Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T06:42:01.131Z Has data issue: false hasContentIssue false

2 - Hydrodynamic effects

Non-colloidal particles

Published online by Cambridge University Press:  05 December 2011

Jan Mewis
Affiliation:
Katholieke Universiteit Leuven, Belgium
Norman J. Wagner
Affiliation:
University of Delaware
Get access

Summary

Introduction

The primary topic of this book is suspensions comprised of solid particles suspended in a liquid. When such materials are subjected to shear forces, the deformation is borne by the liquid phase, and it is in that phase and its interface with the particles that the flow causes energy to be dissipated. Therefore, the hydrodynamics of the liquid phase will always play a role in the rheology of a suspension, even in those cases where other phenomena, such as colloidal interparticle forces, contribute to the stresses. Therefore, a systematic study of the various parameters that govern suspension rheology starts with the hydrodynamic contribution, i.e., the contribution to the suspension stress that derives directly from the dissipation in the liquid phase of the suspension. As noted in the introduction, the flows of interest will be laminar and the particle Reynolds number will be sufficiently small that Stokes flow will be assumed, i.e., particle inertia will not be considered in the general treatment.

In suspensions of large, non-colloidal particles, i.e., with characteristic dimensions of a few micrometers or more, the contributions to the suspension stress from Brownian motion and from interparticle forces such as electrostatic interactions can often be ignored. Hence, such suspensions can be used to study hydrodynamic effects without interference from the other phenomena. However, because non-colloidal suspensions do not display Brownian motion, there is no diffusion to help generate an equilibrium structure. This causes some experimental and theoretical problems, as will be discussed. Therefore, some features are introduced in this chapter, to be elaborated on in Chapter 3 which explicitly treats Brownian motion. In the present chapter and in Chapters 3 and 4, only suspensions of spherical particles will be considered, in order to avoid at this stage the complexity introduced by shape effects. Non-spherical particles and the resulting shape effects will be treated in Chapter 5. Likewise, the complexities resulting from the use of non-Newtonian suspending media are not considered here. A number of important industrial suspensions, such as coatings and nanocomposites, can be based on polymeric media; these are covered in Chapter 10.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rutgers, RRelative viscosity and concentrationRheol Acta 2 1962 305CrossRefGoogle Scholar
Thomas, D. GTransport characteristics of suspensions: VIII. A note on the the viscosity of Newtonian suspensions of uniform spherical particlesJ Colloid Sci 20 1965 267CrossRefGoogle Scholar
Lewis, T. BNielsen, L. EViscosity of dispersed and aggregated suspensions of spheresJ Rheol 12 1968 421Google Scholar
Farris, R. JPrediction of the viscosity of multimodal suspensions from unimodal viscosity dataTrans Soc Rheol 12 1968 281CrossRefGoogle Scholar
Chong, J. SChristiansen, E. BBaer, A. DRheology of concentrated suspensionsJ Appl Polym Sci 15 1971 2007CrossRefGoogle Scholar
