Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T06:08:33.242Z Has data issue: false hasContentIssue false

22 - Water relations of Canarian laurel forest trees

Published online by Cambridge University Press:  04 August 2010

R. Lösch
Affiliation:
Abt. Geobotaniky Universitätsstrasse 1/26.13, D-W-4000 Düsseldorf, Germany.
Get access

Summary

SUMMARY

Water supply capacity of the xylem, water loss avoidance and drought tolerance of leaves of Canarian laurel forest trees were investigated and compared with corresponding data for Mediterranean sclerophylls. Generally, the lauriphyllous species are unable to control their canopy water relations if they are affected by arid conditions. This may be one reason why the Macaronesian laurel forests are restricted to perhumid sites.

INTRODUCTION

The laurel forest of the Macaronesian archipelagos (Canary Islands, Madeira, Azores) is restricted to moist and humid mountain slopes where humidity brought by the trade winds condenses to form clouds (Ceballos & Ortuno, 1976). The tree species of these forests are obviously not competitive at low humidity. This inability to withstand arid conditions may arise from (i) an insufficient xylem capacity for water transport to the crowns, (ii) an ineffective stomatal regulation of transpiration, (iii) a low drought tolerance of the leaves. These functional attributes of the laurel forest tree species were investigated comparatively and compared with pertinent data of Mediterranean species.

MATERIALS AND METHODS

The species are named in the legend of Fig.l. Xylem anatomy and drought tolerance of the leaves were studied with plant material collected in the Anaga Mountains of Tenerife, Canary Islands (28.5° N, 15.9° W). Transpirational water loss was assessed with leaves from greenhousegrown plants. No differences in structure and function could be recognized between field-collected and cultivated plants. The theoretical water supply capacity of the twigs was calculated according to the Hagen- Poiseuille formula (Huber, 1956) using data from microscopic determinations of vessel numbers and diameters.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×