Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T10:09:32.470Z Has data issue: false hasContentIssue false

7 - Thixotropy

Published online by Cambridge University Press:  05 December 2011

Jan Mewis
Affiliation:
Katholieke Universiteit Leuven, Belgium
Norman J. Wagner
Affiliation:
University of Delaware
Get access

Summary

Introduction

In earlier chapters it was shown that Brownian motion and colloidal interparticle forces give rise to viscoelastic effects. When a constant shear rate is applied to some colloidal suspensions, the viscosity can exhibit long transients, while viscoelastic features such as normal stress differences are hardly detectable. A well-known daily life example is provided by tomato ketchup: shaking turns it from a gel-like substance into a free-flowing liquid, but when left alone it will gradually stiffen and return to a gel. This is an example of the more general phenomenon known as thixotropy. It has been reported for a large number of colloidal products, some of which are listed in Table 7.1. They are most often colloidal glasses or gels at rest. Extensive lists of thixotropic products can be found in the literature [1–4]. Some products are actually formulated to exhibit a well-defined time evolution for viscosity recovery after shearing. Special additives (“thixotropic agents”) are available to induce and control such behavior. We note that many complex fluids such as some polymeric systems, liquid crystals and micellar systems exhibit thixotropy; however, these interesting materials are beyond our scope.