Krieger, I. MRheology of monodisperse laticesAdv Colloid Interface Sci 3 1972 111CrossRefGoogle Scholar
McGreary, R. KMechanical packing of spherical particlesJ Am Ceram Soc 44 1961 513CrossRefGoogle Scholar
Metzner, A. BRheology of suspensions in polymeric liquidsJ Rheol 29 1985 739CrossRefGoogle Scholar
Batchelor, G. KAn Introduction to Fluid DynamicsCambridgeCambridge University Press 1967Google Scholar
Zarraga, I. EHill, D. ALeighton, D. TThe characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluidsJ Rheol 44 2000 185CrossRefGoogle Scholar
van de Ven, T. G. MColloidal HydrodynamicsLondonAcademic Press 1989Google Scholar
Happel, JBrenner, HLow Reynolds Number HydrodynamicsEnglewood Cliffs, NJPrentice Hall 1965Google Scholar
Schowalter, WMechanics of Non-Newtonian FluidsOxfordPergamon Press 1978Google Scholar
Cox, R. GZia, I. YMason, S. GParticle motions in sheared suspensions: XXV. Streamlines around cylinders and spheresJ Colloid Interface Sci 27 1968 7CrossRefGoogle Scholar
Lamb, HHydrodynamicsCambridgeCambridge University Press 1932Google Scholar
Leal, L. GAdvanced Transport PhenomenaCambridgeCambridge University Press 2007CrossRefGoogle Scholar
Goldsmith, H. LMason, S. GThe microrheology of dispersionsEirich, F. RRheology: Theory and Applications, Vol. 4New YorkAcademic Press 1967 85CrossRefGoogle Scholar
Kao, S. VCox, R. GMason, S. GStreamlines around single spheres and trajectories of pairs of spheres in two-dimensional creeping flowsChem Eng Sci 32 1977 1505CrossRefGoogle Scholar
Einstein, AEine neue Bestimmung der MoleküldimensionenAnn Physik 19 1906 289CrossRefGoogle Scholar
Einstein, AInvestigations on the Theory of the Brownian MovementNew YorkDover 1956Google Scholar
Reiner, MTen Lectures on Theoretical RheologyJerusalemRubin Mass 1943Google Scholar
Einstein, ABerichtigung zu meiner Arbeit: “Eine neue Bestimmung der MoleküldimensionenAnn Physik 34 1911 591CrossRefGoogle Scholar
Bancelin, M 1911 1382
Bancelin, MUeber die Viskosität von Suspensionen un die Bestimmung der Avogradoschen ZahlKollolid-Z 9 1911 154Google Scholar
Philippoff, WViskositaet der KolloideDresdenSteinkopff 1942Google Scholar
Saunders, F. LRheological properties of monodisperse latex systems: I. Concentration dependence of relative viscosityJ Colloid Sci 16 1961 13CrossRefGoogle Scholar
Brodnyan, J. GThe dependence of synthetic latex viscosity on particle size and size distributionJ Rheol 12 1968 357Google Scholar
de Kruif, C. Gvan Iersel, E. M. FVrij, ARussel, W. BHard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fractionJ Chem Phys 83 1986 4717CrossRefGoogle Scholar
Hiemenz, P. CRajagopal, RPrinciples of Colloid and Surface ChemistryNew YorkMarcel Dekker 1997CrossRefGoogle Scholar
Lin, C.-JPeery, J. HSchowalter, WSimple shear flow round a rigid sphere: Inertial effects and suspension rheologyJ Fluid Mech 44 1970 1CrossRefGoogle Scholar
Batchelor, G. KGreen, J. TThe determination of the bulk stress in a suspension of spherical particles to order c2J Fluid Mech 56 1972 401CrossRefGoogle Scholar
Batchelor, G. KGreen, J. TThe hydrodynamic interaction of two small freely-moving spheres in a linear flow fieldJ Fluid Mech 56 1972 375CrossRefGoogle Scholar
Russel, W. BSaville, D. ASchowalter, WColloidal DispersionsCambridgeCambridge University Press 1991Google Scholar
Takamura, KGoldsmith, H. LMason, S. GThe microrheology of colloidal dispersions: XII. Trajectories of orthokinetic pair collisions of latex spheres in a simple electrolyteJ Colloid Interface Sci 82 1981 175CrossRefGoogle Scholar
