in pathophysiology and management. Respirology 2002;7:3–13.CrossRefGoogle ScholarPubMed
Hoeper, MM.Treating pulmonary hypertension in COPD: where do we start. Eur Respir J 2008;32:541–2.CrossRefGoogle ScholarPubMed
Barbera, JA, Blanco, I.Pulmonary hypertension in patients with chronic obstructive pulmonary disease. Drugs 2009;69:1153–71.CrossRefGoogle ScholarPubMed
Cuttica, MJ, Kalhan, R, Shlobin, OA, et al. Categorization and impact of pulmonary hypertension in patients with advanced COPD. Respir Med 2010;104:1877–82.CrossRefGoogle ScholarPubMed
Jyothula, S, Safdar, Z.Update on pulmonary hypertension complicating chronic obstructive pulmonary disease. Int J COPD 2009;4:351–63.Google ScholarPubMed
Chaouat, A, Naeije, R, Weitzenblum, E.Pulmonary hypertension in COPD. Eur Respir J 2008;32:1371–85.CrossRefGoogle Scholar
Peinado, VI, Pizarro, S, Barbera, JA.Pulmonary vascular involvement in COPD. Chest 2008;134:808–14.CrossRefGoogle Scholar
Burger, CD.Pulmonary hypertension in COPD: a review and consideration of the role of arterial vasodilators. COPD 2009;6:137–44.CrossRefGoogle ScholarPubMed
Weitzenblum, E, Chaouat, A, Canuet, M, et al. Pulmonary hypertension in chronic obstructive pulmonary disease and interstitial lung diseases. Semin Respir Crit Care Med 2009;30:458–70.CrossRefGoogle ScholarPubMed
Wright, JL, Levy, RD, Churg, A.Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax 2005;60:605–9.CrossRefGoogle ScholarPubMed
Chaouat, A, Bugnet, A-S, Kadaoul, N, et al. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;172:189–94.CrossRefGoogle ScholarPubMed
Wilkinson, M, Langhorne, CA, Heath, D, et al. A pathophysiological study of 10 cases of hypoxic cor pulmonale. Quart J Med 1988;249:65–85.Google Scholar
Hale, KA, Niewoehner, DE, Cosio, MG.Morphologic changes in the muscular pulmonary arteries: relationship to cigarette smoking, airway disease, and emphysema. Am Rev Respir Dis 1980;122:273–8.Google ScholarPubMed
Magee, F, Wright, JL, Wiggs, BR, et al. Pulmonary vascular structure and function in chronic obstructive pulmonary disease. Thorax 1988;43:183–9.CrossRefGoogle ScholarPubMed
Wright, JL, Lawson, L, Pare, PD, et al. The structure and function of the pulmonary vasculature in mild chronic obstructive pulmonary disease. Am Rev Respir Dis 1983;128:702–7.Google ScholarPubMed
Haniuda, M, Kubo, K, Fijimoto, K, et al. Effects of pulmonary artery remodeling on pulmonary circulation after lung volume reduction surgery. Thorac Cardiovasc Surg 2003;51:154–8.Google ScholarPubMed
Kubo, K, Ge, R-L, Koizumi, T, et al. Pulmonary artery remodeling modifies pulmonary hypertension during exercise in severe emphysema. Resp Physiol 2000;120:71–9.CrossRefGoogle ScholarPubMed
Wright, JL, Petty, TL, Thurlbeck, WM.Analysis of the structure of the muscular pulmonary arteries in patients with pulmonary hypertension and COPD: National Institutes of Health Nocturnal Oxygen Therapy Trial. Lung 1992;170:109–24.CrossRefGoogle ScholarPubMed
Matsuoka, S, Washko, GR, Yamashiro, T, et al. Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema. Am J Respir Crit Care Med 2010;181:218–25.CrossRefGoogle ScholarPubMed
MacNee, W.Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med 1994;150:833–52.CrossRefGoogle ScholarPubMed
MacNee, W.Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease – part two. Am J Respir Crit Care Med 1994;100:1158–68.CrossRefGoogle Scholar
Budev, MM, Arroliga, AC, Wiedemann, HP, et al. Cor pulmonale: an overview. Semin Respir Crit Care Med 2003;24:233–43.Google ScholarPubMed
Naeije, R.Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 2010;52:456–66.CrossRefGoogle ScholarPubMed
Matsuoka, S, Yamashiro, T, Diaz, A, et al. The relationship between small pulmonary vascular alteration and aortic atherosclerosis in chronic obstructive pulmonary disease. Acad Radiol 2011;18:40–6.CrossRefGoogle ScholarPubMed
Chen, L, Zhang, J, Gan, TX, et al. Left ventricular dysfunction and associated cellular injury in rats exposed to chronic intermittent hypoxia. J Appl Physiol 2008;104:218–23.CrossRefGoogle ScholarPubMed
Akcay, M, Yeter, E, Durvaz, T, et al. Treatment of acute chronic obstructive pulmonary disease exacerbation improves right ventricle function. Eur J Echocardiogr 2010;11:530–6.CrossRefGoogle ScholarPubMed
Fulton, RM, Hutchinson, EC, Jones, AM.Ventricular weight in cardiac hypertrophy. Br Heart J 1952;14:413–20.CrossRefGoogle ScholarPubMed
Gross, B, Grebe, N, Wencher, M, et al. New findings in PiZZ α1-antitrypsin deficiency-related panniculitis. Dermatology 2009;218:370–5.CrossRefGoogle ScholarPubMed
