Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T08:05:47.755Z Has data issue: false hasContentIssue false

6 - Colloidal attractions and flocculated dispersions

Published online by Cambridge University Press:  05 December 2011

Jan Mewis
Affiliation:
Katholieke Universiteit Leuven, Belgium
Norman J. Wagner
Affiliation:
University of Delaware
Get access

Summary

Introduction

In the suspensions discussed in the preceding chapters, the particles did not show a tendency to cluster together as they were colloidally stable. In most real systems this condition is only achieved by taking appropriate measures during formulation as there are always interparticle forces present, in particular dispersion forces, which cause neighboring particles to attract each other. Consequently, many naturally occurring and man-made dispersions are more or less aggregated. Examples include mine tailings, drilling muds, and clay slurries, as well as latex paints, tomato ketchup, and even blood.

Attractive interparticle forces can have a significant effect on the microstructure and on various suspension properties. Therefore, controlling and manipulating the degree of clustering becomes very important in industrial processes such as coating, filtration, dewatering, oil drilling, or the handling of mine tailings. In some cases, e.g., solid-liquid separation, irreversible aggregation provides the best results. In most other applications, one targets a weaker and more reversible flocculation (see Chapter 1 for a definition of these terms) in order to generate an optimal rheological behavior. It is this latter type of system that will be mainly dealt with in the present chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Litster, JEnnis, BThe Science and Engineering of Granulation ProcessesNew YorkSpringer 2007Google Scholar
Segrè, P. NPrasad, VSchofield, A. BWeitz, D. AGlasslike kinetic arrest at the colloidal-gelation transitionPhys Rev Lett 86 2001 6042CrossRefGoogle ScholarPubMed
Sciortino, FMossa, MTartaglia, PZaccarelli, EEquilibrium cluster phases and low-density arrested disordered states: The role of short-range attraction and long-range repulsionPhys Rev Lett 93 2004 55701.CrossRefGoogle ScholarPubMed
Iler, R. KThe Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and BiochemistryNew YorkJohn Wiley & Sons 1979Google Scholar
Sommer, MStenger, FPeukert, WAgglomeration and breakup on nanoparticles in stirred media mills: A comparison of different methods and modelsChem Eng Sci 61 2006 135CrossRefGoogle Scholar
Zeichner, G. RSchowalter, W. REffects of hydrodynamic and colloidal forces on the coagulation of dispersionsJ Colloid Interface Sci 71 1979 237CrossRefGoogle Scholar
van Olphen, HAn Introduction to Clay Colloid ChemistryNew YorkInterscience 1963Google Scholar
Shenoy, S. SSadowsky, RMagnum, J. LHanus, L. HWagner, N. JHeteroflocculation of binary latex dispersions of similar chemistry but different sizeJ Colloid Interface Sci 268 2003 380CrossRefGoogle Scholar
Lopéz-Lopéz, J. MSchmitt, AMoncho-Jorda, AHidalgo-Alvarez, RStability of binary colloids: Kinetic and structural aspects of heteroaggregation processesSoft Matter 2 2006 1025CrossRefGoogle Scholar
van Helden, A. KJansen, J. WVrij, APreparation and characterization of spherical monodisperse silica dispersions in non-aqueous solventsJ Colloid Interface Sci 81 1981 354CrossRefGoogle Scholar