Wagner, N. JWoutersen, A. T. J. MThe viscosity of bimodal and polydisperse suspensions of hard spheres in the dilute limitJ Fluid Mech 278 1994 267CrossRefGoogle Scholar
Bergenholtz, JBrady, J. FVicic, MThe non-Newtonian rheology of dilute colloidal suspensionsJ Fluid Mech 456 2002 239CrossRefGoogle Scholar
Wilson, H. JDavis, R. HThe viscosity of a dilute suspension of rough spheresJ Fluid Mech 421 2000 339CrossRefGoogle Scholar
Wilson, H. JAn analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flowJ Fluid Mech 534 2005 97CrossRefGoogle Scholar
Brady, J. FBossis, GStokesian dynamicsAnnu Rev Fluid Mech 20 1988 111CrossRefGoogle Scholar
Sierou, ABrady, J. FAccelerated Stokesian dynamic simulationsJ Fluid Mech 448 2001 115CrossRefGoogle Scholar
Ladd, A. J. CNumerical simulations of particulate suspensions via a discretized Boltzmann equation: 2. Numerical resultsJ Fluid Mech 271 1994 311CrossRefGoogle Scholar
Chen, SDoolen, G. DLattice Boltzmann method for fluid flowsAnnu Rev Fluid Mech 30 1998 329CrossRefGoogle Scholar
Martys, N. SStudy of a dissipative particle dynamics based approach for modeling suspensionsJ Rheol 49 2005 401CrossRefGoogle Scholar
Kim, SKarrila, S. JMicrohydrodynamics: Principles and Selected ApplicationsStoneham, MAButterworth-Heinemannn 1991Google Scholar
Melrose, J. RBall, R. CThe pathological behaviour of sheared hard spheres with hydrodynamic interactionsEurophys Lett 32 1995 535CrossRefGoogle Scholar
Phung, T. NBrady, J. FBossis, GStokesian dynamics simulation of Brownian suspensionsJ Fluid Mech 313 1996 181CrossRefGoogle Scholar
Brady, J. FMorris, J. FMicrostructure of strongly sheared suspensions and its impact on rheology and diffusionJ Fluid Mech 348 1997 103CrossRefGoogle Scholar
Ball, R. CMelrose, J. RLubrication breakdown in hydrodynamic simulations of concentrated colloidsAdv Colloid Interface Sci 59 1995 19CrossRefGoogle Scholar
Dratler, D. ISchowalter, WDynamic simulation of suspensions of non-Brownian hard spheresJ Fluid Mech 325 1996 53CrossRefGoogle Scholar
Parsi, FGadala-Maria, FFore-and-aft asymmetry in a concentrated suspension of solid spheresJ Rheol 31 1987 725CrossRefGoogle Scholar
Davis, R. HEffects of surface roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheresPhys Fluids A 4 1992 2607CrossRefGoogle Scholar
Arp, P. AMason, S. GThe kinetics of flowing dispersions: IX. Doublets of rigid spheres (experimental)J Colloid Interface Sci 61 1977 44CrossRefGoogle Scholar
Marchiaro, MAcrivos, AShear-induced particle diffusivities from numerical simulationsJ Fluid Mech 443 2001 101Google Scholar
Drazer, GKoplik, JKhusid, BAcrivos, ADeterministic and stochastic behaviour of non-Brownian spheres in sheared suspensionsJ Fluid Mech 460 2002 307CrossRefGoogle Scholar
Pine, D. JGollub, J. PBrady, J. FLeshansky, A. MChaos and threshold for irreversibility in sheared suspensionsNature 438 2005 997CrossRefGoogle ScholarPubMed
Sierou, ABrady, J. FRheology and microstructure in concentrated noncolloidal suspensionsJ Rheol 46 2002 1031CrossRefGoogle Scholar
Shapiro, A. HProbstein, R. FRandom packings of spheres and fluidity limits of monodisperse and bidisperse suspensionsPhys Rev Lett 68 1992 1422CrossRefGoogle ScholarPubMed
Scott, G. DKilgour, D. MThe density of random close packing of spheresBrit J Appl Phys 2 1969 863Google Scholar