Borgmann, S, Endisch, G, Urban, S, et al. A linkage disequilibrium between genes at the serine protease inhibitor gene cluster on chromosome 14q32.s is associated with Wegener's granulomatosis. Clin Immunol 2001;98:244–8.CrossRefGoogle Scholar
Christie, GS.Diaphragmatic deformation of the liver. Aust N Z J Surg 1951;20:289–303.CrossRefGoogle ScholarPubMed
Jorgensen, NR, Schwarz, P, Holme, I, et al. The prevalence of osteoporosis in patients with chronic obstructive pulmonary disease – a cross sectional study. Resp Med 2007;101:177–85.CrossRefGoogle ScholarPubMed
Gross, NJ.Extrapulmonary effects of chronic obstructive pulmonary disease. Curr Opin Pulm Med 2001;7:84–92.CrossRefGoogle ScholarPubMed
Tamaki, J, Iki, M, Fujita, Y, et al. Impact of smoking on bone mineral density and bone metabolism in elderly men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int 2011;22:133–41.CrossRefGoogle Scholar
Lehouck, A, van Remoortel, H, Troosters, T, et al. [COPD and bone metabolism: a clinical update.]Rev Mal Respir 2010;27:1231–42.CrossRefGoogle Scholar
Watz, H, Waschki, B, Kirsten, A, et al. The metabolic syndrome in patients with chronic bronchitis and COPD. Chest 2009;136:1039–46.CrossRefGoogle ScholarPubMed
Vernooy, JHJ, Drummen, NEA, van Suylen, RJ, et al. Enhanced pulmonary leptin expression in patients with severe COPD and asymptomatic smokers. Thorax 2009;64:26–32.CrossRefGoogle ScholarPubMed
Eker, S, Ayaz, L, Tamer, L, et al. Leptin, visfatin, insulin resistance, and body composition change in chronic obstructive pulmonary disease. Scand J Clin Lab Invest 2010;70:40–4.CrossRefGoogle ScholarPubMed
Wan, ES, Cho, MH, Bautaoui, N, et al. Genome-wide association analysis of body mass in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011;45:304–10.
Wouters, EFM.Chronic obstructive pulmonary disease: 5 Systemic effects of COPD. Thorax 2002;57:1067–70.CrossRefGoogle ScholarPubMed
Remels, AH, Gosker, HR, van der Velden, J, et al. Systemic inflammation and skeletal muscle dysfunction in chronic obstructive pulmonary disease: state of the art and novel insights in regulation of muscle plasticity. Clin Chest Med 2007;28:537–52.CrossRefGoogle ScholarPubMed
Ottenheijm, CAC, Heunks, LMA, Dekhuijzen, PNR.Diaphragm muscle fiber dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:1233–40.CrossRefGoogle ScholarPubMed
Testelmans, D, Crul, T, Maes, K, et al. Atrophy and hypertrophy signalling in the diaphragm of patients with COPD. Eur Respir J 2010;35:549–56.CrossRefGoogle ScholarPubMed
Foschino, BMP, Carpagnano, GE, Spanevello, A, et al. Inflammation, oxidative stress and systemic effects in mild chronic obstructive pulmonary disease. Int J Immunopathol Pharmacol 2007;20:753–63.Google Scholar
Joppa, P, Petrasova, D, Stancak, B, et al. Systemic inflammation in patients with COPD and pulmonary hypertension. Chest 2006;130:326–33.CrossRefGoogle ScholarPubMed
Krommidas, G, Kostikas, K, Papatheodorou, G, et al. Plasma leptin and adiponectin in COPD exacerbations: associations with inflammatory biomarkers. Resp Med 2010;104:40–6.CrossRefGoogle ScholarPubMed
Sabit, R, Thomas, P, Shale, DJ, et al. The effects of hypoxia on markers of coagulation and systemic inflammation in patients with chronic obstructive pulmonary disease. Chest 2010;138:47–51.CrossRefGoogle Scholar
Rizhallah, J, Man, SFP, Sin, DD.Prevalence of pulmonary embolism in acute exacerbations of COPD. Chest 2009;135:786–93.CrossRefGoogle Scholar
Akgul, F, Batyraliev, T, Karben, Z, et al. Effects of acute hypoxia on left and right ventricular contractility in chronic obstructive pulmonary disease. Int J COPD 2007;2:77–80.CrossRefGoogle ScholarPubMed
Cooney, TP, Wentworth, PJ, Thurlbeck, WM.Diminished radial count is found only postnatally in Down's syndrome. Pediatr Pulmonol 1988;5:204–9.CrossRefGoogle ScholarPubMed
Cooney, TP, Thurlbeck, WM.Pulmonary hypoplasia in Down's syndrome. N Engl J Med 1982;307:1170–3.CrossRefGoogle ScholarPubMed
Thurlbeck, WM, Cooney, TP.Dysmorphic lungs in a case of leprechaumism: case report and review of literature. Pediatr Pulmonol 1988;5:100–6.CrossRefGoogle Scholar
Thurlbeck, WM.Internal surface area and other measurements in emphysema. Thorax 1967;22:483–96.CrossRefGoogle ScholarPubMed
Anderson, WF, Anderson, AE.Topography of aging and emphysematous lungs. Am Rev Respir Dis 1964;90:411–23.Google ScholarPubMed
Weibel, ER.Morphometry of the human lung. Berlin: Springer-Verlag, 1963.CrossRefGoogle Scholar
Ryan, SF, Vincent, TN, Mitchell, RS, et al. Ductectasia: an asymptomatic pulmonary change related to age. Med Thorac 1965;22:181–7.Google Scholar
Sahebjami, H, Vassallo, CL.Effects of starvation and refeeding on lung mechanics and morphometry. Am Rev Respir Dis 1979;119:443–51.Google ScholarPubMed