Liang, WTadros, T. FLuckham, P. FFlocculation of sterically stabilized polystyrene latex particles by adsorbing and nonadsorbing poly(acrylic acid)Langmuir 10 1994 441CrossRefGoogle Scholar
Hiemenz, P. CRajagopalan, RPrinciples of Colloid and Surface ChemistryNew YorkMarcel Dekker 1997CrossRefGoogle Scholar
Reuvers, A. JControl of rheology of water-borne paints using associative thickenersProg Org Coat 35 1999 171CrossRefGoogle Scholar
Vaynberg, K. AWagner, N. JSharma, RMartic, PStructure and extent of adsorbed gelatin on acrylic latex and polystyrene colloidal particlesJ Colloid Interface Sci 205 1998 131CrossRefGoogle ScholarPubMed
Barthel, HSurface interactions of dimethylsiloxy group-modified fumed silicaColloids Surf A 101 1995 217CrossRefGoogle Scholar
Pfau, ASchrepp, WHorn, DDetection of a single molecule adsorption structure of poly(ethylenimine) macromolecules by AFMLangmuir 15 1999 3219CrossRefGoogle Scholar
Akari, SHorn, DKeller, HSchrepp, WChemical imaging by scanning force microscopyAdv Mater 7 1995 549CrossRefGoogle Scholar
von Smoluchowski, MVersuch einer mathematischen Theorie der Koagulationskinetik kolloider LösungenZ Phys Chem 92 1917 129Google Scholar
Woutersen, A. T. J. Mde Kruif, C. GThe rheology of adhesive hard-sphere dispersionsJ Chem Phys 94 1991 5739CrossRefGoogle Scholar
Eberle, A. P. RWagner, N. JAkgun, BSatija, S. KTemperature-dependent nanostructure of an end-tethered octadecane brush in tetradecane and nanoparticle phase behaviorLangmuir 26 2010 3003CrossRefGoogle ScholarPubMed
Rehbinder, P. ACoagulation and thixotropic structuresDisc Faraday Soc 18 1954 151CrossRefGoogle Scholar
Barnes, H. AWalters, KThe yield stress myth?Rheol Acta 24 1985 323CrossRefGoogle Scholar
Spaans, R. DWilliams, M. CAt last, a true liquiphase yield stressJ Rheol 39 1995 241CrossRefGoogle Scholar
Astarita, GThe engineering reality of the yield stressJ Rheol 34 1990 275CrossRefGoogle Scholar
Hartnett, J. PHu, R. Y. ZThe yield stress: An engineering realityJ Rheol 33 1989 671CrossRefGoogle Scholar
Evans, I. DOn the nature of the yield stressJ Rheol 36 1992 1313CrossRefGoogle Scholar
Kobelev, VSchweizer, K. SDynamic yielding, shear thinning, and stress rheology of polymer-particle suspensions and gelsJ Chem Phys 123 2005 164903CrossRefGoogle ScholarPubMed
Rueb, C. JZukoski, C. FRheology of suspensions of weakly attractive particles: Approach to gelationJ Rheol 42 1998 1451CrossRefGoogle Scholar
Buscall, RMcGowan, J. IMills, P. D. AStewart, R. FSutton, DThe rheology of strongly flocculated suspensionsJ Non-Newtonian Fluid Mech 24 1987 183CrossRefGoogle Scholar
Rueb, C. JZukoski, C. FViscoelastic properties of colloidal gelsJ Rheol 41 1997 197CrossRefGoogle Scholar
Shih, W.-HShih, W. YKim, S.-ILiu, JAksay, I. AScaling behavior of the elastic properties of colloidal gelsPhys Rev A 42 1990 4772CrossRefGoogle ScholarPubMed
Van der Aerschot, EMewis, JEquilibrium properties of reversibly flocculated dispersionsColloids Surf 69 1992 15CrossRefGoogle Scholar
Buscall, RMcGowan, J. IMumme-Young, CRheology of weakly interacting colloidal particles at high concentrationFaraday Discuss Chem Soc 90 1990 115CrossRefGoogle Scholar
Liu, H. JGarde, SKumar, SDirect determination of phase behavior of square-well fluidsJ Chem Phys 123 2005CrossRefGoogle ScholarPubMed
Noro, M. GFrenkel, DExtended corresponding-states behavior for particles with variable range attractionsJ Chem Phys 113 2000 2941CrossRefGoogle Scholar
