Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T16:50:24.180Z Has data issue: false hasContentIssue false

32 - The role of maternal and fetal Doppler in pre-eclampsia

from Part II - Clinical Practice

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Introduction

Fitzgerald and Drumm (1997), using a combination of real-time imaging, pulsed wave and continuous wave Doppler, first reported the use of flow velocity waveforms (FVW) from the umbilical cord in 1977. Since then the value of umbilical artery (UA) Doppler to assess fetal wellbeing has been investigated extensively; indeed, no other tool in perinatal medicine has received such rigorous appraisal in the form of randomized controlled trials. Subsequent studies have investigated other fetal arterial and venous vessels and although a significant body of literature now exists, especially for the middle cerebral artery (MCA) and ductus venosus (DV), the absence of appropriately powered randomized trials makes the clinical utility of these investigations unclear.

Of all the clinical groups labeled as “high risk,” women with pre-eclampsia and those at risk of developing the syndrome are probably those in which Doppler ultrasound has proven the greatest value. However, interpretation of the literature is often confounded by variations in the definition of the disorder. In this chapter we review the role of Doppler in screening and management of pre-eclampsia, focusing on uterine artery, UA, MCA and DV waveforms. Wherever possible an attempt will be made to distinguish between early onset (necessitating delivery before 34 weeks of gestation) and later disease.

Waveform acquisition and interpretation

Waveform indices

Measurement of absolute blood flow is dependent on multiple factors including angle of insonation, blood viscosity, and vessel diameter. The latter is difficult to measure and precludes accurate assessment of volume flow, especially in small fetal vessels.

Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 489 - 505
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aardema, M. W., Oosterhof, H., Timmer, A., Rooy, I. and Aarnoudse, J. G. (2001). Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta, 22, 405–11.CrossRefGoogle ScholarPubMed
Arduini, D. and Rizzo, G. (1990). Normal values of Pulsatility Index from fetal vessels: a cross sectional study on 1556 healthy fetuses. J. Perinatal. Med., 18, 165–72.CrossRefGoogle ScholarPubMed
Arduini, D., Rizzo, G. and Romanini, C. (1992). Changes of pulsatility index from fetal vessels preceding the onset of late decelerations in growth-retarded fetuses. Obstet. Gynecol., 79, 605–10.Google ScholarPubMed
Arduini, D., Rizzo, G. and Romanini, C. (1993). The development of abnormal heart rate patterns after absent end-diastolic velocity in umbilical artery: analysis of risk factors. Am. J. Obstet. Gynecol., 168, 43–50.CrossRefGoogle ScholarPubMed
Baschat, A. A. (2004). Doppler application in the delivery timing of the preterm growth-restricted fetus: another step in the right direction. Ultrasound Obstet. Gynecol., 23, 111–18.CrossRefGoogle ScholarPubMed
Baschat, A. A., Gembruch, U., Reiss, I., Gortner, L., Weiner, C. P. and Harman, C. R. (2000). Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction. Ultrasound Obstet. Gynecol., 16, 407–13.CrossRefGoogle ScholarPubMed
Baschat, A. A., Gembruch, U., Weiner, C. P. and Harman, C. R. (2003). Qualitative venous Doppler waveform analysis improves prediction of critical perinatal outcomes in premature growth-restricted fetuses. Ultrasound Obstet. Gynecol., 22, 240–5.CrossRefGoogle ScholarPubMed
Bilardo, C. M., Wolk, H., Stigter, R. H., et al. (2004). Relationship between monitoring parameters and perinatal outcome in severe, early intrauterine growth restriction. Ultrasound Obstet. Gynecol., 23, 119–25.CrossRefGoogle Scholar
Bower, S., Vyas, S., Campbell, S. and Nicolaides, K. H. (1992). Color Doppler imaging of the uterine artery in pregnancy: normal ranges of impedance to blood flow, mean velocity and volume of flow. Ultrasound Obstet. Gynecol., 2, 261–5.CrossRefGoogle Scholar
Bower, S., Bewley, S. and Campbell, S. (1993). Improved prediction of preeclampsia by two-stage screening of uterine arteries using the early diastolic notch and color Doppler imaging. Obstet. Gynecol., 82, 78–83.Google ScholarPubMed
Brown, M. A., North, L. and Hargood, J. (1990). Uteroplacental Doppler ultrasound in routine antenatal care. Aust. N.Z. J. Obstet. Gynaecol., 30, 303–7.CrossRefGoogle ScholarPubMed
Chan, F. Y., Pun, T. C., Lam, P., Lam, C., Lee, C. P. and Lam, Y. H. (1996). Fetal cerebral Doppler studies as a predictor of perinatal outcome and subsequent neurologic handicap. Obstet. Gynecol., 87, 981–8.CrossRefGoogle ScholarPubMed
Chappell, L. C., Seed, P. T., Briley, A. L., et al. (1999). Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet, 354, 810–16.CrossRefGoogle ScholarPubMed
Chari, R. S., Friedman, S. A., O'Brien, J. M. and Sibai, B. M. (1995). Daily antenatal testing in women with severe preeclampsia. Am. J. Obstet. Gynaecol., 173, 1207–10.CrossRefGoogle ScholarPubMed
Chien, P. W., Arnott, N., Gordon, A., Own, P. and Khan, K. (2000). How useful is uterine artery Doppler flow velocimetry in the prediction of pre-eclampsia, intrauterine growth retardation and perinatal death? An overview. Br. J. Obstet. Gynaecol., 107, 196–208.CrossRefGoogle ScholarPubMed
Coleman, M. A. G., McCowan, L. M. E. and North, R. A. (2000). Mid-trimester uterine artery screening as a predictor of adverse pregnancy outcome in high risk women. Ultrasound Obstet. Gynecol., 15, 7–12.CrossRefGoogle ScholarPubMed
Edelstone, D. I. (1980). Regulation of blood flow through the ductus venosus. J. Dev. Physiol., 2, 219–38.Google ScholarPubMed
Eronen, M., Kari, A., Pesonen, E., Kaaja, R., Wallgren, E. I. and Hallman, M. (1993). Value of absent or retrograde end-diastolic flow in fetal aorta and umbilical artery as a predictor of perinatal outcome in pregnancy-induced hypertension. Acta Paediatr., 82, 919–24.CrossRefGoogle ScholarPubMed