Sahebjami, H, MacGee, J.Effects of starvation and refeeding on lung biochemistry in rats. Am Rev Respir Dis 1982;126:483–7.Google ScholarPubMed
Sahebjami, H, MacGee, J.Changes in connective tissue composition of the lung in starvation and refeeding. Am Rev Respir Dis 1983;128:644–7.Google ScholarPubMed
Sahebjami, H, Wirman, JA.Emphysema-like changes in the lungs of starved rats. Am Rev Respir Dis 1981;124:619–24.Google ScholarPubMed
Kerr, JS, Riley, DJ, Lanza-Jacoby, S, et al. Nutritional emphysema in the rat. Am Rev Respir Dis 1985;131:644–50.Google ScholarPubMed
Fukuda, Y, Masuda, Y, Ishizaki, M, et al. Morphogenesis of abnormal elastic fibers in lungs of patients with panacinar and centriacinar emphysema. Hum Pathol 1989;20:652–9.CrossRefGoogle ScholarPubMed
Bishai, JM, Mitzner, W.Effect of severe calorie restriction on the lung in two strains of mice. Am J Physiol Lung Cell Mol Physiol 2008;295:L356–62.CrossRefGoogle Scholar
Fliederbaum, J.Clinical aspects of hunger disease in adults. In Winick, M, ed. Hunger Disease: Studies by the Jewish Physicians in the Warsaw Ghetto. New York: John Wiley & Sons, 1979. pp. 11–36.Google Scholar
Winick, M.Preface. In Winick, M, ed. Hunger Disease: Studies by the Jewish Physicians in the Warsaw Ghetto. New York: John Wiley & Sons, 1979. p. ii.Google Scholar
Pavlovich, CP, Walther, MM, Eyler, RA, et al. Renal tumors in the Birt-Hogg-Dube syndrome. Am J Surg Pathol 2002;26:1542–52.CrossRefGoogle ScholarPubMed
Adley, BP, Smith, ND, Nayar, R, et al. Birt-Hogg-Dube syndrome: clinicopathologic findings and genetic alterations. Arch Pathol Lab Med 2006;130:1865–70.Google ScholarPubMed
Toro, JR, Wei, MH, Glenn, GM, et al. BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet 2008;45:321–31.CrossRefGoogle Scholar
Zbar, B, Alvord, WG, Glenn, G, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dube syndrome. Cancer Epidemiol Biomarkers Prev 2002;11:393–400.Google ScholarPubMed
Cho, MH, Klanderman, BJ, Litonjua, AA, et al. Folliculin mutations are not associated with severe COPD. BMC Med Genet 2008;9:120CrossRefGoogle Scholar
Graham, RB, Nolasco, M, Peterlin, B, et al. Nonsense mutations in folliculin presenting as isolated familial spontaneous pneumothorax in adults. Am J Respir Crit Care Med 2005;172:39–44.CrossRefGoogle ScholarPubMed
Chiu, HT, Garcia, CK.Familial spontaneous pneumothorax. Curr Opin Pulm Med 2006;12:268–72.CrossRefGoogle ScholarPubMed
Gunji, Y, Akiyoshi, T, Sato, T, et al. Mutations of the Birt Hogg Dube gene in patients with multiple lung cysts and recurrent pneumothorax. J Med Genet 2007;44:588–93.CrossRefGoogle ScholarPubMed
Toro, JR, Pautler, SE, Stewart, L, et al. Lung cysts, spontaneous pneumothorax, and genetic associations in 89 families with Birt-Hogg-Dube syndrome. Am J Respir Crit Care Med 2007;175:1044–53.CrossRefGoogle ScholarPubMed
Koga, S, Furuya, M, Takahashi, Y, et al. Lung cysts in Birt-Hogg-Dube syndrome: histopathological characteristics and aberrant sequence repeats. Pathol Int 2009;59:720–8.CrossRefGoogle ScholarPubMed
Butnor, KJ, Guinee, DGJr. Pleuropulmonary pathology of Birt-Hogg-Dube syndrome. Am J Surg Pathol 2006;30:395–9.CrossRefGoogle Scholar
Marchevsky, AM, Guintu, R, Koss, M, et al. Swyer-James (MacLeod) syndrome with placental transmogrification of the lung: a case report and review of the literature. Arch Pathol Lab Med 2005;129:686–9.Google ScholarPubMed
Cavazza, A, Lantuejoul, S, Sartori, G, et al. Placental transmogrification of the lung: clinicopathologic, immunohistochemical and molecular study of two cases, with particular emphasis on the interstitial clear cells. Hum Pathol 2004;35:517–21.CrossRefGoogle ScholarPubMed
Fidler, ME, Koomen, M, Sebek, B, et al. Placental transmogrification of the lung, a histologic variant of giant bullous emphysema. Clinicopathological study of three further cases. Am J Surg Pathol 1995;19:563–70.CrossRefGoogle ScholarPubMed
Barker, AF.Bronchiectasis. N Engl J Med 2002;346:1383–93.CrossRefGoogle ScholarPubMed
Reid, LM.Reduction in bronchial subdivision in bronchiectasis. Thorax 1950;5:233–47.CrossRefGoogle ScholarPubMed
Laennec, RTH.A Treatise on the Diseases of the Chest and on Mediate Auscultation. London: T. and Underwood G, 1834.Google Scholar
Reid, LM.Reduction in bronchial subdivision in bronchiectasis. Thorax 1950;5:233–47.CrossRefGoogle ScholarPubMed
Whitwell, F.Study of pathology and pathogenesis of bronchiectasis. Thorax 1952;7:213–39.CrossRefGoogle ScholarPubMed
O'Donnell, AE.Bronchiectasis. Chest 2008;134:815–23.CrossRefGoogle ScholarPubMed