Pusey, P. NZaccarelli, EValeriani, CSanz, EPoon, W. C. KCates, M. EHard spheres: Crystallization and glass formationPhilos Trans R Soc A 367 2009 4993CrossRefGoogle ScholarPubMed
Dixit, N. MZukoski, C. FCompetition between crystallization and gelation: A local descriptionPhys Rev E 67 2003CrossRefGoogle ScholarPubMed
Rosenbaum, DZamora, P. CZukoski, C. FPhase behavior of small attractive colloidal particlesPhys Rev Lett 76 1996 150CrossRefGoogle ScholarPubMed
Meakin, PFormation of fractal clusters and networks by irreversible diffusion-limited aggregationPhys Rev Lett 51 1983 1119CrossRefGoogle Scholar
Weitz, D. AOliveria, MFractal structures formed by kinetic aggregation of aqueous gold colloidsPhys Rev Lett 52 1984 1433CrossRefGoogle Scholar
Glasrud, G. GNavarrete, R. CScriven, L. EMacosko, C. WSettling behaviors of iron-oxide suspensionsAIChE J 39 1993 560CrossRefGoogle Scholar
Firth, B. AFlow properties of coagulated colloidal suspensions: 2. Experimental properties of flow curve parametersJ Colloid Interface Sci 57 1976 257CrossRefGoogle Scholar
Mandelbrot, B. BLes Objets Fractals: Forme, Hasard et DimensionParisFlammarion 1975Google Scholar
Pignon, FMagnin, APiau, J. MCabane, BLindner, PDiat, OA yield stress thixotropic clay suspension: Investigation of structure by light, neutron, and X-ray scatteringPhys Rev E 56 1997 3281CrossRefGoogle Scholar
Forrest, S. RWitten, T. ALong-range correlations in smoke-particle aggregatesJ Phys A: Math Gen 12 1979 L109CrossRefGoogle Scholar
Mohraz, AMoler, D. BZiff, R. MSolomon, M. JEffect of monomer geometry on the fractal structure of colloidal rod aggregatesPhys Rev Lett 92 2004 155503CrossRefGoogle ScholarPubMed
Bushell, G. CYan, Y. DWoodfield, DRaper, CAmal, ROn techniques for the measurement of the mass fractal dimension of aggregatesAdv Colloid Interface Sci 95 2002 1CrossRefGoogle ScholarPubMed
Meakin, PFractal aggregatesAdv Colloid Interface Sci 28 1987 249CrossRefGoogle Scholar
Mohraz, ASolomon, M. JOrientation and rupture of fractal colloidal gels during start-up of steady state flowJ Rheol 49 2005 657CrossRefGoogle Scholar
Woutersen, A. T. J. MMay, R. Pde Kruif, C. GThe shear-distorted microstructure of adhesive hard-sphere dispersions: A small-angle neutron-scattering studyJ Rheol 37 1993 71CrossRefGoogle Scholar
Sandkuhler, PSefcik, JMorbidelli, MScaling of the kinetics of slow aggregation and gel formation for a fluorinated polymer colloidLangmuir 21 2005 2062CrossRefGoogle ScholarPubMed
Sommer, MStenger, FPeukert, WWagner, N. JAgglomeration and breakage of nanoparticles in stirred media mills: A comparison of different methods and modelsChem Eng Sci 61 2006 135CrossRefGoogle Scholar
Marchisio, D. LSoos, MSefcik, JMorbidelli, MBarresi, A. ABaldi, GEffect of fluid dynamics on particle size distribution in particulate processesChem Eng Technol 29 2006 191CrossRefGoogle Scholar
van de Ven, T. G. MMason, S. GMicrorheology of colloidal dispersions: Orthokinetic formation of spheresColloid Polym Sci 255 1977 468CrossRefGoogle Scholar
van de Ven, T. G. MMason, S. GMicrorheology of colloidal dispersions: Effect of shear on perikinetic doublet formationColloid Polym Sci 255 1977 794CrossRefGoogle Scholar
van de Ven, T. G. MColloidal HydrodynamicsLondonAcademic Press 1989Google Scholar
Russel, W. BSaville, D. ASchowalter, W. RColloidal DispersionsCambridgeCambridge University Press 1989CrossRefGoogle Scholar
Greene, M. RHammer, D. AOlbricht, W. LThe effect of hydrodynamic flow-field on colloidal stabilityJ Colloid Interface Sci 167 1994 232CrossRefGoogle Scholar