Ferrazzi, E., Bozzo, M., Rigano, S., et al. (2002). Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet. Gynecol., 19, 140–6.CrossRefGoogle ScholarPubMed
Figueras, F., Puerto, B., Martinez, J. M., Cararach, V. and Vanrell, J. A. (2003). Cardiac function monitoring of fetuses with growth restriction. Eur. J. Obstet. Gynecol. Reprod. Biol., 110, 159–63.CrossRefGoogle ScholarPubMed
FitzGerald, D. E. and Drumm, J. E. (1997). Non-invasive measurement of human fetal circulation using ultrasound: a new method. Br. Med. J., ii, 1450–1.Google Scholar
Fong, W., Ohlsson, K., Arne, H. E., et al. (1999). Prediction of perinatal outcome in fetuses suspected to have intrauterine growth restriction: Doppler US study of fetal cerebral, renal, and umbilical arteries. Radiology, 213, 681–9.CrossRef
Friedman, S. A., Schiff, E., Kao, L. and Sibai, B. M. (1995). Neonatal outcome after preterm delivery for preeclampsia. Am. J. Obstet. Gynecol., 172, 1785–8.CrossRefGoogle ScholarPubMed
Frusca, T., Soregaroli, M., Zanelli, S., Danti, L., Guandalini, F. and Valcamonico, A. (1998). Role of uterine artery Doppler investigation in pregnant women with chronic hypertension. Eur. J. Obstet. Gynecol. Reprod. Biol., 79, 47–50.CrossRefGoogle ScholarPubMed
Frusca, T., Soregaroli, M., Platto, C., Enterri, L., Lojacono, A. and Valcamonico, A. (2003). Uterine artery velocimetry in patients with gestational hypertension. Obstet. Gynecol., 102, 136–40.Google ScholarPubMed
Giles, W. B., Trudinger, B. J. and Baird, P. J. (1985). Fetal umbilical artery flow velocity waveforms and placental resistance: pathological correlation. Br. J. Obstet. Gynaecol., 92, 31–8.CrossRefGoogle ScholarPubMed
Harman, C. R. and Baschat, A. A. (2003). Arterial and venous Dopplers in IUGR. Clin. Obstet. Gynecol., 46, 931–46.CrossRefGoogle ScholarPubMed
Harrington, K., Carpenter, R. G., Goldfrad, C. and Campbell, S. (1997). Transvaginal Doppler ultrasound of the uteroplacental circulation in the early prediction of pre-eclampsia and intrauterine growth retardation. Br. J. Obstet. Gynaecol., 104, 674–81.CrossRefGoogle ScholarPubMed
Harrington, K., Fayyad, A., Thakur, V. and Aquilina, J. (2004). The value of uterine artery Doppler in the prediction of uteroplacental complications in multiparous women. Ultrasound Obstet. Gynecol., 23, 50–5.CrossRefGoogle ScholarPubMed
Hecher, K., Campbell, S., Snijders, R. and Nicolaides, K. (1994). Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound Obstet. Gynecol., 4, 381–90.CrossRefGoogle ScholarPubMed
Hecher, K., Bilardo, C. M., Stigter, R. H., et al. (2001). Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet. Gynecol., 18, 564–70.CrossRefGoogle ScholarPubMed
Hofstaetter, C., Gudmundsson, S. and Hansmann, M. (2002). Venous Doppler velocimetry in the surveillance of severely compromised fetuses. Ultrasound Obstet. Gynecol., 20, 233–9.CrossRefGoogle ScholarPubMed
Hornbuckle, J. and Thornton, J. G. (1998). The fetal circulatory response to chronic placental insufficiency. and relation to pregnancy outcome. Fetal. Mat. Med. Rev., 10, 137–52.CrossRef
Hornbuckle, J., Sturgiss, S. N. and Robson, S. C. (2003). Mangement of fetuses with absent and reversed end-diastolic frequencies (AREDF) in the umbilical artery; outcome of a policy of daily biophysical profile (BPP). J. Obstet. Gynaecol., 23(Suppl. 1), S35.
Karsdorp, V. H. M., Vugt, J. M. G., Geijn, H. P., et al. (1994). Clinical significance of absent or reversed end diastolic velocity waveforms in umbilical artery. Lancet, 344, 1664–8.CrossRefGoogle ScholarPubMed
Kirsten, G. F., Zyl, J. I., Zijl, F., Maritz, J. S. and Odendaal, H. J. (2000). Infants of women with severe early pre-eclampsia: the effect of absent end-diastolic umbilical artery Doppler flow velocities on neurodevelopmental outcome. Acta Paediatr., 89, 566–70.CrossRefGoogle ScholarPubMed
Konje, J. C., Bell, S. C. and Taylor, D. J. (2001). Abnormal Doppler velocimetry and blood flow volume in the middle cerebral artery in very severe intrauterine growth restriction: is the occurrence of reversal of compensatory flow too late?Br. J. Obstet. Gynaecol., 108, 973–9.Google ScholarPubMed
