Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T22:13:25.164Z Has data issue: false hasContentIssue false

14 - A heat balance method for measuring sap flow in small trees

Published online by Cambridge University Press:  04 August 2010

C. Valancogne
Affiliation:
Laboratoire de Bioclimatologie, INRA, Centre de Bordeaux
Z. Nasr
Affiliation:
Domaine de la Grande Ferrade, BP 81 F3388 Villenave d'Ornon, France.
Get access

Summary

SUMMARY

The heat balance method of Sakuratani (1981) was adapted and improved for measuring sap flow in fruit trees of high density orchards. In this technique the trunk is surrounded by a heating jacket operating at constant power. Thermocouples are used to measure conductive and convective heat flux and therefore the sap flow rate from the heat balance. This method does not require any calibration before the setting up of the sap flow sensor.

INTRODUCTION

Several thermal methods have been used for measuring sap flow in the trunk of trees: heat pulse methods (Marshall, 1958; Swanson & Whitfield, 1981) and those that depend on the temperature of a linear heat source inserted in the xylem (Granier, 1985). These methods give the sap flux density (kg s−1 m−2). The estimation of the sap flow rate (kg s−1) involves the measurement of the cross-sectional area of the functional xylem. An improvement of the heat pulse method (Cohen, Fuchs & Green, 1981) avoids this additional measurement by estimating the radial profile of sap velocity, but assembling the sensor is very difficult. Heat balance methods were applied also on sectors of tree trunks by Daum (1967), Cermák, n, Kucera & Penka (1976). With all these methods, there is a question of how representative the measurements are of the overall flow rate in the trunk.

Here we propose a direct measurement of the sap flow rate in the whole section of the stems or trunks as an improvement of the heat balance method (Sakuratani, 1981; Valancogne & Nasr, 1989a, 1989b).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×