Sonntag, R. CRussel, W. BStructure and breakup of flocs subjected to fluid stressesJ Colloid Interface Sci 113 1986 399CrossRefGoogle Scholar
Krall, A. HWeitz, D. AInternal dynamics and elasticity of fractal colloidal gelsPhys Rev Lett 80 1998 778CrossRefGoogle Scholar
Pantina, J. PFurst, E. MMicromechanics and contact forces of colloidal aggregates in the presence of surfactantsLangmuir 24 2008 1141CrossRefGoogle ScholarPubMed
Eggersdorfer, M. LKadau, DHerrmann, H. JPratsinis, S. EFragmentation and restructuring of soft agglomerates under shearJ Colloid Interface Sci 342 2010 261CrossRefGoogle ScholarPubMed
Vaynberg, K. ARheology and Shear Aggregation of Gelatin Stabilized ColloidsUniversity of Delaware 1999Google Scholar
Tolpekin, V. ADuits, M. H. Gvan den Ende, DMellema, JAggregation and breakup of colloidal particle aggregates in shear flow, studied with video microscopyLangmuir 20 2004 2614CrossRefGoogle ScholarPubMed
Varadan, PSolomon, M. JShear-induced microstructural evolution of a thermoreversible colloidal gelLangmuir 17 2001 2918CrossRefGoogle Scholar
Vermant, JSolomon, M. JFlow-induced structure in colloidal suspensionsJ Phys: Condens Matter 17 2005 R187Google Scholar
DeGroot, J. VMacosko, C. WKume, THashimoto, TFlow-induced anisotropic SALS in silica-filled PDMS liquidsJ Colloid Interface Sci 166 1994 404CrossRefGoogle Scholar
Verduin, HDhont, J. K. GPhase diagram of a model adhesive hard-sphere dispersionJ Colloid Interface Sci 172 1995 425CrossRefGoogle Scholar
Negi, A. SOsuji, C. ONew insights on fumed colloidal rheology-shear thickening and vorticity-aligned structures in flocculating dispersionsRheol Acta 48 2009 871CrossRefGoogle Scholar
Elliott, S. LButera, R. JHanus, L. HWagner, N. JFundamentals of aggregation in concentrated dispersions: Fiber-optic quasielastic light scattering and linear viscoelastic measurementsFaraday Discuss 123 2003 369CrossRefGoogle ScholarPubMed
Cates, M. EFuchs, MKroy, KPoon, W. C. KPuertas, A. MTheory and simulation of gelation, arrest and yielding in attracting colloidsJ Phys: Condens Matter 16 2004 S4861Google Scholar
Lu, P. JZaccarelli, ECiulla, FSchofield, A. BSciortino, FWeitz, D. AGelation of particles with short-range attractionNature 453 2008 499CrossRefGoogle ScholarPubMed
Stradner, ASedgwick, HCardinaux, FPoon, W. C. KEgelhaaf, S. USchurtenberger, PEquilibrium cluster formation in concentrated protein solutions and colloidsNature 432 2004 492CrossRefGoogle ScholarPubMed
Eberle, A. P. RWagner, N. JCastañeda-Priego, RDynamical arrest transition in nanoparticle dispersions with short-range interactionsPhys Rev Lett 106 2011 105704.CrossRefGoogle ScholarPubMed
Winter, H. HChambon, FAnalysis of linear viscoelasticity of a cross-linking polymer at the gel pointJ Rheol 30 1986 367CrossRefGoogle Scholar
Chiew, Y. CGlandt, E. DPercolation behavior of permeable and of adhesive spheresJ Phys A: Math Gen 16 1983 2599CrossRefGoogle Scholar
Zaccarelli, EColloidal gels: Equilibrium and non-equilibrium routesJ Phys: Condens Matter 19 2007Google Scholar
Liu, A. JNagel, S. RNonlinear dynamics: Jamming is not just cool anymoreNature 396 1998 21CrossRefGoogle Scholar
Trappe, VPrasad, VCipelletti, LSegrè, P. NWeitz, D. AJamming phase diagram for attractive particlesNature 411 2001 772CrossRefGoogle ScholarPubMed
Anyfantakis, MBourlinos, AVlassopoulos, DFytas, GGiannelis, EKumar, S. KSolvent-mediated pathways to gelation and phase separation in suspensions of grafted nanoparticlesSoft Matter 5 2009 4256CrossRefGoogle Scholar