Pasteur, MC, Bilton, D, Hill, AT.British Thoracic Society guideline for non-CF bronchiectasis. Thorax 2010;65:1–58.CrossRefGoogle ScholarPubMed
Adebonojo, SA, Grillo, IA, Osinowo, O, et al. Suppurative diseases of the lung and pleura: a continuing challenge in developing countries. Ann Thorac Surg 1982;33:40–7.CrossRefGoogle ScholarPubMed
Kolbe, J, Wells, AU.Bronchiectasis: a neglected cause of respiratory mobidity and mortality. Respirology 1996;1:221–5.CrossRefGoogle Scholar
Al Subie, H, Fitzgerald, DA. Non-cystic fibrosis bronchiectasis. J Paediatr Child Health 2012;48:382–8.CrossRef
Pesci, A, Cancellieri, A, Zompatori, M.Alveolar diseases. In Maffesanti, M, Dalpiaz, G, eds. Difffuse Lung Diseases: Clinical Features, Pathology, HRCT. Berlin: Springer, 2004. pp. 121–89.Google Scholar
Pesci, A, Cancellieri, A, Delpiaz, G.Cystic diseases. In Maffesanti, M, Dalpiaz, G, eds. Difffuse Lung Diseases: Clinical Features, Pathology, HRCT. Berlin: Springer, 2004. pp. 192–226.Google Scholar
Churchill, ED.The segmental and lobular physiology and pathology of the lung. J Thorac Surg 1949;18:279–93.Google ScholarPubMed
Hayward, J, Reid, LM.The cartilage of the intrapulmonary bronchi in normal lungs in bronchiectasis and in massive collapse. Thorax 1952;7:98–110.CrossRefGoogle ScholarPubMed
Lander, FPL, Davidson, M.The aetiology of bronchiectasis (with special reference to pulmonary atelectasis). Br J Rad 1938;11:65–89.CrossRefGoogle Scholar
Boyton, RJ.Regulation of immunity in bronchiectasis. Med Mycol 2009;47:S175–S182CrossRefGoogle ScholarPubMed
Martinez-Garcia, MA, Soler-Cataluna, J-J, Perpina-Tordera, M, et al. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 2007;132:1565–72.CrossRefGoogle ScholarPubMed
Li, AM, Sonnappa, S, Lex, C, et al. Non-CF bronchiectasis: does knowing the aetiology lead to changes in management?Eur Respir J 2005;26:8–14.CrossRefGoogle ScholarPubMed
Metersky, ML.New treatment options for bronchiectasis. Ther Adv Respir Dis 2010;4:93–9.CrossRefGoogle ScholarPubMed
Marik, PE.Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 2001;344:665–71.CrossRefGoogle ScholarPubMed
Marik, PE.Pulmonary aspiration syndromes. Curr Opin Pulm Med 2011;17:148–54.CrossRefGoogle ScholarPubMed
Jaoude, PA, Knight, PR, Ohtake, P, et al. Biomarkers in the diagnosis of aspiration syndromes. Expert Rev Mol Diagn 2010;10:309–19.CrossRefGoogle Scholar
Pasteur, MC, Helliwell, SM, Houghton, SJ, et al. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med 2000;162:1277–84.CrossRefGoogle ScholarPubMed
Zaid, AA, Elnazir, B, Greally, P.A decade of non-cystic fibrosis bronchiectasis 1996–2006. Ir Med J 2010;103:77–9.Google ScholarPubMed
Nguyen, LH, Nguyen, DH, Tran, TN, et al. Endobronchial foreign bodies in Vietnamese adults are related to eating habits. Respirology 2010;15:491–4.CrossRefGoogle ScholarPubMed
Barnes, TW, Vassallo, R, Tazelaar, HD, et al. Diffuse bronchiolar disease due to chronic occult aspiration. Mayo Clin Proc 2006;81:172–6.CrossRefGoogle ScholarPubMed
Klein, JRH, Tazelaar, HD, Leslie, KO, et al. One hundred consecutive granulomas in a pulmonary pathology consultation practice. Am J Surg Pathol 2010;34:1456–64.CrossRefGoogle Scholar
Mukhopadhyay, S, Katzenstein, A-LA.Pulmonary disease due to aspiration of food and other particulate matter: a clinicopathologic study of 59 cases diagnosed on biopsy or resection specimens. Am J Surg Pathol 2007;31:752–9.CrossRefGoogle ScholarPubMed
Hadda, V, Khilnani, GC.Lipoid pneumonia: an overview. Expert Rev Respir Med 2010;4:799–807.CrossRefGoogle ScholarPubMed
Barker, AF, Bardana, EJJr. State of the Art. Bronchietasis: update of an orphan disease. Am Rev Respir Dis 1988;137:969–78.CrossRefGoogle Scholar
Chien, HP, Lin, TP, Chen, HL, et al. Right middle lobe atelectasis associated with endobronchial silicotic lesions. Arch Pathol Lab Med 2000;124:1619–22.Google ScholarPubMed
Eisenberg, RS, Valdesuso, C.Middle lobe syndrome secondary to allergic bronchopulmonary aspergillosis. Ann Allergy 1980;44:217–9.Google ScholarPubMed
Reich, JM, Johnson, RE.Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern. The Lady Windermere syndrome. Chest 1992;101:1605–9.CrossRefGoogle ScholarPubMed
Bradham, RR, Sealy, WC, Young, WG. Chronic middle lobe infection. Factors responsible for its development. Ann Thorac Surg 1966;2:612–6.CrossRefGoogle ScholarPubMed
Kwon, KY, Myers, JL, Swensen, SJ, et al. Middle lobe syndrome: a clinicopathological study of 21 patients. Hum Pathol 1995;26:302–7.CrossRefGoogle ScholarPubMed
Ayed, AK.Resection of the right middle lobe and lingula in children for middle lobe/lingula syndrome. Chest 2004;125:38–42.CrossRefGoogle ScholarPubMed