Torquato, STruskett, T. MDebenedetti, P. GIs random close packing of spheres well defined?Phys Rev Lett 84 2000 2064CrossRefGoogle ScholarPubMed
Donev, ACisse, ISachs, DImproving the density of jammed disordered packings using ellipsoidsScience 303 2004 990CrossRefGoogle ScholarPubMed
Nunan, K. CKeller, J. BEffective viscosity of a periodic suspensionJ Fluid Mech 142 1984 269CrossRefGoogle Scholar
Hofman, J. M. AClercx, H. J. HSchram, PEffective viscosity of dense colloidal crystalsPhys Rev E 62 2000 8212CrossRefGoogle ScholarPubMed
Frankel, N. AAcrivos, AOn the viscosity of a concentrated suspension of solid spheresChem Eng Sci 22 1967 847CrossRefGoogle Scholar
Ladd, A. J. CHydrodynamic transport coefficients of random dispersions of hard spheresJ Chem Phys 93 1990CrossRefGoogle Scholar
van der Werff, J. Cde Kruif, C. GHard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rateJ Rheol 33 1989 421CrossRefGoogle Scholar
Shikata, TPearson, D. SViscoelastic behavior of concentrated spherical suspensionsJ Rheol 38 1994CrossRefGoogle Scholar
Cheng, ZZhu, J. XChaikin, P. MPhan, S. ERussel, W. BNature of divergence in low shear viscosity of colloidal hard sphere dispersionsPhys Rev E 65 2002CrossRefGoogle ScholarPubMed
Gadala-Maria, FThe Rheology of Concentrated SuspensionsStanford University 1979Google Scholar
Pätzold, RDie Abhängigkeit des Fliessverhaltens konzentrierter Kugelsuspensionen von der Strömungsform: Ein Vergleich der Viskosität in Scher- und Dehn-StrömungenRheol Acta 19 1980 322CrossRefGoogle Scholar
Singh, ANott, P. RExperimental measurements of the normal stresses in sheared Stokesian suspensionsJ Fluid Mech 490 2003 293CrossRefGoogle Scholar
Kamal, M. RMutel, ARheological properties of suspensions in Newtonian and non-Newtonian fluidsJ Polym Eng 5 1985 293CrossRefGoogle Scholar
Honek, THausnerova, BSaha, PRelative viscosity models and their application to capillary flow data of highly filled hard-metal carbide compoundsPolym Compos 26 2005 29CrossRefGoogle Scholar
Krieger, I. MDougherty, T. JA mechanism of non-Newtonian flow in suspensions of rigid spheresTrans Soc Rheol 3 1959Google Scholar
Quemada, DRheology of concentrated disperse systems and minimum energy-dissipation principle: 1. Viscosity-concentration relationshipRheol Acta 16 1977 82CrossRefGoogle Scholar
Maron, S. HPierce, P. EApplication of Ree-Eyring generalized flow theory to suspensions of spherical particlesJ Colloid Sci 11 1956 80CrossRefGoogle Scholar
Miller, R. RLee, EPowell, R. LRheology of solid propellant dispersionsJ Rheol 35 1991 901CrossRefGoogle Scholar
Sweeney, K. HGeckler, R. DThe rheology of suspensionsJ Appl Phys 25 1954 1135CrossRefGoogle Scholar
Poslinski, A. JRyan, M. EGupta, R. KSeshadri, S. GFrechette, F. JRheological behavior of filled polymeric systems: II. The effect of a bimodal size distribution of particulatesJ Rheol 32 1988 751CrossRefGoogle Scholar
Gotoh, HKuno, HFlow of suspensions containing particles of two different sizes through a capillary tubeJ Rheol 26 1982 387CrossRefGoogle Scholar
Clarke, A. SWiley, J. DNumerical simulation of the dense random packing of a binary mixture of hard spheres: Amorphous metalsPhys Rev B 35 1987 7351CrossRefGoogle ScholarPubMed
Gondret, PPetit, LDynamic viscosity of macroscopic suspensions of bimodal sized spheresJ Rheol 41 1997 1261CrossRefGoogle Scholar