Stauffer, DIntroduction to Percolation TheoryLondonTaylor & Francis 1985CrossRefGoogle Scholar
Hess, WVilgis, T. AWinter, H. HDynamical critical behavior during chemical gelation and vulcanizationMacromolecules 21 1988 2536CrossRefGoogle Scholar
Chen, MRussel, W. BCharacteristics of flocculated silica dispersionsJ Colloid Interface Sci 141 1991 564CrossRefGoogle Scholar
Poon, W. C. KHaw, M. DMesoscopic structure formation in colloidal aggregation and gelationAdv Colloid Interface Sci 73 1997 71CrossRefGoogle Scholar
Bergenholtz, JFuchs, MGel transition in colloidal suspensionsJ Phys: Condens Matter 11 1999 10171Google Scholar
Larsen, T. HFurst, E. MMicrorheology of the liquid-solid transition during gelationPhys Rev Lett 100 2008 146001.CrossRefGoogle ScholarPubMed
Poon, W. C. KThe physics of a model colloid-polymer mixtureJ Phys: Condens Matter 14 2002 R859Google Scholar
Bergenholtz, JPoon, W. C. KFuchs, MGelation in model colloid-polymer mixturesLangmuir 19 2003 4493CrossRefGoogle Scholar
Pham, K. NPuertas, A. MBergenholtz, JMultiple glassy states in a simple model systemScience 296 2002CrossRefGoogle Scholar
Sztucki, MNarayanan, TBelina, GMoussaid, APignon, FHoekstra, HKinetic arrest and glass-glass transition in short-ranged attractive colloidsPhys Rev E 74 2006CrossRefGoogle ScholarPubMed
Zaccarelli, EFoffi, GDawson, K. ASciortino, FTartaglia, PMechanical properties of a model of attractive colloidal solutionsPhys Rev E 63 2001CrossRefGoogle ScholarPubMed
Bergenholtz, JFuchs, MNon-ergodicity transitions in colloidal suspensions with attractive interactionsPhys Rev E 59 1999 5706CrossRefGoogle Scholar
Dawson, K. AFoffi, GFuchs, MHigher-order glass-transition singularities in colloidal systems with attractive interactionsPhys Rev E 63 2001 011401CrossRefGoogle ScholarPubMed
Eckert, TBartsch, ERe-entrant glass transition in a colloid-polymer mixture with depletion attractionsPhys Rev Lett 89 2002 125701CrossRefGoogle Scholar
Zaccarelli, ESciortino, FTartaglia, PNumerical study of the glass-glass transition in short-ranged attractive colloidsJ Phys: Condens Matter 16 2004 S4849Google Scholar
Foffi, GMcCullagh, G. DLawlor, APhase equilibria and glass transition in colloidal systems with short-ranged attractive interactions: Application to protein crystallizationPhys Rev E 65 2002CrossRefGoogle ScholarPubMed
Dawson, K. AThe glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactionsCurr Opinion Colloid Interf Sci 7 2002 218CrossRefGoogle Scholar
Jansen, J. Wde Kruif, C. GVrij, AAttractions in sterically stabilized silica dispersions: 3. Experiments on phase separation induced by temperature variationJ Colloid Interface Sci 114 1986 481CrossRefGoogle Scholar
Grant, M. CRussel, W. BVolume-fraction dependence of elastic moduli and transition temperatures for colloidal silica gelsPhys Rev E 47 1993 2606CrossRefGoogle ScholarPubMed
Bergenholtz, JFuchs, MVoigtmann, TColloidal gelation and non-ergodicity transitionsJ Phys: Condens Matter 12 2000 6575Google Scholar
Poon, W. C. KSelfe, J. SRobertson, M. BIlett, S. MPirie, A. DPusey, P. NAn experimental study of a model colloid-polymer mixtureJ Phys II 3 1993 1075Google Scholar
Lekkerkerker, H. N. WPoon, W. C. KPusey, P. NStroobants, AWarren, P. BPhase behavior of colloid plus polymer mixturesEurophys Lett 20 1992 559CrossRefGoogle Scholar
Fuchs, MSchweizer, K. SStructure of colloid-polymer suspensionsJ Phys: Condens Matter 14 2002 R239Google Scholar