Arrigoni, MG, Bernatz, PE, Donoghue, FE.Broncholithiasis. J Thorac Cardiovasc Surg 1971;62:231–7.Google ScholarPubMed
Cerfolio, RJ, Bryant, AS, Maniscalco, L.Rigid bronchoscopy and surgical resection for broncholithiasis and calcified mediastinal lymph nodes. J Thorac Cardiovasc Surg 2008;136:186–90.CrossRefGoogle ScholarPubMed
Seo, JB, Song, KS, Lee, JS, et al. Broncholithiasis: review of the causes with radiologic-pathologic correlation. Radiographics 2002;22 Spec No: S199–S213CrossRefGoogle ScholarPubMed
Menivale, F, Deslee, G, Vallerand, H, et al. Therapeutic management of broncholithiasis. Ann Thorac Surg 2005;79:1774–6.CrossRefGoogle ScholarPubMed
Jett, JR, Tazelaar, HD, Keim, LW, et al. Plastic bronchitis: an old disease revisited. Mayo Clin Proc 1991;66:305–11.CrossRefGoogle ScholarPubMed
Madsen, P, Shah, SA, Rubin, BK.Plastic bronchitis: new insights and a classification scheme. Paediatr Respir Rev 2005;6:292–300.CrossRefGoogle Scholar
Eberlein, MH, Drummond, MB, Haponik, EF.Plastic bronchitis: a management challenge. Am J Med Sci 2008;335:163–9.CrossRefGoogle ScholarPubMed
Aschoff, L.Uber tracheopaiscoteoplastica. Verh Dtsch Ges Pathol 1910;14:125–6.Google Scholar
Pounder, DJ, Pieterse, AS.Tracheopathia osteoplastica: a study of the minimal lesion. J Pathol 1982;138:235–9.CrossRefGoogle ScholarPubMed
Perez-Rodriguez, E, Nunez, N, Alvarado, C, et al. Diagnosis of tracheopathia osterchondroplastica. Chest 1990;97:763CrossRefGoogle Scholar
Smid, L, Lavrencak, B, Zargi, M.Laryngol-tracheo-bronchopathia chondro-osteoplastica. J Laryngol Otol 1992;106:845–8.CrossRefGoogle ScholarPubMed
Alroy, GG, Lichtig, C, Kaftori, JK.Tracheobronchopathia osteoplastica: end stage of primary lung amyloidosis?Chest 1972;61:465–8.CrossRefGoogle ScholarPubMed
Prowse, CB, Elliott, RIK.Diffuse tracheo-bronchial amyloidosis: a rare variant of a protean disease. Thorax 1963;18:326–33.CrossRefGoogle ScholarPubMed
Toyoda, M, Ebihara, Y, Kato, H, et al. Tracheobronchial AL amyloidosis: Histologic, immunohistochemical, ultrastructural, and immunoelectron microscopic observations. Hum Pathol 1993;24:970–6.CrossRefGoogle ScholarPubMed
Lundgren, R, Stjernberg, NL.Tracheobronchopathia osteochondroplastica. Chest 1981;80:706–9.CrossRefGoogle ScholarPubMed
Onitsuka, H, Hirose, N, Watanabe, K, et al. Computed tomography of tracheopathia osteoplastica. Am J Radiol 1983;140:268–70.Google ScholarPubMed
Hogg, JC, Macklem, PT, Thurlbeck, WM.Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 1968;278:1355–60.CrossRefGoogle ScholarPubMed
Niewoehner, DE, Kleinerman, J.Morphologic basis of pulmonary resistance in the human lung and effects of aging. J Appl Physiol 1974;36:412–8.CrossRefGoogle ScholarPubMed
Collins, J, Blankenbaker, D, Stern, EJ.CT patterns of bronchiolar disease: what is “tree-in-bud”?Am J Roentgenol 1998;171:365–70.CrossRefGoogle ScholarPubMed
Abbott, GF, Rosado-de-Christenson, ML, Rossi, SE, et al. Imaging of small airways disease. J Thorac Imag 2009;24:285–98.CrossRefGoogle ScholarPubMed
Franquet, T, Stern, EJ.Bronchiolar inflammatory diseases: high-resolution CT findings with histologic correlation. Eur Radiol 1999;9:1290–303.CrossRefGoogle ScholarPubMed
Hansell, DM.HRCT of obliterative bronchiolitis and other small airways diseases. Semin Roentgenol 2001;36:51–65.CrossRefGoogle ScholarPubMed
Visscher, DW, Myers, JL.Bronchiolitis. Proc Am Thorac Soc 2006;3:41–7.CrossRefGoogle ScholarPubMed
Ryu, JH, Myers, JL, Swensen, SJ.Bronchiolar disorders. Am J Respir Crit Care Med 2003;168:1277–92.CrossRefGoogle ScholarPubMed
Camus, P, Lombard, JN, Perrichon, M, et al. Bronchiolitis obliterans organising pneumonia in patients taking acebutolol or amiodarone. Thorax 1989;44:711–5.CrossRefGoogle ScholarPubMed
Couture, C, Colby, TV.Histopathology of bronchiolar disorders. Semin Respir Crit Care Med 2003;24:489.Google ScholarPubMed
Popper, HH.Bronchiolitis, an update. Virchows Archives 2000;437:471–81.CrossRefGoogle Scholar
Beasley, MB.Smoking-related small airway disease – a review and update. Adv Anat Pathol 2010;17:270–6.CrossRefGoogle ScholarPubMed
Rice, A, Nicholson, AG.The pathologist's approach to small airways disease. Histopathology 2009;54:117–33.CrossRefGoogle ScholarPubMed
Allen, T.Pathology of small airways disease. Arch Pathol Lab Med 2010;134:702–18.Google ScholarPubMed
Devakonda, A, Raoof, S, Sung, A, et al. Bronchiolar disorders: a clinical-radiological diagnostic algorithm. Chest 2010;137:938–51.CrossRefGoogle ScholarPubMed
McNamara, P, Smyth, R.The pathogenesis of respiratory syncytial virus disease in childhood. Br Med Bull 2002;61:13–28.CrossRefGoogle ScholarPubMed