There is an extensive body of papers on thixotropy, scattered over the scientific and technical literature, including some reviews [1–5]. Nevertheless, the subject has been essentially ignored in rational continuum mechanics and, until recently, in colloid science. An explanation can perhaps be found in the persistent ambiguity about its definition, the lack of suitable model systems for study, and the complexity of the phenomenon, which includes serious measurement challenges. The more recent interest in glasses and gels within the general area of soft condensed matter is providing new terminology in the field, such as aging and shear rejuvenation [6]. This chapter provides a guide to understanding thixotropy in colloidal suspensions and an introduction to its modeling.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, W. H.Collins, E. A.Thixotropy and dilatancyEirich, F. R.Rheology: Theory and Applications, Vol. 4New YorkAcademic Press 1967 423CrossRefGoogle Scholar
Mewis, J.Thixotropy: A general reviewJ Non-Newtonian Fluid Mech 6 1979 1CrossRefGoogle Scholar
Barnes, H. A.Thixotropy: A reviewJ Non-Newtonian Fluid Mech 70 1997 1CrossRefGoogle Scholar
Mewis, J.Wagner, N. J.ThixotropyAdv Colloid Interface Sci 147–148 2009 214CrossRefGoogle ScholarPubMed
Coussot, P.Rheophysics of pastes: A review of microscopic modelling approachesSoft Matter 3 2007 528CrossRefGoogle Scholar
Cipelletti, L.Ramos, L.Slow dynamics in glassy soft matterJ Phys: Condens Matt 17 2005 R253Google Scholar
http://goldbook.iupac.org
Schalek, E.Szegvari, A.Ueber EisenoxydgallertenKolloid-Z 32 1923 318CrossRefGoogle Scholar
Peterfi, T.Das mikrurgische VerfahrenNaturwissenschaften 11 1923 81CrossRefGoogle Scholar
Schalek, E.Szegvari, A.Die langsame Koaguation konzentrierter Esenoxydsole zu reversiblen GallertenKolloid-Z 32 1923 326CrossRefGoogle Scholar
Freundlich, H.ThixotropieParisHermann 1935Google Scholar
Scott-Blair, G. W.An Introduction to Industrial RheologyLondonJ. & A. Churchill 1938Google Scholar
Green, H.Industrial Rheology and Rheological StructuresNew YorkJohn Wiley & Sons 1949Google Scholar
Goodeve, C. F.A general theory of thixotropy and viscosityTrans Faraday Soc 35 1939 342CrossRefGoogle Scholar
Cheng, D. C.-H.Evans, F.Phenomenological characterization of the rheological behaviour of inelastic reversible thixotropic and antithixotropic fluidsBrit J Appl Phys 16 1965 1599CrossRefGoogle Scholar
Keller, D. S.Keller, J. D. V.An investigation of the shear thickening and antithixotropic behavior of concentrated coal-water dispersionsJ Rheol 34 1990 1267CrossRefGoogle Scholar
Potanin, A. A.Thixotropy and rheopexy of aggregated dispersions with wetting polymerJ Rheol 48 2004 1279CrossRefGoogle Scholar
Freundlich, H.Juliusburger, F.Thixotropy, influenced by the orientation of anisometric particles in sols and suspensionsTrans Faraday Soc 31 1935 920CrossRefGoogle Scholar
Quemada, D.Rheological modeling of complex fluids: 4. Thixotropic and thixoelastic behaviour – Start-up and stress relaxation, creep tests and hysteresis cyclesEur Phys J Appl Phys 5 1999 191CrossRefGoogle Scholar
Green, H.Weltmann, R. N.Analysis of the thixotropy of pigment-vehicle suspensions: Basic principles of the hysteresis loopInd Eng Chem Anal Ed 15 1943 201CrossRefGoogle Scholar
Green, H.High-speed rotational viscometer of wide range: Confirmation of the Reiner equation of flowInd Eng Chem Anal Ed 14 1942 576CrossRefGoogle Scholar
Mylius, E.Reher, E. O.Modelluntersuchungen zur Charakterisieriung thixotroper Medien und ihre Anwendung für verfahrenstechnische ProzessberechnungnenPlaste und Kautschuk 19 1972 420Google Scholar
Dullaert, K.Constitutive Equations for Thixotropic DispersionsKatholieke Universiteit Leuven 2005Google Scholar
Bird, R. B.Marsh, B. D.Viscoelastic hysteresis: I. Model predictionsTrans Soc Rheol 12 1968 479CrossRefGoogle Scholar
Van der Aerschot, E.Reologie van Reversiebel Geflocculeerde DispersiesKatholieke Universiteit Leuven 1989Google Scholar
Coussot, P.Tabuteau, H.Chateau, X.Ageing and solid or liquid behavior in pastesJ Rheol 50 2006CrossRefGoogle Scholar
Manley, S.Davidovitch, B.Davies, N. R.Time-dependent strength of colloidal gelsPhys Rev Lett 95 2005CrossRefGoogle ScholarPubMed
Willenbacher, N.Unusual thixotropic properties of aqeous dispersions of laponite RDJ Colloid Interface Sci 182 1996 501CrossRefGoogle Scholar
Mewis, J.Spaull, A. J. B.Helsen, J.Structural hysteresisNature 253 1975 618CrossRefGoogle Scholar
Coussot, P.Leonov, A. I.Piau, J.-M.Rheology of concentrated dispersed systems in a low-molecular-weight matrixJ Non-Newtonian Fluid Mech 46 1993 179CrossRefGoogle Scholar
Mujumbar, A.Beris, A. N.Metzner, A. B.Transient phenomena in thixotropic systemsJ Non-Newtonian Fluid Mech 102 2002 157CrossRefGoogle Scholar