Chen, Y. LSchweizer, K. SMicroscopic theory of gelation and elasticity in polymer-particle suspensionsJ Chem Phys 120 2004 7212CrossRefGoogle ScholarPubMed
Ramakrishnan, SChen, Y. LSchweizer, K. SZukoski, C. FElasticity and clustering in concentrated depletion gelsPhys Rev E 70 2004 040401CrossRefGoogle ScholarPubMed
Ramakrishnan, SFuchs, MSchweizer, K. SZukoski, C. FEntropy driven phase transitions in colloid-polymer suspensions: Tests of depletion theoriesJ Chem Phys 116 2002 2201CrossRefGoogle Scholar
Wyss, H. MTervoort, E. VGauckler, L. JMechanics and microstructure of concentrated particle gelsJ Am Ceram Soc 88 2005 2337CrossRefGoogle Scholar
Poon, W. C. KStarrs, LMeeker, S. PDelayed sedimentation of transient gels in colloid-polymer mixtures: Dark-field observation, rheology and dynamic light scatteringFaraday Discuss 112 1999 143CrossRefGoogle Scholar
Del Gado, EFierro, Ade Arcangelis, LConiglio, ASlow dynamics in gelation phenomena: From chemical gels to colloidal glassesPhys Rev E 69 2004Google ScholarPubMed
Ramakrishnan, SGopalakrishnan, VZukoski, C. FClustering and mechanics in dense depletion and thermal gelsLangmuir 21 2005 9917CrossRefGoogle ScholarPubMed
Solomon, M. JVaradan, PDynamic structure of thermoreversible colloidal gels of adhesive spheresPhys Rev E 63 2001 051402.CrossRefGoogle ScholarPubMed
Raghavan, SKhan, S. AShear-induced microstructural changes in flocculated suspensions of fumed silicaJ Rheol 35 1995 1311CrossRefGoogle Scholar
Ourieva, GInstability in Sterically Stabilized SuspensionsKatholieke Universiteit Leuven 1999Google Scholar
Mischenko, NOurieva, GMortensen, KReynaers, HMewis, JSANS observations on weakly flocculated dispersionsPhysica B 234 1997 1024CrossRefGoogle Scholar
Russel, W. BThe Huggins coefficient as a means for characterizing suspended particlesJ Chem Soc, Faraday Trans 80 1984 31CrossRefGoogle Scholar
Cichocki, BFelderhof, B. UDiffusion coefficients and effective viscosity of suspensions of sticky spheres with hydrodynamic interactionsJ Chem Phys 93 1990 4427CrossRefGoogle Scholar
Bergenholtz, JWagner, N. JThe Huggins coefficient for the square-well colloidal fluidInd Eng Chem Res 33 1994 2391CrossRefGoogle Scholar
Bergenholtz, JRomagnoli, A. AWagner, N. JViscosity, microstructure, and interparticle potential of AOT/H2O/n-decane inverse microemulsionsLangmuir 11 1995 1559CrossRefGoogle Scholar
Bergenholtz, JBrady, J. FVicic, MThe non-Newtonian rheology of dilute colloidal suspensionsJ Fluid Mech 456 2002 239CrossRefGoogle Scholar
Chen, Z. YMeakin, PDeutch, J. MHydrodynamic behavior of fractal aggregates: CommentPhys Rev Lett 59 1987CrossRefGoogle ScholarPubMed
Lattuada, MMorbidelli, MRadial density distribution of fractal clustersChem Eng Sci 59 2004 4401CrossRefGoogle Scholar
Lin, M. YKlein, RLindsay, H. MWeitz, D. ABall, R. CMeakin, PThe structure of fractal colloidal aggregates of finite extentJ Colloid Interface Sci 137 1990 263CrossRefGoogle Scholar
Hanus, L. HHartzler, R. UWagner, N. JElectrolyte-induced aggregation of acrylic latex: 1. Dilute particle concentrationsLangmuir 17 2001 3136CrossRefGoogle Scholar
Torres, F. ERussel, W. BSchowalter, W. RFloc structure and growth: Kinetics for rapid shear coagulation of polystyrene colloidsJ Colloid Interface Sci 142 1991 554CrossRefGoogle Scholar
Bossis, GMeunier, ABrady, J. FHydrodynamic stress on fractal aggregates of spheresJ Chem Phys 94 1991 5064CrossRefGoogle Scholar