Sudduth, R. DA generalized model to predict the viscosity of solutions with suspended particles: 3. Effects of particle interaction and particle-size distributionJ Appl Polym Sci 50 1993 123CrossRefGoogle Scholar
Dames, BMorrison, B. RWillenbacher, NAn empirical model predicting the viscosity of highly concentrated, bimodal dispersions with colloidal interactionRheol Acta 40 2001 434CrossRefGoogle Scholar
Chang, CPowell, RDynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particlesJ Fluid Mech 253 1993 1CrossRefGoogle Scholar
Gadala-Maria, FAcrivos, AShear-induced structure in a concentrated suspension of solid spheresJ Rheol 24 1980 799CrossRefGoogle Scholar
Narumi, TSee, HHonma, YHasegawa, TTransient response of concentrated suspensions after shear reversalJ Rheol 46 2002 295CrossRefGoogle Scholar
Kolli, V. GPollauf, E. JTransient normal stress response in a concentrated suspension of spherical particlesJ Rheol 46 2002 321CrossRefGoogle Scholar
Acrivos, AThe rheology of concentrated suspensions of non-colloidal particlesRoco, M. CParticulate Two-phase FlowBostonButterworth-Heinemann, 1993 169Google Scholar
Ramachandran, ALeighton, D. TViscous resuspension in a tube: The impact of secondary flows resulting from second normal stress differencesPhys Fluids 19 2007CrossRefGoogle Scholar
Eckstein, E. CBailey, D. GShapiro, A. HSelf-diffusion of particles in shear-flow of a suspensionJ Fluid Mech 79 1977 191CrossRefGoogle Scholar
Leighton, DAcrivos, AThe shear-induced migration of particles in concentrated suspensionsJ Fluid Mech 181 1987 415CrossRefGoogle Scholar
Breedveld, Vvan den Ende, DBosscher, DJongschaap, R. J. JMellema, JMeasuring shear-induced self-diffusion in a counter-rotating geometryPhys Rev E 63 2001 1403CrossRefGoogle Scholar
Breedveld, Vvan den Ende, DBosscher, DJongschaap, R. J. JMellema, JMeasurements of the full shear-induced self-diffusion tensor of noncolloidal suspensionsJ Chem Phys 116 2002 10529CrossRefGoogle Scholar
Sierou, ABrady, J. FShear-induced self-diffusion in non-colloidal suspensionsJ Fluid Mech 506 2004 285CrossRefGoogle Scholar
Leshansky, A. MBrady, J. FDynamic structure factor study of diffusion in strongly sheared suspensionsJ Fluid Mech 527 2005 141CrossRefGoogle Scholar
Sinton, S. WChow, A. WNMR flow imaging of fluids and solid suspensions in Poiseuille flowJ Rheol 35 1991 735CrossRefGoogle Scholar
Hampton, R. EMammoli, A. AGraham, A. LTetlow, NMigration of particles undergoing pressure-driven flow in a circular conduitJ Rheol 41 1997 621CrossRefGoogle Scholar
Butler, J. EBonnecaze, R. TImaging of particle shear migration with electrical impedance tomographyPhys Fluids 11 1999 2865CrossRefGoogle Scholar
Lyon, M. KLeal, L. GAn experimental study of the motion of concentrated suspensions in two-dimensional channel flow: 1. Monodisperse systemsJ Fluid Mech 363 1998 25CrossRefGoogle Scholar
Chow, A. WSinton, S. WIwamiya, J. HStephens, T. SShear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging an stress measurementsPhys Fluids 6 1994 2561CrossRefGoogle Scholar
Tetlow, NGraham, M. SIngber, M. SParticle migration in a Couette apparatus: Experiment and modelingJ Rheol 42 1998 307CrossRefGoogle Scholar
Shapley, N. CArmstrong, R. CBrown, R. ALaser Doppler velocimetry measurements of particle velocity fluctuations in a concentrated suspensionJ Rheol 46 2002 241CrossRefGoogle Scholar