Lees, C., Parra, M., Missfelder-Lobos, H., Morgans, A., Fletcher, O. and Nicolaides, K. H. (2001). Individualized risk assessment for adverse pregnancy outcome by uterine artery Doppler at 23 weeks. Obstet. Gynecol., 98, 369–73.Google ScholarPubMed
Ley, D., Tideman, E., Laurin, J., Bjerre, I. and Marsal, K. (1996). Abnormal fetal aortic velocity waveform and intellectual function at 7 years of age. Ultrasound Obstet. Gynecol., 8, 160–5.CrossRefGoogle ScholarPubMed
Lin, S., Shimizu, I., Suehara, N., Nakayama, M. and Aono, T. (1995). Uterine artery Doppler velocimetry in relation to trophoblast invasion into the myometrium of the placental bed. Obstet. Gynecol., 85, 760–5.CrossRefGoogle Scholar
Lyall, F, and Robson, S. C. (2000). Defective extravillous trophoblast function and pre-eclampsia. In The Placenta: Basic Science and Clinical Practice, ed. Kingdom, J., Jauniaux, E. and O'Brien, S.. London: RCOG Press, pp. 79–96.Google Scholar
Martin, A. M., Bindra, R., Curcio, P., Cicero, S. and Nicolaides, K. H. (2001). Screening for pre-eclampsia and fetal growth retardation by uterine artery Doppler at 11–14 weeks of gestation. Ultrasound Obstet. Gynecol., 18, 583–6.CrossRefGoogle ScholarPubMed
Matijevic, R. and Johnston, T. (1999). In vivo assessment of failed trophoblastic invasion of the spiral arteries in pre-eclampsia. Br. J. Obstet. Gynaecol., 106, 78–92.CrossRefGoogle ScholarPubMed
McCowan, L. M. E., Harding, J. E., Roberts, A. B., Barker, S. E., Ford, C. and Stewart, A. W. (2000). A pilot randomized controlled trial of two regimes of fetal surveillance for small-for-gestational age fetuses with normal results of umbilical artery Doppler velocimetry. Am. J. Obstet. Gynecol., 182, 81–6.CrossRefGoogle Scholar
Montenegro, N., Santos, F., Tavares, E., Matias, A., Barros, H. and Leite, L. P. (1998). Outcome of 88 pregnancies with absent or reversed end-diastolic blood flow (ARED flow) in the umbilical arteries. Eur. J. Obstet. Gynecol. Reprod. Biol., 79, 43–6.CrossRefGoogle ScholarPubMed
Muller, T., Nanan, R., Rehn, M., Kristen, P. and Dietl, J. (2002). Arterial and ductus venosus Doppler in fetuses with absent or reverse end-diastolic flow in the umbilical artery: correlation with short-term perinatal outcome. Acta Obstet. Gynecol. Scand., 81, 860–6.CrossRefGoogle ScholarPubMed
National Collaborating Centre for Women's and Children's Health. (2003). Antenatal Care: Routine Care for the Healthy Pregnant Woman. London: RCOG Press, pp. 105–8.
Neilson, J. P. and Alfirevic, Z. (2000). Doppler ultrasound for fetal assessment in high risk pregnancies. Cochrane Database Syst. Rev., (2): p. CD000073.Google ScholarPubMed
Nicolaides, K. H., Bilardo, C. M., Soothill, P. W. and Campbell, A. (1988). Absence of end-diastolic frequencies in umbilical artery: a sign of fetal hypoxia and acidosis. Br. Med. J., 297, 1026–7.CrossRefGoogle ScholarPubMed
Nicolini, U., Nicolaidid, P., Fisk, N. M., et al. (1990). Limited role of fetal blood sampling in prediction of outcome in intrauterine growth retardation. Lancet, 336, 768–72.CrossRefGoogle ScholarPubMed
Odendaal, H. J., Pattinson, R. C., Bam, R., Grove, D. and Kotze, T. J. (1990). Aggressive or expectant management for patients with severe preeclampsia between 28–34 weeks' gestation: a randomized controlled trial. Obstet. Gynecol., 76, 1070–5.Google ScholarPubMed
Odendaal, H. J., Pattinson, R. C., du Toit, R. and Grove, D. (1998). Frequent fetal heart-rate monitoring for early detection of abruptio placentae in severe proteinuric hypertension. S. Afr. Med. J., 74, 19–21.Google Scholar
Ozeren, M., Dinc, H., Ekmen, U., Senekayli, C. and Aydemir, V. (1999). Umbilical and middle cerebral artery Doppler indices in patients with preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 82, 11–16.CrossRefGoogle ScholarPubMed
Papgeorghiou, A. T., Hu, C. K. H., Cicero, S., Bower, S. and Nicolaides, K. H. (2002). Second-trimester uterine artery Doppler screening in unselected populations: a review. J. Mat. Fet. Neonatal. Med., 12, 78–88.CrossRefGoogle Scholar