Binder, CHartig, M. A. JPeukert, WStructural dependent drag force and orientation prediction for small fractal aggregatesJ Colloid Interface Sci 331 2009 243CrossRefGoogle ScholarPubMed
Buscall, RMcGowan, J. IMorton-Jones, A. JThe rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slipJ Rheol 37 1993 621CrossRefGoogle Scholar
Krishnamurthy, L. NWagner, N. JThe influence of weak attractive forces on the microstructure and rheology of colloidal dispersionsJ Rheol 49 2005 475CrossRefGoogle Scholar
Gopalakrishnan, VZukoski, C. FEffect of attractions on shear thickening in dense suspensionsJ Rheol 48 2004 1321CrossRefGoogle Scholar
Chambon, FWinter, H. HLinear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichometryJ Rheol 31 1987 683CrossRefGoogle Scholar
Patel, P. DRussel, W. BThe rheology of polystyrene latices phase separated by dextranJ Rheol 31 1987 599CrossRefGoogle Scholar
Fritz, GPechhold, WWillenbacher, NWagner, N. JCharacterizing complex fluids with high frequency rheology using torsional resonators at multiple frequenciesJ Rheol 47 2003 303CrossRefGoogle Scholar
Buscall, RMills, P. D. AGoodwin, J. WLawson, D. WScaling behaviour of the rheology of aggregate networks formed from colloldial particlesJ Chem Soc, Faraday Trans 1 84 1988 4249CrossRefGoogle Scholar
Trappe, VSandkühler, PColloidal gels: Low density disordered solid-like statesCurr Opinion Colloid Interf Sci 8 2004 494CrossRefGoogle Scholar
Piau, J. MDorget, MPalierne, J.-FShear elasticity and yield stress of silica-silicone physical gels: Fractal approachJ Rheol 43 1999 305CrossRefGoogle Scholar
de Gennes, P. GScaling Concepts in Polymer PhysicsIthaca, NYCornell University Press 1980Google Scholar
Jullien, RBotet, RAggregation and Fractal AggregatesSingaporeWorld Scientific Publishing 1987Google Scholar
Kantor, YWebman, IElastic properties of random percolating systemsPhys Rev Lett 52 1984 1891CrossRefGoogle Scholar
Mellema, Mvan Opheusden, J. H. Jvan Vliet, TCategorization of rheological scaling models for particle gels applied to casein gelsJ Rheol 46 2002 11CrossRefGoogle Scholar
de Rooij, Rvan den Ende, DDuits, M. H. GMellema, JElasticity of weakly aggregated polystyrene latex dispersionsPhys Rev E 49 1994 3038CrossRefGoogle Scholar
Mellema, Mvan Vliet, Tvan Opheusden, J. H. JCategorization of rheological scaling models for particle gelsFischer, PMarti, IWindhab, E. JProceedings of the 2nd International Symposium on Food Rheology and StructureZürichETH Zürich 2000 181Google Scholar
Brown, W. DThe Structure and Physical Properties of Flocculating ColloidsCambridge University 1987Google Scholar
Buscall, RMills, P. D. AYates, G. EViscoelastic properties of strongly flocculated polystyrene latex dispersionsColloids Surf 18 1986 341CrossRefGoogle Scholar
Nederveen, C. JDynamic mechanical behavior of suspensions of fat particles in oilJ Colloid Sci 18 1963 276.CrossRefGoogle Scholar
Wu, HMorbidelli, MA model relating structure of colloidal gels to their elastic propertiesLangmuir 17 2001 1030CrossRefGoogle Scholar
Potanin, A. Ade Rooij, Rvan den Ende, DMellema, JMicrorheological modeling of weakly aggregated dispersionsJ Chem Phys 102 1995 5845CrossRefGoogle Scholar
Pantina, J. PFurst, E. MElasticity and critical bending moment of model colloidal aggregatesPhys Rev Lett 94 2005CrossRefGoogle ScholarPubMed
Mall, SRussel, W. BEffective medium approximation for an elastic network model of flocculated suspensionsJ Rheol 31 1987CrossRefGoogle Scholar