Dullaert, K.Mewis, J.A structural kinetics model for thixotropyJ Non-Newtonian Fluid Mech 139 2006 21CrossRefGoogle Scholar
Pignon, F.Magnin, A.Piau, J.-M.Thixotropic behavior of clay dispersions: Combinations of scattering and rheometric techniquesJ Rheol 42 1998 1349CrossRefGoogle Scholar
Varadan, P.Solomon, M. J.Shear-induced microstructural evolution of a thermoreversible colloidal gelLangmuir 17 2001 2918CrossRefGoogle Scholar
Woutersen, A. T. J. M.May, R. P.de Kruif, C. G.The shear-distorted microstructure of adhesive hard-sphere dispersions: A small-angle neutron-scattering studyJ Rheol 37 1993 71CrossRefGoogle Scholar
Letwimolnun, W.Vergnes, B.Ausias, G.Carreau, P. J.Stress overshoots of organoclay nanocomposites in transient shear flowJ Non-Newtonian Fluid Mech 141 2007 167CrossRefGoogle Scholar
Solomon, M. J.Almusallam, A. S.Seefeldt, K. F.Somwangthanaroj, A.Varadan, P.Rheology of polypropylene/clay hybrid materialsMacromolecules 34 2001 1864CrossRefGoogle Scholar
Vermant, J.Ceccia, S.Dolgovskij, M. K.Maffetone, P. L.Macosko, C. W.Quantifying dispersion of layered nanocomposites via melt rheologyJ Rheol 51 2007 429CrossRefGoogle Scholar
Goddard, J. D.Dissipative materials as models of thixotropy and plasticityJ Non-Newtonian Fluid Mech 14 1984 141CrossRefGoogle Scholar
Stickel, J. J.Phillips, R. J.Powell, R. L.A constitutive model for microstructure and total stress in particulate suspensionsJ Rheol 50 2006 379CrossRefGoogle Scholar
Goddard, J. D.A dissipative anisotropic fluid model for non-colloidal particle dispersionsJ Fluid Mech 568 2006 1CrossRefGoogle Scholar
Burgos, G. M.Alexandrou, A. N.Entov, V.Thixotropic rheology of semisolid metal suspensionsJ Mater Process Technol 110 2001 164CrossRefGoogle Scholar
Larson, R. G.Constitutive Equations for Polymer Melts and SolutionsBostonButterworths 1988Google Scholar
Frederickson, A. G.A model for the thixotropy of suspensionsAIChE J 16 1970 436CrossRefGoogle Scholar
Dullaert, K.Mewis, J.Stress jumps on weakly flocculated dispersions: Steady state and transient resultsJ Colloid Interface Sci 287 2005 542CrossRefGoogle ScholarPubMed
Tiu, C.Boger, D. V.Complete rheological characterization of time-dependent food productsJ Text Stud 5 1974 329CrossRefGoogle Scholar
Houska, M.Inzenyrske Aspekty Reologie Tixotropnich KapalinTechnical University in Prague 1980Google Scholar
Phan Thien, N.Tanner, R. I.A new constitutive equation derived from network theoryJ Non-Newtonian Fluid Mech 2 1977 353CrossRefGoogle Scholar
Yziquel, F.Carreau, P. J.Moan, M.Tanguy, P. A.Rheological modeling of concentrated colloidal suspensionsJ Non-Newtonian Fluid Mech 86 1999 133CrossRefGoogle Scholar
Kemblowski, Z.Petera, J.A generalized rheological model of thixotropic materialsRheol Acta 19 1980 529CrossRefGoogle Scholar
Lin, S. F.Brodkey, R. S.Rheological properties of slurry fuelsJ Rheol 29 1985 147CrossRefGoogle Scholar
Pinder, K. L.Time-dependent rheology of the tetrahydrofuran-hydrogen sulphide gas hydrate slurryCan J Chem Eng 42 1964 132CrossRefGoogle Scholar
Russel, W. B.Saville, D. A.Schowalter, W. R.Colloidal DispersionsCambridgeCambridge University Press 1989CrossRefGoogle Scholar
Mobuchon, C.Carreau, P. J.Heuzey, M.-C.Effect of flow history on the structure of a non-polar polymer/clay nanocomposite model systemRheol Acta 46 2007 1045CrossRefGoogle Scholar
van de Ven, T. G. M.Mason, S. G.Microrheology of colloidal dispersions: 8. Effect of shear on perikinetic doublet formationColloid Polym Sci 255 1977 794CrossRefGoogle Scholar
Slibar, A.Paslay, P. R.On the analytical description of the flow of thixotropic materialsReiner, M.Abir, D.Second-Order Effects in Elasticity, Plasticity and Fluid DynamicsOxfordPergamon Press 1964 314Google Scholar
Harris, J.A continuum theory of time-dependent inelastic flowRheol Acta 6 1967 6CrossRefGoogle Scholar
Montes, S.White, J. L.Rheological models of rubber-carbon black compounds: Low interaction viscoelastic models and high interaction thixotropic-plastic-viscoelastic modelsJ Non-Newtonian Fluid Mech 49 1993 277CrossRefGoogle Scholar
Suetsugu, Y.White, J. L.A theory of thixotropic plastic viscoelastic fluids with a time-dependent yield surface and its comparison to transient and steady-state experiments on small particle filled polymer meltsJ Non-Newtonian Fluid Mech 14 1984 121CrossRefGoogle Scholar
Sobhanie, M.Isayev, A. I.Modeling and experimental investigation of shear flow of a filled polymerJ Non-Newtonian Fluid Mech 85 1999 189CrossRefGoogle Scholar
Toorman, E. A.Modelling the thixotropic behaviour of dense cohesive sediment suspensionsRheol Acta 36 1997 56CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Thixotropy
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Thixotropy
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Thixotropy
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.010
Available formats
×