Ogra, P.Respiratory syncytial virus: the virus, the disease and the immune response. Paediatr Respir Rev 2004;5 Suppl A:S119–26.CrossRefGoogle ScholarPubMed
Brodzinski, H, Ruddy, R.Review of new and newly discovered respiratory tract viruses in children. Pediatr Emerg Care 2009;25:352–60.CrossRefGoogle ScholarPubMed
Stempel, H, Martin, E, Kuypers, J, et al. Multiple viral respiratory pathogens in children with bronchiolitis. Acta paediatrica (Oslo, Norway: 1992) 2009;98:123–6.CrossRefGoogle ScholarPubMed
Tse, GMK, To, KF, Chan, PKS, et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J Clin Pathol 2004;57:260–5.CrossRefGoogle Scholar
Shieh, WJ, Blau, DM, Denison, AM, et al. 2009 pandemic influenza A (H1N1): pathology and pathogenesis of 100 fatal cases in the United States. Am J Pathol 2010;177:166–75.CrossRefGoogle Scholar
Penn, CC, Liu, C.Bronchiolitis following infection in adults and children. Clin Chest Med 1993;14:645–54.Google ScholarPubMed
Stokes, D, Sigler, A, Khouri, NF, et al. Unilateral hyperlucent lung (Swyer-James syndrome) after severe Mycoplasma pneumoniae infection. Am Rev Respir Dis 1978;117:145–52.Google ScholarPubMed
Trimis, G, Theodoridou, M, Mostrou, G, et al. Swyer-James (MacLeod's) syndrome following pertussis infection in an infant. Scand J Infect Dis 2003;35:197–9.CrossRefGoogle ScholarPubMed
Swyer, PR, James, GC.A case of unilateral pulmonary emphysema. Thorax 1953;8:133–6.CrossRefGoogle ScholarPubMed
Macleod, WM.Abnormal transradiancy of one lung. Thorax 1954;9:147–53.CrossRefGoogle ScholarPubMed
Schlesinger, C, Koss, M.Bronchiolitis: update 2001. Curr Opin Pulm Med 2002;8:112–6.CrossRefGoogle ScholarPubMed
Panitch, HB.Bronchiolitis in infants. Curr Opin Pediatr 2001;13:256–60.CrossRefGoogle ScholarPubMed
Lucaya, J, Gartner, S, Garcia-Pena, P, et al. Spectrum of manifestations of Swyer-James-MacLeod syndrome. J Comput Assist Tomogr 1998;22:592–7.CrossRefGoogle ScholarPubMed
Morita, K, Shimizu, J, Kamesui, T, et al. A case of surgical treatment of Swyer-James syndrome. Nippon Kyobu Geka Gakkai Zasshi 1994;42:1949–52.Google ScholarPubMed
Greenberg, S.Respiratory viral infections in adults. Curr Opin Pulm Med 2002;8:201–8.CrossRefGoogle ScholarPubMed
Mauad, T, Hajjar, L, Callegari, G, et al. Lung pathology in fatal novel human influenza A (H1N1) infection. Am J Respir Crit Care Med 2010;181:72–9.CrossRefGoogle ScholarPubMed
El-Zammar, O, Rosenbaum, P, Katzenstein, A-LA.Proliferative activity in fibrosing lung diseases: a comparative study of Ki-67 immunoreactivity in diffuse alveolar damage, bronchiolitis, obliterans-organizing pneumonia, and usual interstitial pneumonia. Hum Pathol 2009;40:1182–58.CrossRefGoogle ScholarPubMed
Jonigk, D, Theophile, K, Hussein, K, et al. Obliterative airway remodelling in transplanted and non-transplanted lungs. Virchows Archives 2010;457:369–80.CrossRefGoogle ScholarPubMed
Bhorade, SM, Chen, H, Molinero, L, et al. Decreased percentage of CD4+ FoxP3+ cells in bronchoalveolar lavage from lung transplant recipients correlates with development of bronchiolitis obliterans syndrome. Transplantation 2010;90:540–6.CrossRefGoogle ScholarPubMed
Angel, L, Homma, A, Levine, SM.Bronchiolitis obliterans. Semin Respir Crit Care Med 2000;21:123–34.CrossRefGoogle ScholarPubMed
Visscher, D, Myers, J.Bronchiolitis: the pathologist's perspective. Proc Am Thorac Soc 2006;3:41–7.CrossRefGoogle ScholarPubMed
Cordier, JF.Cryptogenic organising pneumonia. Eur Respir J 2006;28:422–46.CrossRefGoogle ScholarPubMed
Davies, S, Gosney, J, Hansell, D, et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: an under-recognised spectrum of disease. Thorax 2007;62:248–52.CrossRefGoogle Scholar
Aguayo, SM, Miller, YE, Waldron, JA, et al. Brief report: idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells and airways disease. N Engl J Med 1992;327:1285–8.CrossRefGoogle ScholarPubMed
Armas, OA, White, DA, Erlandson, RA, et al. Diffuse idiopathic pulmonary neuroendocrine cell proliferation presenting as interstitial lung disease. Am J Surg Pathol 1995;19:963–70.CrossRefGoogle ScholarPubMed
Miller, RR, Muller, NL.Neuroendocrine cell hyperplasia and obliterative bronchiolitis in patients with peripheral carcinoid tumors. Am J Surg Pathol 1995;19:653–8.CrossRefGoogle ScholarPubMed
Deterding, R, Pye, C, Fan, L, et al. Persistent tachypnea of infancy is associated with neuroendocrine cell hyperplasia. Pediatr Pulmonol 2005;40:157–65.CrossRefGoogle ScholarPubMed
Brody, AS, Guillerman, RP, Hay, TC, et al. Neuroendocrine cell hyperplasia of infancy: diagnosis with high-resolution CT. Am J Roentgenol 2010;194:238–44.CrossRefGoogle ScholarPubMed