Ovarlez, GBertrand, FRodts, SLocal determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imagingJ Rheol 50 2006 259CrossRefGoogle Scholar
Phillips, R. JArmstrong, R. CBrown, R. AGraham, A. LAbbott, J. RA constitutive equation for concentrated suspensions that accounts for shear-induced particle migrationPhys Fluids A 4 1992 30CrossRefGoogle Scholar
Nott, P. RBrady, J. FPressure-driven flow of suspensions: Simulation and theoryJ Fluid Mech 275 1994 157CrossRefGoogle Scholar
Mills, P. D. ASnabre, PRheology and structure of concentrated suspensions of hard spheres: Shear induced migrationJ Phys II 5 1995 1597Google Scholar
Morris, J. FBoulay, FCurvilinear flows of noncolloidal suspensions: The role of normal stressesJ Rheol 43 1999 1213CrossRefGoogle Scholar
Ramachandran, ALeighton, D. TThe influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensionsJ Fluid Mech 603 2008 207CrossRefGoogle Scholar
Fang, ZMammoli, A. ABrady, J. FFlow-aligned tensor models for suspension flowsInt J Multiphase Flow 28 2002 137CrossRefGoogle Scholar
Shapley, N. CArmstrong, R. CBrown, R. AEvaluation of particle migration models based on laser Doppler velocimetry measurements in concentrated suspensionsJ Rheol 48 2004 255CrossRefGoogle Scholar
Phan-Thien, NGraham, A. LAltobelli, S. AAbbott, J. RMondy, L. AHydrodynamic particle migration in a concentrated suspension undergoing flow between rotating eccentric cylindersInd Eng Chem Res 34 1995 3187CrossRefGoogle Scholar
Hampton, R. EMammoli, A. AGraham, A. LTetlow, NAltobelli, S. AMigration of particles undergoing pressure-driven flow in a circular conduitJ Rheol 41 1997 621CrossRefGoogle Scholar
Segré, GSilberberg, ABehaviour of macroscopic rigid spheres in Poiseuille flow: 2. Experimental results and interpretationJ Fluid Mech 14 1962 136CrossRefGoogle Scholar
Ho, B. PLeal, L. GInertial migration of rigid spheres in two-dimensonal unidirectional flowsJ Fluid Mech 65 1974 365CrossRefGoogle Scholar
Matas, J.-PMorris, J. FGuazzelli, EInertial migration of rigid spherical particles in Poiseuille flowJ Fluid Mech 515 2004 171CrossRefGoogle Scholar
Han, MKim, CKim, MLee, SParticle migration in tube flow of suspensionsJ Rheol 43 1999 1157CrossRefGoogle Scholar
Subramanian, GBrady, J. FTrajectory analysis for non-Brownian inertial suspensions in simple shear flowJ Fluid Mech 559 2006 151CrossRefGoogle Scholar
Nguyen, N.-QLadd, A. J. CSedimentation of hard-sphere suspensions at low Reynolds numberJ Fluid Mech 525 2005 73CrossRefGoogle Scholar
Schaflinger, UAcrivos, AZhang, KViscous resuspension of a sediment within a laminar and stratified flowInt J Multiphase Flow 16 1990 567CrossRefGoogle Scholar
Norman, J. TNayak, H. VBonnecaze, R. TMigration of buoyant particles in low-Reynolds-number pressure-driven flowsJ Fluid Mech 523 2005 1CrossRefGoogle Scholar
Batchelor, G. KThe stress system in a suspension of force-free particlesJ Fluid Mech 41 1970 545CrossRefGoogle Scholar
Mooney, MThe viscosity of a concentrated suspension of spherical particlesJ Colloid Sci 6 1951 162CrossRefGoogle Scholar
Ball, R. CRichmond, PDynamics of colloidal dispersionsPhys Chem Liq 9 1980 99CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Hydrodynamic effects
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Hydrodynamic effects
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Hydrodynamic effects
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.005
Available formats
×