Kanai, HNavarrete, R. CMacosko, C. WScriven, L. EFragile networks and rheology of condentrated suspensionsRheol Acta 31 1992 333CrossRefGoogle Scholar
Russel, W. BGrant, M. CDistinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersionColloids Surf A 161 2000 271CrossRefGoogle Scholar
Guo, XBallauff, MHigh frequency rheology of hard sphere colloidal dispersions measured with a torsional resonatorLangmuir 16 2000 8719CrossRefGoogle Scholar
Wyss, H. MTervoort, E. VMeier, L. PMüller, MGauckler, L. JRelation between microstructure and mechanical behavior of concentrated silica gelsJ Colloid Interface Sci 273 2004 455CrossRefGoogle ScholarPubMed
Dibble, C. JKogan, MSolomon, M. JStructure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneityPhys Rev E 74 2006 041403.CrossRefGoogle ScholarPubMed
Zaccone, AWu, HDel Gado, EElasticity of arrested short-ranged attractive colloids: Homogeneous and heterogeneous glassesPhys Rev Lett 103 2009 208301CrossRefGoogle ScholarPubMed
Leong, Y. KScales, P. JHealy, T. WBoger, D. VBuscall, RRheological evidence of adsorbate-mediated short-range steric forces in concentrated dispersionsJ Chem Soc, Faraday Trans 89 1993 2473CrossRefGoogle Scholar
Larson, R. GThe Structure and Rheology of Complex FluidsOxfordOxford University Press 1999Google Scholar
Friend, J. PHunter, R. JPlastic flow behaviour of coagulated suspensions treated as a repeptization phenomenonJ Colloid Interface Sci 37 1971 548CrossRefGoogle Scholar
Michaels, A. SBolger, J. CThe plastic flow behavior of flocculated kaolin suspensionsI&EC Fundamentals 1 1962 153CrossRefGoogle Scholar
Hunter, R. JNicol, S. KDependence of plastic flow behavior of clay suspensions on surface propertiesJ Colloid Interface Sci 28 1968 250CrossRefGoogle Scholar
Teh, E.-JLeong, Y. KLiu, YOng, B. CBerndt, C. CChen, S. BYield stress and zeta potential of washed and highly spherical oxide dispersions: Critical zeta potential and Hamaker constantPowder Techn 198 2010 114CrossRefGoogle Scholar
Pham, K. NPetekidis, GVlassopoulos, DEgelhaaf, S. UPoon, W. C. KPusey, P. NYielding behavior of repulsion- and attraction-dominated colloidal glassesJ Rheol 52 2008 649CrossRefGoogle Scholar
Puertas, A. MDe Michele, CSciortino, FTartaglia, PZaccarelli, EViscoelasticity and Stokes-Einstein relation in repulsive and attractive colloidal glassesJ Chem Phys 127 2007 144906.CrossRefGoogle ScholarPubMed
Pham, K. NPetekidis, GVlassopoulos, DEgelhaaf, S. UPusey, P. NPoon, W. C. KYielding of colloidal glassesEurophys Lett 75 2006 624CrossRefGoogle Scholar
Enns, J. BGillham, J. KTime temperature transformation (TTT) cure diagram: Modeling the cure behavior of thermosetsJ Appl Polym Sci 28 1983 2567CrossRefGoogle Scholar
Otsubo, YElastic percolation in suspensions flocculated by polymer bridgingLangmuir 6 1990 114CrossRefGoogle Scholar
Swenson, JSmalley, M. VHatharasinghe, H. L. MMechanism and strength of polymer bridging flocculationPhys Rev Lett 81 1998 5840CrossRefGoogle Scholar
Otsubo, YRheology control of suspensions by soluble polymersLangmuir 11 1995 1893CrossRefGoogle Scholar
McFarlane, N. LWagner, N. JKaler, E. WLynch, M. LPoly(ethylene oxide) (PEO) and Poly(vinyl pyrolidone) (PVP) induce different changes in the colloid stability of nanoparticlesLangmuir 26 2010 13823CrossRefGoogle ScholarPubMed
Krishnamurthy, L. NMicrostructure and Rheology of Colloid-Polymer MixturesUniversity of Delaware 2005Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×