Lai, RS, Chiang, AA, Wu, MT, et al. Outbreak of bronchiolitis obliterans associated with consumption of Sauropus androgynus in Taiwan. Lancet 1996;348:83–5.CrossRefGoogle ScholarPubMed
Lin, TJ, Lu, CC, Chen, KW, et al. Outbreak of obstructive ventilatory impairment associated with consumption of Sauropus androgynus vegetable. J Toxicol Clin Toxicol 1996;34:1–8.CrossRefGoogle ScholarPubMed
Ger, LP, Chiang, AA, Lai, RS, et al. Association of Sauropus androgynus and bronchiolitis obliterans syndrome: a hospital-based case-control study. Am J Epidemiol 1997;145:842–9.CrossRefGoogle ScholarPubMed
Hsiue, TR, Guo, YL, Chen, KW, et al. Dose-response relationship and irreversible obstructive ventilatory defect in patients with consumption of Sauropus androgynus. Chest 1998;113:71–6.CrossRefGoogle ScholarPubMed
Yang, CF, Wu, MT, Chiang, AA, et al. Correlation of high-resolution CT and pulmonary function in bronchiolitis obliterans: a study based on 24 patients associated with consumption of Sauropus androgynus. Am J Roentgenol 1997;168:1045–50.CrossRefGoogle ScholarPubMed
Wu, CL, Hsu, WH, Chiang, CD, et al. Lung injury related to consuming Sauropus androgynus vegetable. J Toxicol Clin Toxicol 1997;35:241–8.CrossRefGoogle ScholarPubMed
Kao, CH, Ho, YJ, Wu, CL, et al. Using 99mTc-DTPA radioaerosol inhalation lung scintigraphies to detect the lung injury induced by consuming Sauropus androgynus vegetable and comparison with conventional pulmonary function tests. Respiration 1999;66:46–51.CrossRefGoogle ScholarPubMed
Chang, YL, Yao, YT, Wang, NS, et al. Segmental necrosis of small bronchi after prolonged intakes of Sauropus androgynus in Taiwan. Am J Respir Crit Care Med 1998;157:594–8.CrossRefGoogle ScholarPubMed
Chang, H, Wang, JS, Tseng, HH, et al. Histopathological study of Sauropus androgynus-associated constrictive bronchiolitis obliterans: a new cause of constrictive bronchiolitis obliterans. Am J Surg Pathol 1997;21:35–42.CrossRefGoogle ScholarPubMed
Wang, JS, Tseng, HH, Lai, RS, et al. Sauropus androgynus-constrictive obliterative bronchitis/bronchiolitis – histopathological study of pneumonectomy and biopsy specimens with emphasis on the inflammatory process and disease progression. Histopathology 2000;37:402–10.CrossRefGoogle ScholarPubMed
Luh, SP, Lee, YC, Chang, YL, et al. Lung transplantation for patients with end-stage Sauropus androgynus-induced bronchiolitis obliterans (SABO) syndrome. Clin Transplant 1999;13:496–503.CrossRefGoogle ScholarPubMed
Wu, CL, Hsu, WH, Chiang, CD.The effect of large-dose prednisolone on patients with obstructive lung disease associated with consuming sauropus androgynus. Zhonghua Yi Xue Za Zhi (Taipei) 1998;61:34–8.Google ScholarPubMed
Fraig, M, Shreesha, U, Savici, D, et al. Respiratory bronchiolitis. Am J Surg Pathol 2002;26:647–53.CrossRefGoogle ScholarPubMed
Craig, PJ, Wells, AU, Doffman, S, et al. Desquamative interstitial pneumonia, respiratory bronchiolitis and their relationship to smoking. Histopathology 2004;45:275–82.CrossRefGoogle ScholarPubMed
Niewoehner, DE, Kleinerman, J, Rice, DB.Pathologic changes in the peripheral airways of young cigarette smokers. N Engl J Med 1974;291:755–8.CrossRefGoogle ScholarPubMed
Iwata, M, Colby, TV, Kitaichi, M.Diffuse panbronchiolitis: diagnosis and distinction from various pulmonary diseases with centrilobular interstitial foam cell accumulations. Hum Pathol 1994;25:357–63.CrossRefGoogle ScholarPubMed
Randhawa, P, Hoagland, MH, Yousem, SA.Diffuse panbronchiolitis in North America. Report of three cases and review of the literature. Am J Surg Pathol 1991;15:43–7.CrossRefGoogle ScholarPubMed
Sugiyama, Y, Kudoh, S, Maeda, H, et al. Analysis of HLA antigens in patients with diffuse panbronchiolitis. Am Rev Respir Dis 1990;141:1459–62.CrossRefGoogle ScholarPubMed
Keicho, N, Tokunaga, K, Nakata, K, et al. Contribution of HLA genes to genetic predisposition in diffuse panbronchiolitis. Am J Respir Crit Care Med 1998;158:846–50.CrossRefGoogle ScholarPubMed
Poletti, V, Casoni, G, Chilosi, M, et al. Diffuse panbronchiolitis. Eur Respir J 2006;28:862–71.CrossRefGoogle ScholarPubMed
Nishimaki, K, Nawata, J, Okada, S, et al. Neutrophil survival-enhancing activity in sputum from patients with diffuse panbronchiolitis. Respir Med 2005;99:910–7.CrossRefGoogle ScholarPubMed
Homma, S, Sakamoto, S, Kawabata, M, et al. Comparative clinicopathology of obliterative bronchiolitis and diffuse panbronchiolitis. Respiration 2006;73:481–7.CrossRefGoogle ScholarPubMed