Parretti, E., Mealli, F., Magrini, A., et al. (2003). Cross-sectional and longitudinal evaluation of uterine artery Doppler velocimetry for the prediction of pre-eclampsia in normotensive women with specific risk factors. Ultrasound Obstet. Gynecol., 22: 160–5.CrossRefGoogle ScholarPubMed
Prefumo, F., Bhide, A., Sairam, S., Penna, L., Hollis, B. and Thilaganathan, B. (2004). Effect of parity on second-trimester uterine artery Doppler flow velocity and waveforms. Ultrasound Obstet. Gynecol., 23, 46–9.CrossRefGoogle ScholarPubMed
Rizzo, G., Capponi, A., Arduini, D. and Romanini, C. (1995a). The value of fetal arterial, cardiac and venous flows in predicting pH and blood gases measured in umbilical blood at cordocentesis in growth retarded fetuses. Br. J. Obstet. Gynaecol., 102, 963–9.CrossRefGoogle Scholar
Rizzo, G., Capponi, A., Soregaroli, M., Arduini, D. and Romanini, C. (1995b). Umbilical vein pulsations and acid-base status at cordocentesis in growth-retarded fetuses with absent end-diastolic velocity in umbilical artery. Biol. Neonate, 68, 163–8.CrossRefGoogle Scholar
Rowlands, D. J. and Vyas, S. K. (1995). Longitudinal study of fetal middle cerebral artery flow velocity waveforms preceding fetal death. Br. J. Obstet. Gynaecol., 102, 888–90.CrossRefGoogle ScholarPubMed
Sagol, S., Ozkinay, E., Oztekin, K. and Ozdemir, N. (1999). Comparison of uterine artery Doppler velocimetry with the histopathology of the placental bed. Aust. N.Z. J. Obstet. Gynaecol., 39, 324–9.CrossRefGoogle ScholarPubMed
Scherjon, S. A., Oosting, H., Visser, B. W., Wilde, T., Zondervan, H. A. and Kok, J. H. (1996). Fetal brain sparing is associated with accelerated shortening of visual evoked potential latencies during early infancy. Am. J. Obstet. Gynecol., 175, 1569–75.CrossRefGoogle ScholarPubMed
Scherjon, S. A., Oosting, H., Smolders-DeHaas, H., Zondervan, H. A. and Kok, J. H. (1998). Neurodevelopmental outcome at three years of age after fetal ‘brain-sparing’. Early Hum. Dev., 52, 67–79.CrossRefGoogle Scholar
Scherjon, S., Briet, J., Oosting, H. and Kok, J. (2000). The discrepancy between maturation of visual-evoked potentials and cognitive outcome at five years in very preterm infants with and without hemodynamic signs of fetal brain-sparing. Pediatrics, 105, 385–91.CrossRefGoogle ScholarPubMed
Sibai, B. M., Mercer, B. M., Schiff, E. and Friedman, S. A. (1994). Aggressive versus expectant management of severe preeclampsia at 28 to 32 weeks' gestation: a randomized controlled trial. Am. J. Obstet. Gynecol., 171, 818–22.CrossRefGoogle ScholarPubMed
Soothill, P. W., Ajayi, R. A., Campbell, S., et al. (1992). Relationship between fetal acidemia at cordocentesis and subsequent neurodevelopment. Ultrasound Obstet. Gynaecol., 2, 80–3.CrossRefGoogle ScholarPubMed
The GRIT Study Group (2003). A randomised trial of timed delivery for the compromised preterm fetus: short term outcomes and Bayesian interpretation. Br. J. Obstet. Gynaecol., 110, 27–32.CrossRef
Vergani, P., Roncaglia, N., Andreotti, C., et al. (2002). Prognostic value of uterine artery Doppler velocimetry in growth-restricted fetuses delivered near term. Am. J. Obstet. Gynecol., 187, 932–6.CrossRefGoogle ScholarPubMed
Vyas, S., Nicolaides, K. H., Bower, S. and Campbell, S. (1990). Middle cerebral artery flow velocity waveforms in fetal hypoxaemia. Br. J. Obstet. Gynaecol., 97, 797–803.CrossRefGoogle ScholarPubMed
Wilson, D. C., Harper, A., McClure, G., Halliday, H. L. and Reid, M. (1992). Long term predictive value of Doppler studies in high risk fetuses. Br. J. Obstet. Gynaecol., 99, 575–8.CrossRefGoogle ScholarPubMed
Yoon, B. H., Lee, C. M. and Kim, S. W. (1994). An abnormal umbilical artery waveform: a strong and independent predictor of adverse perinatal outcome in patients with preeclampsia. Am. J. Obstet. Gynecol., 171, 713–21.CrossRefGoogle ScholarPubMed
Zelop, C. M., Richardson, D. K. and Heffner, L. J. (1996). Outcomes of severely abnormal umbilical artery Doppler velocimetry in structurally normal singleton fetuses. Obstet. Gynecol., 87, 434–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×