Todate, A, Chida, K, Suda, T, et al. Increased numbers of dendritic cells in the bronchiolar tissues of diffuse panbronchiolitis. Am J Respir Crit Care Med 2000;162:148–53.CrossRefGoogle ScholarPubMed
Kadota, J, Mukae, H, Fujii, T, et al. Clinical similarities and differences between human T-cell lymphotropic virus type 1-associated bronchiolitis and diffuse panbronchiolitis. Chest 2004;125:1239–47.CrossRefGoogle ScholarPubMed
Howling, SJ, Hansell, DM, Wells, AU, et al. Follicular bronchiolitis: thin-section CT and histologic findings. Radiology 1999;212:637–42.CrossRefGoogle ScholarPubMed
Romero, S, Barroso, E, Gil, J, et al. Follicular bronchiolitis: clinical and pathologic findings in six patients. Lung 2003;181:309–19.CrossRefGoogle ScholarPubMed
Hayakawa, H, Sato, A, Imokawa, S, et al. Bronchiolar disease in rheumatoid arthritis. Am J Respir Crit Care Med 1996;154:1531–6.CrossRefGoogle ScholarPubMed
Sato, A, Hayakawa, H, Uchiyama, H, et al. Cellular distribution of bronchus-associated lymphoid tissue in rheumatoid arthritis. Am J Respir Crit Care Med 1996;154:1903–7.CrossRefGoogle ScholarPubMed
Kinoshita, M, Higashi, T, Tanaka, C, et al. Follicular bronchiolitis associated with rheumatoid arthritis. Intern Med 1992;31:674–7.CrossRefGoogle ScholarPubMed
Exley, CM, Suvarna, SK, Matthews, S.Follicular bronchiolitis as a presentation of HIV. Clin Radiol 2006;61:710–3.CrossRefGoogle ScholarPubMed
Chetty, A.Pathology of allergic bronchopulmonary aspergillosis. Front Biosci 2003;8:e110–14.CrossRefGoogle ScholarPubMed
Agarwal, R.Allergic bronchopulmonary aspergillosis. Chest 2009;135:805–26.CrossRefGoogle ScholarPubMed
Zander, D.Allergic bronchopulmonary aspergillosis: an overview. Arch Pathol Lab Med 2005;129:924–8.Google ScholarPubMed
Scott, K, Wardlaw, A.Eosinophilic airway disorders. Semin Respir Crit Care Med 2006;27:128–33.CrossRefGoogle ScholarPubMed
Birring, S, Berry, M, Brightling, C, et al. Eosinophilic bronchitis: clinical features, management and pathogenesis. Am J Respir Med 2003;2:169–73.CrossRefGoogle ScholarPubMed
Takayanagi, N, Kanazawa, M, Kawabata, Y, et al. Chronic bronchiolitis with associated eosinophilic lung disease (eosinophilic bronchiolitis). Respiration 2001;68:319–22.CrossRefGoogle Scholar
Mukhopadhyay, S, Gal, A.Granulomatous lung disease: an approach to the differential diagnosis. Arch Pathol Lab Med 2010;134:667–90.Google ScholarPubMed
Myers, JL, Tazelaar, HD.Challenges in pulmonary fibrosis: 6 – Problematic granulomatous lung disease. Thorax 2008;63:78–84.CrossRefGoogle ScholarPubMed
El Zammar, OA, Katzenstein, A-LA.Pathological diagnosis of granulomatous lung disease: a review. Histopathology 2007;50:289–310.CrossRefGoogle ScholarPubMed
Freeman, H, Davis, J, Prest, M, et al. Granulomatous bronchiolitis with necrobiotic pulmonary nodules in Crohn's disease. Can J Gastroenterol 2004;18:687–90.CrossRefGoogle ScholarPubMed
Polychronopoulos, V, Prakash, U.Airway involvement in sarcoidosis. Chest 2009;136:1371–80.CrossRefGoogle ScholarPubMed
Hutton Klein, JR, Tazelaar, HD, Leslie, KO, et al. One hundred consecutive granulomas in a pulmonary pathology consultation practice. Am J Surg Pathol 2010;34:1456–64.CrossRefGoogle Scholar
Antonini, J, Taylor, M, Zimmer, A, et al. Pulmonary responses to welding fumes: role of metal constituents. J Toxicol Environ Health A 2004;67:233–49.CrossRefGoogle ScholarPubMed
Churg, A, Wright, JL, Wiggs, B, et al. Small airways disease and mineral dust exposure. Am Rev Respir Dis 1985;131:139–43.Google ScholarPubMed
Fukuoka, J, Franks, TJ, Colby, TV, et al. Peribronchiolar metaplasia: a common histologic lesion in diffuse lung disease and a rare cause of interstitial lung disease. Am J Surg Pathol 2005;29:948–54.CrossRefGoogle Scholar
Buist, AS, Vollmer, WM, Johnson, LR, et al. Does the single-breath N2 test identify the smoker who will develop chronic airflow limitation. Am Rev Respir Dis 1988;137:293–301.CrossRefGoogle ScholarPubMed
Epler, GR.Diagnosis and treatment of constrictive bronchiolitis. F1000 Med Rep 2010;2:32.CrossRefGoogle ScholarPubMed
Mattiello, R, Mallol, J, Fischer, GB, et al. Pulmonary function in children and adolescents with postinfectious bronchiolitis obliterans. J Brasil Pneumol 2010;36:453–9.CrossRefGoogle ScholarPubMed
Nathan, SD, Shlobin, OA, Reese, E, et al. Prognostic value of the 6 min walk test in bronchiolitis obliterans syndrome. Respir Med 2009;103:1816–21.CrossRefGoogle Scholar
Oonakahara, K, Matsuyama, W, Higashimoto, I, et al. Outbreak of bronchiolitis obliterans associated with consumption of Sauropus androgynus in Japan – alert of food-associated pulmonary disorders from Japan. Respiration 2005;72:221.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×